CMOS 6-Bit Latch and Decoder Memory Interfaces March 1997 #### Features - Performs Memory Address Latch and Decoder Functions Multiplexed or Non-Multiplexed - · Decodes Up to 16K Bytes of Memory - Interfaces Directly with CDP1800-Series Microprocessors at Maximum Clock Frequency - Can Replace CDP1866 and CDP1867 (Upward Speed and Function Capability) # Ordering Information | PACKAGE | 5V | 10V | TEMP.
RANGE
(°C) | PKG.
NO. | |-----------------|------------|----------|------------------------|-------------| | PDIP | CDP1881CE | 10.7 | -40 to +85 | E20.3 | | PDIP | CDP1882CE | 1657 | -40 to +85 | E18.3 | | PDIP
Burn-In | CDP1882CEX | E MAIL | -40 to +85 | E18.3 | | SBDIP | - | CDP1882D | -40 to +85 | D18.3 | # Description The CDP1881C, CDP1882 and CDP1882C are CMOS 6-bit memory latch and decoder circuits intended for use in CDP1800 series microprocessor systems. They can interface directly with the multiplexed address bus of this system at maximum clock frequency, and up to four 4K x 8-bit memories to provide a 16K byte memory system. With four 2K x 8-bit memories an 8K byte system can be decoded. The devices are also compatible with non-multiplexed address bus microprocessors. By connecting the clock input to V_{DD} , the latches are in the data-following mode and the decoded outputs can be used in general purpose memory-system applications. The CDP1881C, CDP1882 and CDP1882C are intended for use with 2K or 4K byte RAMs and are identical except that in the CDP1882 MWR and MRD are excluded. The CDP1882 is functionally identical to the CDP1882C. It differs in that the CDP1882 has recommended operating voltage range of 4V to 10.5V and the C version has a recommended operating voltage range of 4V to 6.5V. The CDP1881C, CDP1882 and CDP1882C are supplied in 20 lead and 18 lead packages, respectively. The CDP1881C is supplied only in a dual-in-line plastic package (E suffix). The CDP1882 is supplied in dual-in-line, hermetic side-brazed ceramic (D suffix) and in plastic (E suffix) packages. #### **Pinouts** CDP1881C (PDIP) TOP VIEW CDP1882, CDP1882C (PDIP, CERDIP) TOP VIEW # **Absolute Maximum Ratings** #### DC Supply Voltage Range, (V_{DD}) (All Voltages Referenced to V_{SS} Terminal) CDP1882 -0.5V to +11V CDP1881C and CDP1882C. -0.5V to +7V Input Voltage Range, All Inputs -0.5V to V_{DD} +0.5V DC Input Current, Any One Input.....±10mA ### **Thermal Information** | Thermal Resistance (Typical) | θ_{JA} (°C/W) | θ_{JC} (°C/W) | |---|----------------------|---------------------------------------| | 18 Lead PDIP | 85 | N/A | | 20 Lead PDIP | 80 | N/A | | SBDIP Package | 85 | 22 | | Device Dissipation Per Output Transistor | | | | T _A = Full Package Temperature Range | | | | (All Package Types) | | 100mW | | Operating Temperature Range (T _A) | | | | Package Type D | 55° | ^o C to +125 ^o C | | Package Type E | 40 | 0°C to +85°C | | Storage Temperature Range (T _{STG}) | 65° | ^o C to +150 ^o C | | Lead Temperature (During Soldering) | | | | At distance 1/16 \pm 1/32 In. (1.59 \pm 0.79n | nm) | | | from case for 10s max | | +265°C | CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied. $\textbf{Recommended Operating Conditions} \quad \text{At T}_{A} = \text{Full Package Temperature Range. For maximum reliability, operating conditions}$ should be selected so that operation is always within the following ranges: | | CDP | 1882 | CDP1881C, | | | |----------------------------|-----------------|-----------------|-----------------|-----------------|-------| | PARAMETER | MIN | MAX | MIN | MAX | UNITS | | DC Operating Voltage Range | 4 | 10.5 | 4 | 6.5 | V | | Input Voltage Range | V _{SS} | V _{DD} | V _{SS} | V _{DD} | V | # Static Electrical Specifications At $T_A = -40$ °C to +85 °C, $V_{DD} \pm 5\%$, Except as Noted: | | | C | ONDITION | ITIONS CDP1882 | | | CDP1 | | | | | |------------------------------------|-----------------|-----------------------|------------------------|------------------------|-------|----------|------|-------|-----------------|-----|-------| | PARAMETER | SYMBOL | ν _ο
(۷) | V _{IN}
(V) | V _{DD}
(V) | MIN | (NOTE 1) | MAX | MIN | (NOTE 1)
TYP | MAX | UNITS | | Quiescent Device
Current | I _{DD} | - | 0, 5 | 5 | - | 1 | 10 | - | 5 | 50 | μА | | Current | | - | 0, 10 | 10 | - | 10 | 100 | - | - | - | μА | | Output Low Drive
(Sink) Current | I _{OL} | 0.4 | 0, 5 | 5 | 1.6 | 3.2 | - | 1.6 | 3.2 | - | mA | | (Sirik) Current | | 0.5 | 0, 10 | 10 | 3.2 | 6.4 | - | - | - | - | mA | | Output High Drive | ІОН | 4.6 | 0, 5 | 5 | -1.15 | -2.3 | - | -1.15 | -2.3 | - | mA | | (Source) Current | | 9.5 | 0, 10 | 10 | -2.3 | -4.6 | - | - | - | - | mA | | Output Voltage | V _{OL} | - | 0, 5 | 5 | - | 0 | 0.1 | - | 0 | 0.1 | V | | Low-Level (Note 2) | | - | 0, 10 | 10 | - | 0 | 0.1 | - | - | - | V | | Output Voltage | V _{OH} | - | 0, 5 | 5 | 4.9 | 5 | - | 4.9 | 5 | - | V | | High-Level (Note 2) | | - | 0, 10 | 10 | 9.9 | 10 | - | - | - | - | V | | Input Low Voltage | V _{IL} | 0.5, 4.5 | - | 5 | - | - | 1.5 | - | - | 1.5 | V | | | | 1, 9 | - | 10 | - | - | 3 | - | - | - | V | | Input High Voltage | V _{IH} | 0.5, 9.5 | - | 5 | 3.5 | - | - | 3.5 | - | - | V | | | | 1, 9 | - | 10 | 7 | - | - | - | - | - | V | Static Electrical Specifications At $T_A = -40$ °C to +85 °C, $V_{DD} \pm 5\%$, Except as Noted: (Continued) | | | CONDITIONS | | | CDP1882 | | | CDP1 | | | | |-----------------------------------|------------------|-----------------------|------------------------|------------------------|---------|----------|-----|------|-----------------|-----|-------| | PARAMETER | SYMBOL | V _O
(V) | V _{IN} (V) | V _{DD}
(V) | MIN | (NOTE 1) | MAX | MIN | (NOTE 1)
TYP | MAX | UNITS | | Input Leakage Current | I _{IN} | Any
Input | 0, 5 | 5 | - | - | ±1 | - | - | ±1 | μА | | | | mput | 0, 10 | 10 | - | - | ±2 | - | - | - | μА | | Operating Current (Note 2) | I _{DD1} | 0, 5 | 0, 5 | 5 | - | - | 2 | - | - | 2 | mA | | (Note 2) | | 0, 10 | 0, 10 | 10 | - | - | 4 | - | - | - | mA | | Input Capacitance | C _{IN} | - | - | - | - | 5 | 7.5 | - | 5 | 7.5 | pF | | Output Capacitance | C _{OUT} | - | - | - | - | 10 | 15 | - | 10 | 15 | pF | | Minimum Data
Retention Voltage | V _{DR} | $V_{DD} = V_{DR}$ | | | - | 2 | 2.4 | - | 2 | 2.4 | V | | Data Retention Current | I _{DR} | , | V _{DD} = 2.4\ | / | - | 0.01 | 1 | - | 0.5 | 5 | μΑ | #### NOTES: - 1. Typical values are for $T_A = +25^{\circ}C$. - 2. $I_{OL} = I_{OH} = 1\mu A$. - 3. Operating current measured at 200kHz for V_{DD} = 5V and 400kHz for V_{DD} = 10V, with outputs open circuits (equivalent to typical CDP1800 system at 3.2MHz, 5V; and 6.4MHz, 10V). FIGURE 1. FUNCTIONAL DIAGRAM FOR THE CDP1881C FIGURE 2. FUNCTIONAL DIAGRAM FOR THE CDP1882, CDP1882C # TRUTH TABLE | | INPUTS | | | | | OUTPUTS | | | | |--------------|--------------|----|-----|-----|-----|----------------|---------|----------|-----| | (NOTE 1) MWR | (NOTE 1) MRD | CE | CLK | MA4 | MA5 | CS0 | CS1 | CS2 | CS3 | | 1 | 1 | Х | Х | Х | Х | 1 | 1 | 1 | 1 | | Х | Х | 1 | Х | Х | Х | 1 | 1 | 1 | 1 | | 0 | Х | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | | 0 | Х | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | | 0 | Х | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | | 0 | Х | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | 0 | Х | 0 | 0 | Х | Х | | Previou | ıs State | | | Х | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | | Х | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | | Х | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | | Х | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | Х | 0 | 0 | 0 | Х | Х | Previous State | | | | #### NOTE: 1. CDP1881C Only | | INPUTS | | | | | |----|--------|--------------------|------------------|--|--| | CE | CLK | MA0, MA1, MA2, MA3 | A8, A9, A10, A11 | | | | Х | 1 | 1 | 1 | | | | Х | 1 | 0 | 0 | | | | Х | 0 | Х | Previous State | | | Logic 1 = High, Logic 0 = Low, X = Don't Care # $\textbf{Dynamic Electrical Specifications} \quad \text{at T}_{A} = -40^{o}\text{C to } +85^{o}\text{C}, \ V_{DD} \pm 5\%, \ t_{R}, \ t_{F} = 20\text{ns}, \ V_{IH} = 0.7 \ V_{DD}, \ V_{IL} = 0.3 \ V_{DD}, \ C_{L} = 100\text{pF}, \ (\text{See Figure 1})$ | | | | CDP1882 | | | CDP | | | | |----------------------------|-------------------|------------------------|---------|-----------------|-----------------|-----|-----------------|-----------------|-------| | PARAMETER | | V _{DD}
(V) | MIN | (NOTE 1)
TYP | (NOTE 2)
MAX | MIN | (NOTE 1)
TYP | (NOTE 2)
MAX | UNITS | | Minimum Setup Time | t _{MACL} | 5 | - | 10 | 35 | - | 10 | 35 | ns | | Memory Address to CLOCK | | 10 | - | 8 | 25 | - | - | - | ns | | Minimum Hold Time | t _{CLMA} | 5 | - | 8 | 25 | - | 8 | 25 | ns | | Memory Address After CLOCK | | 10 | - | 8 | 25 | - | - | - | ns | | Minimum CLOCK Pulse Width | t _{CLCL} | 5 | - | 50 | 75 | - | 50 | 75 | ns | | | | 10 | - | 25 | 40 | - | - | - | ns | $\textbf{Dynamic Electrical Specifications} \quad \text{at T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C}, \ V_{DD} \pm 5\%, \ t_{R}, \ t_{F} = 20 \text{ns}, \ V_{IH} = 0.7 \ V_{DD}, \ V_{IL} = 0.3 \ V_{DD}, \ C_{L} = 100 \text{pF}, \ (\text{See Figure 1}) \ \ \textbf{(Continued)}$ | | | | CDP1882 | | | CDP1881C, CDP1882C | | | | |------------------------------------|-------------------|------------------------|---------|-----------------|-----------------|--------------------|-----------------|-----------------|-------| | PARAMETER | | V _{DD}
(V) | MIN | (NOTE 1)
TYP | (NOTE 2)
MAX | MIN | (NOTE 1)
TYP | (NOTE 2)
MAX | UNITS | | PROPAGATION DELAY TIMES | | | | | | | | | | | Chip Enable to Chip Select | t _{CECS} | 5 | - | 75 | 150 | - | 75 | 150 | ns | | | | 10 | - | 45 | 100 | - | - | - | ns | | MRD or MRW to Chip Select (Note 3) | t _{MCS} | 5 | - | 75 | 150 | - | 75 | 150 | ns | | | | 10 | - | 40 | 100 | - | - | - | ns | | CLOCK to Chip Select | t _{CLCS} | 5 | - | 100 | 175 | - | 100 | 175 | ns | | | | 10 | - | 65 | 125 | - | - | - | ns | | CLOCK to Address | t _{CLA} | 5 | - | 100 | 175 | - | 100 | 175 | ns | | | | 10 | - | 65 | 125 | - | - | - | ns | | Memory Address to Chip Select | t _{MACS} | 5 | - | 100 | 175 | - | 100 | 175 | ns | | | | 10 | - | 75 | 125 | - | - | - | ns | | Memory Address to Address | t _{MAA} | 5 | - | 80 | 125 | - | 80 | 125 | ns | | | | 10 | - | 40 | 60 | - | - | - | ns | #### NOTES: - 1. Typical values are for $T_A = 25^{\circ}C$. - 2. Maximum limits of minimum characteristics are the values above which all devices function. - 3. For CDP1881C type only. FIGURE 3. TIMING WAVEFORMS # Signal Descriptions/Pin Functions **CLOCK:** Latch-Input Control - a high at the clock input will allow data to pass through the latch to the output pin. Data is latched on the high to low transition of the clock input. This input is connected to TPA in CDP1800-series systems. **MA0 - MA3:** Address inputs to the high-byte address latches. **MA4 - MA5:** High byte address inputs decoded to produce chip selects $\overline{\text{CS0}}$ - $\overline{\text{CS3}}$. MRD, MWR: MEMORY READ (\overline{MRD}) and MEMORY WRITE (\overline{MWR}) signal inputs on the CDP1881C. A low at either input, when the \overline{CE} pin is low, will enable the decoder chip select outputs (\overline{CSO} - $\overline{CS3}$). **CE:** CHIP ENABLE input - a low at the $\overline{\text{CE}}$ input of CDP1882, CDP1882C will enable the chip select decoder. A low at the $\overline{\text{CE}}$ input of CDP1881C, coincident with a low at either $\overline{\text{MRD}}$ or $\overline{\text{MRW}}$ pin, will enable the chip select decoder. A high on this pin forces $\overline{\text{CS0}}$, $\overline{\text{CS1}}$, $\overline{\text{CS2}}$, and $\overline{\text{CS3}}$ to a high (false) state. A8 - A11: Latched high-byte address outputs. **CS0 - CS3:** One of four latched and decoded Chip Select outputs. V_{DD} , V_{SS} : Power and ground pins, respectively. # Application Information The CDP1881C, CDP1882, CDP1882C can interface directly with the multiplexed address bus of the CDP1800-series microprocessor family at maximum clock frequency. A single CDP1881C or CDP1882 is capable of decoding up to 16K-bytes of memory. The CDP1881C is provided with $\overline{\text{MRD}}$ and $\overline{\text{MWR}}$ inputs for controlling bus contention, and is especially useful for interfacing with RAMs that do not have an output enable function $(\overline{\text{OE}})$. Figure 4 shows the CDP1881C in a minimum system configuration which includes the CDP1833 ROM (1K x 8) and two 2K x 8 RAMS. The CDP1881C in this example performs the following functions: - Latch and decode high-order address bits for use as chip selects. - 2) Gate chip selects with $\overline{\text{MRD}}$ and $\overline{\text{MWR}}$ to prevent bus contention with the CPU. - 3) Latch high-order address bits A8 to A11. A system using the CDP1882 is shown in Figure 5. The CDP1882 performs the memory address latch and decoder functions. Note that the RAM has an output enable (\overline{OE}) pin which eliminates the need for \overline{MRD} and \overline{MWR} inputs on the latch/decoder. Instead, the \overline{MRD} line is connected directly to the RAM output enable (\overline{OE}) pin. In Figure 6 the CDP1882 is used to decode a 16K-byte ROM system consisting of four CDM5332s. NOTE: $\overline{CE}_A = \overline{CE}$ RAM NUMBER 1 $\overline{CE}_B = \overline{CE}$ RAM NUMBER 2 FIGURE 4. MINIMUM 1800-SERIES USING THE CDP1881C # All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. CDP1881C, CDP1882, CDP1882C # Sales Office Headquarters **NORTH AMERICA** Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 **EUROPE** Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 For information regarding Intersil Corporation and its products, see web site http://www.intersil.com **ASIA** Intersil (Taiwan) Ltd. Taiwan Limited 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029