CMOS 8-Bit Microcontroller

TMP87CH36N, TMP87CK36N, TMP87CM36N

The 87CH36/CK36/CM36 is high speed and high performance 8-bit single chip microcomputer. This MCU contains CPU core, ROM, RAM, input/output ports, six multi-function timer/counter, serial bus interface, onscreen display, PWM, 6-bit A/D conversion inputs and remote control signal preprocessor on a chip.

Part No.	ROM	RAM	Package	OTP MCU	
TMP87CH36N	16 Kbytes	0.54			
TMP87CK36N	24 Kbytes	1 Kbytes	SDIP42-P-600-1.78	TMP87PM36N	
TMP87CM36N	32 Kbytes				

Features

◆8-bit single chip microcomputer TLCS-870 Series

lacktriangleInstruction execution time: 0.5 μ s (at 8 MHz)

412 basic instructions

Multiplication and Division (8 bits x 8 bits, 16 bits ÷ 8 bits)

Bit manipulations (Set/Clear/Complement/Move/Test/Exclusive Or)

16-bit data operations

1-byte jump/subroutine-call (Short relative jump / Vector call)

12 interrupt sources (External: 3, Internal: 9)

 All sources have independent latches each, and nested interrupt control is available.

Edge-selectable external interrupts with noise reject

High-speed task switching by register bank changeover

◆6 Input/Output ports (34 pins)

High current output: 4 pins (typ. 20 mA)

The information contained herein is subject to change without notice.

The information contained herein is subject to change without notice.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, ransportation instruments, traffic signal instruments, combustion control instruments, medical instruments and the customer's own risk.

The pro<mark>ducts described</mark> in this document are subject to the foreign exchange and foreign trade laws.

TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations

For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions.

Purchase of TOSHIBA I² C components conveys a license under the Philips I² C Patent Rights to use these components in an I² C system, provided that the system conforms to the I² C Standard Specification as defined by Philips.

> 87CH36-1 2004-10-01

- ◆Two 16-bit Timers
- ◆Two 8-bit Timer/Counters
 - Timer, Event counter, Capture (Pulse width/duty measurement) modes
- ◆Time Base Timer (Interrupt frequency: 1 Hz to 16384 Hz)
- ◆Watchdog Timer
 - Interrupt source/reset output (programmable)
- ◆ Serial bus Interface
 - I²C-bus, 8-bit SIO modes
- ◆On-screen display circuit
 - Character patterns : 128 characters
 - Characters displayed : 24 columns x 12 lines
 - Composition : 14 × 18 dots
 - Size of character : 3 kinds (line by line)
 - Color of character : 8 kinds (character by character)
 - Variable display position : Horizontal 128 steps, Vertical 256 steps
 - Fringing, Smoothing function
- ◆D/A conversion (Pulse Width Modulation) outputs
 - 14-bit resolution (1 channel)
 - 7-bit resolution (9 channels)
- ◆6-bit A/D conversion input (4 channels)
- ◆ Pulse output (Clock for PLL IC)
- ◆Remote control signal preprocessor
- ◆Two Power saving operating modes
 - STOP mode: Oscillation stops. Battery/Capacitor back-up. Port output hold/high-impedance.
 - IDLE mode : CPU stops, and Peripherals operate. Release by interrupts.
- ◆Operating voltage: 4.5 to 5.5 V at 8 MHz
- ◆Emulation Pod : BM87CM37N0A

Pin Assignments (Top View)]<─VDD (PWM0) P40 ← 42 SDIP42-P-600-1.78 (PWM1) P41 2 41]< →P36 (SCK) 3 (PWM2) P42 40 →P35 (SDA/SO) (PWM3) P43 < 4 □< >P34 (SCL / SI) 39 (PWM4) P44 ← 5 □< →P33 (TC4) 38 (PWM5) P45 ← 6 37]< →P32 (INT4) (PWM6) P46 ← 7]< →P31 (TC3) 36 (PWM7) P47 < 8 35 □ ← → P30 (INT3 / RXIN) (PWM8) P50 < 9 34 →P20 (INT5 / STOP) (PWM9) P51 ← 10 □< →RESET 33 (PULSE) P52 ← □ > xouτ 11 32 P53 < 12 31 D≺—XIN (CIN0) P54 < → 13 30]≺—TEST →OSC2 (CIN1) P55 < 14 29 (CIN2) P56 15 28 -OSC1 27 |≺ →P71 (VD) (CIN3) P57 < 16 17 26]< →P70 (HD) 18 25]< →P67 (Y / BL) □< >P66 (B) 19 P62 < 24 I/O Ports P63 20 23]< →P65 (G) P67 P71 21 22 →P64 (R) to P60 to P70 **Block Diagram** Display Character Y/BL Memory ROM B,G,R VD HD P6 Р7 Osc. connecting pins for OSC1 On-screen display circuit on-screen 1 OSC2 \Diamond display Power VDD-P S w Program Counter Stack Pointer **Data Memory** (RAM) Flags RBS ALU Register Banks Reset I/O RESET System Controller Test Pin TEST Interrupt Controller **Program Memory** (ROM) Standby Controller Time Base 16-bit 8-bit **Timing Generator** Timer Timer Timer/Counter TC1 TC2 TC3 TC4 Resonator ∫ XIN-Connecting \XOUT High Clock Watchdog Inst.Register frequ. Generator Pins Inst. Decoder **1** 1 \odot <u> 1</u> Serial Bus Interface-ver.A (SIO/I²C) P4 6-bit A/D Р3 D/A Converter P5 Pulse Remote control P2 Generato signal preprocessor P20 P47 to P40 P57 P36 to P50 to P30 I/O Ports

Pin Function

Pin Name	Input/Output	F	unction		
P20 (INT5/STOP)	I/O (Input)	1-bit input / output port with latch. When used as an input port, the latch must be set to "1".	External interrupt input 5 or STOP mode release signal input		
P36 (SCK)	1/0 (1/0)		SIO serial clock input/output		
P35 (SDA/SO)	I/O (I/O/Output)	7-bit input/output port with latch.	I ² Cbus serial data input/output or SIO serial data output		
P34 (SCL/SI)	I/O (I/O/Input)	When used as an input port, a serial bus interface input/output, a timer/counter	I ² Cbus serial clock input/output or SIO serial data input		
P33 (TC4)		input, a remote control signal preprocessor input, or an external	Timer/Counter 4 input		
P32 (INT4)	I/O (Input)	interrupt input, the latch must be set to	External interrupt input 4		
P31 (TC3)		, "1" .	Timer/Counter 3 input		
P30 (INT3/RXIN)	I/O (Input/Input)		External interrupt input 3 or remote control signal preprocessor input		
P47 (PWM7) to P41 (PWM1)	(PWM1) (tri-state). Each bit of this port can be individually configured as an input or an		7-bit D/A conversion (PWM) outputs		
P40 (PWM0)	I/O (Output)	output under software control. During reset, all bits are configured as inputs. When used as a PWM output, the latch must be set to "1".	14-bit D/A conversion (PWM) output		
P57 (CIN3) to P54 (CIN0)	I/O (Input)	8-bit input/output port with latch.	6-bit A/D conversion (Comparator) inputs		
P53	I/O	When used as an input port, a			
P52 (PULSE)		comparator input, a PWM output, or a pulse output, the latch must be set to	Pulse output (Clock for PLL IC)		
P51 (PWM9) P50 (PWM8)	I/O (Output)	"1".	7-bit D/A conversion (PWM) outputs		
P67 (Y/BL)		8-bit programmable input/output port (P67 to P64 : tri-state, P63 to P60 : High	Focus signal output or Background blanking control signal output		
P66 (B) P65 (G) P64 (R)	I/O (Output)	current output). Each bit of this port can be individually configured as an input or an output under software control. During reset, all bits are configured as	RGB output		
P63 P62 P61 P60	1/0	inputs. When used as the R, G, B, Y / BL outputs of on-screen display circuit, each bit of the P6 port data selection register (bits 7 to 4 in address 0F91 _H) must be set to "1".	High current output.		
P71 (VD)	I/O (Input)	2-bit input/output port with latch. When used as an input ports, or a vertical synchronous signal input and horizontal	Vertical synchronous signal input		
P70 (HD)		synchronous signal input, the latch must be set to "1".	Horizontal synchronous signal input		
OSC1, OSC2	Input Output	Resonator connecting pins for on-screen di	isplay circuitry.		
XIN, XOUT	Input, Output	Resonator connecting pins. For inputting e	external clock, XIN is used and XOUT is opened.		
RESET	1/0	Reset signal input or watchdog timer output/address-trap- reset output/system-clock-resoutput.			
TEST	Input	Test pin for out-going test. Be tied to low.			
VDD, VSS Power Supply + 5 V, 0 V (GND)					

Operational Description

1. CPU Core Functions

The CPU core consists of a CPU, a system clock controller, an interrupt controller, and a watchdog timer. This section provides a description of the CPU core, the program memory (ROM), the data memory (RAM), and the reset circuit.

1.1 Memory Address Map

The TLCS-870 Series is capable of addressing 64 Kbytes of memory. Figure 1-1 shows the memory address maps of the 87CH36/K36/M36. In the TLCS-870 Series, the memory is organized 4 address spaces (ROM, RAM, SFR, and DBR). It uses a memory mapped I/O system, and all I/O registers are mapped in the SFR / DBR address spaces. There are 16 banks of general-purpose registers. The register banks are also assigned to the first 128 bytes of the RAM address space.

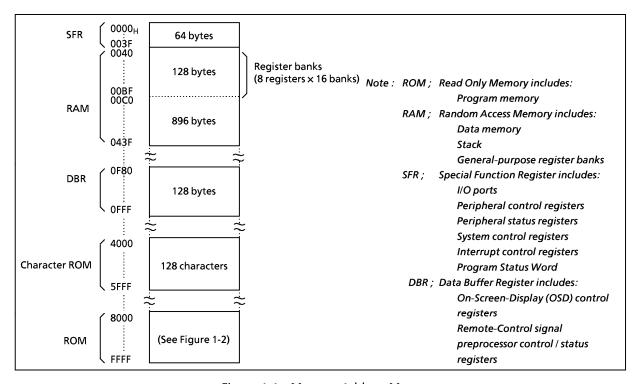


Figure 1-1. Memory Address Map

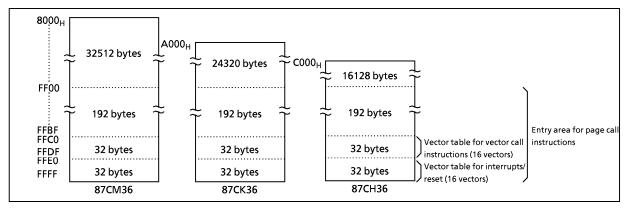


Figure 1-2. ROM Address Maps

1.2 Program Memory (ROM)

The 87CH36 has a 16 Kbytes (addresses $C000_H$ to $FFFF_H$), the 87CK36 has a 24 Kbytes (addresses $A000_H$ to $A0000_H$ to $A0000_H$ to $A0000_H$ to $A0000_H$ to $A0000_H$

- (1) Interrupt / Reset vector table (addresses FFE0_H to FFFF_H)

 This table consists of a reset vector and 15 interrupt vectors (2 bytes/vector). These vectors store a reset start address and 15 interrupt service routine entry addresses.
- (2) Vector table for vector call instructions (addresses FFC0_H to FFDF_H)

 This table stores call vectors (subroutine entry address, 2 bytes/vector) for the vector call instructions [CALLV n]. There are 16 vectors. The CALLV instruction increases memory efficiency when utilized for frequently used subroutine calls (called from 3 or more locations).
- (3) Entry area (addresses FF00_H to FFFF_H) for **page call** instructions

 This is the subroutine entry address area for the page call instructions [CALLP n]. Addresses FF00_H
 FFBF_H are normally used because address FFC0_H to FFFF_H are used for the vector tables.

Programs and fixed data are stored in the program memory. The instruction to be executed next is read from the address indicated by the current contents of the program counter (PC). There are relative jump and absolute jump instructions. The concepts of page or bank boundaries are not used in the program memory concerning any jump instruction.

Example : The relationship between the jump instructions and the PC.

- ① 5-bit PC-relative jump [JRS cc, \$+2+d] E8C4H: JRS T, \$+2+08H When JF = 1, the jump is made to E8CE_H, which is 08_H added to the contents of the PC. (The PC contains the address of the instruction being executed + 2; therefore, in this case, the PC contents are E8C4_H + 2 = E8C6_H.)
- ② 8-bit PC-relative jump [JR cc, \$+2+d] E8C4H: JR Z, \$+2+80H When ZF = 1, the jump is made to E846H, which is FF80H (-128) added to the current contents of the PC.
- 3 16-bit absolute jump [JP a] E8C4H: JP 0C235H An unconditional jump is made to address C235_H. The absolute jump instruction can jump anywhere within the entire 64K-byte space.

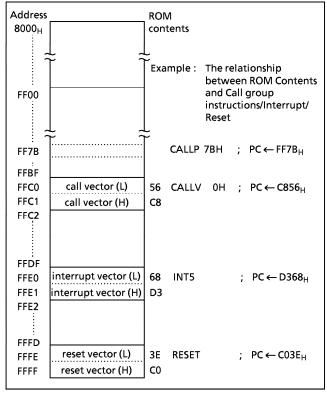


Figure 1-3. Program Memory Map

In the TLCS-870 Series, the same instruction used to access the data memory (e.g. [LD A, (HL)]) is also used to read out fixed data (ROM data) stored in the program memory. The register-offset PC-relative addressing (PC + A) instructions can also be used, and the code conversion, table look-up and n-way multiple jump processing can easily be programmed.

Example 1 : Loads the ROM contents at the address specified by the HL register pair contents into the

accumulator (HL \geq 8000_H for 87CH36/K36/M36):

LD A, (HL); $A \leftarrow ROM(HL)$

Example 2 : Converts BCD to 7-segment code (common anode LED). When $A = 05_H$, 92_H is output to

port P5 after executing the following program:

ADD A, TABLE-\$-4; P5 \leftarrow ROM (TABLE + A)

LD (P5), (PC+A) JRS T, SNEXT

TABLE: DB OCOH, OF9H, OA4H, OBOH, 99H, 92H, 82H,

0D8H, 80H, 98H

SNEXT:

Notes: "\$" is a header address of ADD instruction.

DB is a byte data difinition instruction.

Example 3 : N-way multiple jump in accordance with the contents of

accumulator (0 \leq A \leq 3):

SHLC A ; if $A = 00_H$ then $PC \leftarrow C234_H$ JP (PC+A) if $A = 01_H$ then $PC \leftarrow C378_H$

if $A = 02_H$ then $PC \leftarrow DA37_H$ if $A = 03_H$ then $PC \leftarrow E1B0_H$

DW 0C234H, 0C378H, 0DA37H, 0E1B0H

Note: DW is a word data definition instruction.

1.3 Program Counter (PC)

The program counter (PC) is a 16-bit register which indicates the program memory address where the instruction to be executed next is stored. After reset, the user defined reset vector stored in the vector table (addresses FFFF_H and FFFE_H) is loaded into the PC; therefore, program execution is possible from any desired address. For example, when CO_H and 3E_H are stored at addresses FFFF_H and FFFE_H, respectively, the execution starts from address CO3E_H after reset.

The TLCS-870 Series utilizes pipelined processing (instruction pre-fetch); therefore, the PC always indicates 2 addresses in advance. For example, while a 1-byte instruction stored at address C123_H is being executed, the PC contains C125_H.

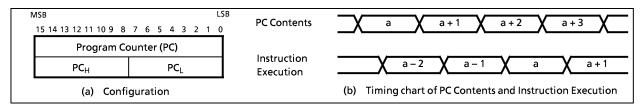


Figure 1-4. Program Counter

SHLC A

JP (PC + A)

78

37 DA

B0

Data Memory (RAM)

The 87CH36/K36/M36 have 1Kbytes (addresses 0040H to 043FH) of data memory (static RAM). Figure 1-5 shows the data memory map.

Addresses 0000H to 00FFH are used as a direct addressing area to enhance instructions which utilize this addressing mode; therefore, addresses 0040H to 00FFH in the data memory can also be used for user flags or user counters. General-purpose register banks (8 registers x 16 banks) are also assigned to the 128 bytes of addresses 0040_H-00BF_H. Access as data memory is still possible even when being used for registers. For example, when the contents of the data memory at address 0040H is read out, the contents of the accumulator in the bank 0 are also read out. The stack can be located anywhere within the data memory except the register bank area. The stack depth is limited only by the free data memory size. For more details on the stack, see section "1.7 Stack and Stack Pointer".

The TLCS-870 Series cannot execute programs placed in the data memory. When the program counter indicates a data memory address, a bus error occurs and an address-trap-reset applies. The RESET pin goes low during the address-trap-reset.

```
Example 1: If bit 2 at data memory address 00C0<sub>H</sub> is "1", 00<sub>H</sub> is written to data memory at address
```

00E3_H; otherwise, FF_H is written to the data memory at address 00E3_H:

```
(00C0H).2; if (00C0_H)_2 = 0 then jump
```

JRS T,SZERO

CLR (00E3H) ; $(00E3_{H})$ ← 00_{H}

JRS T, SNEXT

SZERO : LD (00E3H), 0FFH ; $(00E3_H) \leftarrow FF_H$

SNEXT:

Example 2: Increments the contents of data memory at address 00F5_H, and clears to 00_H when 10_H is exceeded:

INC (00F5H) ; $(00F5_H) \leftarrow (00F5_H) + 1$

AND (00F5H), 0FH; $(00F5H) \leftarrow (00F5H) \land 0FH$

The data memory contents become unstable when the power supply is turned on; therefore, the data memory should be initialized by an initialization routine. Note that the general-purpose registers are mapped in the RAM; therefore, do not clear RAM at the current bank addresses.

Example : Clears RAM to "00H" except the bank 0:

> LD HL, 0048H; Sets start address to HL register pair ; Sets initial data (00_H) to A register LD A, H

LD BC, 03F7H; Sets number of byte to BC register pair

SRAMCLR: LD (HL+), A

DEC BC

JRS F, SRAMCLR

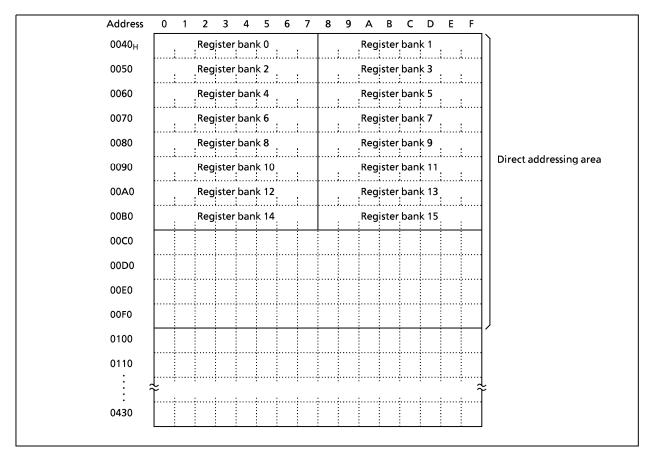


Figure 1-5. Data Memory Map

1.5 General-purpose Register Banks

General-purpose registers are mapped into addresses 0040_H to 00BF_H in the data memory as shown in Figure 1-5. There are 16 register banks, and each bank contains eight 8-bit registers W, A, B, C, D, E, H, and L. Figure 1-6 shows the general-purpose register bank configuration.

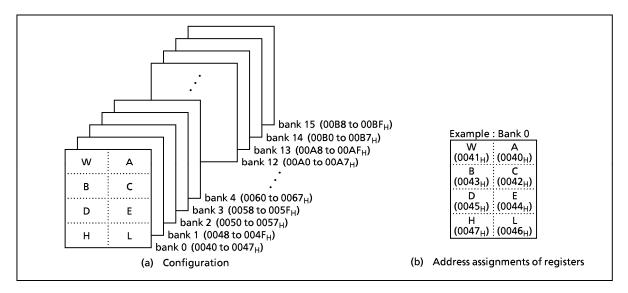


Figure 1-6. General-purpose Register Banks

In addition to access in 8-bit units, the registers can also be accessed in 16-bit units as the register pairs WA, BC, DE, and HL. Besides its function as a general-purpose register, the register also has the following functions:

(1) A, WA

The A register functions as an 8-bit accumulator and WA the register pair functions as a 16-bit accumulator (W is high byte and A is low byte). Registers other than A can also be used as accumulators for 8-bit operations.

Examples: ① ADD A, B; Adds B contents to A contents and stores the result into A.

② SUB WA, 1234H; Subtracts 1234H from WA contents and stores the result into

WA.

③ SUB E, A ; Subtracts A contents from E contents, and stores the result

into E.

(2) HL, DE

The HL and DE specify a memory address. The HL register pair functions as data pointer (HL) / index register (HL + d) / base register (HL + C), and the DE register pair function as a data pointer (DE). The HL also has an auto-post- increment and auto-pre-decrement functions. This function simplifies multiple digit data processing, software LIFO (last-in first-out) processing, etc.

Example 1: ① LD A, (HL) ; Loads the memory contents at the address specified by HL into A.
② LD A, (HL + 52H) ; Loads the memory contents at the address specified by the value obtained by adding 52H to HL contents into A.
③ LD A, (HL + C) ; Loads the memory contents at the address specified by the value obtained by adding the register C contents to HL contents into A.
④ LD A, (HL +) ; Loads the memory contents at the address specified by HL

into A. Then increments HL.

⑤ LD A, (-HL); Decrements HL. Then loads the memory contents at the

address specified by new HL into A.

The TLCS-870 Series can transfer data directly memory to memory, and operate directly between

Example 2: Block transfer

LD B, n-1; Sets (number of bytes to transfer) – 1 to B

LD HL, DSTA ; Sets destination address to HL

memory data and memory data. This facilitates the programming of block processing.

LD DE, SRCA; Sets source address to DE

SLOOP : LD (HL), (DE) ; (HL) \leftarrow (DE)

INC HL ; $HL \leftarrow HL + 1$ INC DE ; $DE \leftarrow DE + 1$ DEC B ; $B \leftarrow B - 1$

JRS F, SLOOP; if B≥0 then loop

2004-10-01

(3) B, C, BC

Registers B and C can be used as 8-bit buffers or counters, and the BC register pair can be used as a 16-bit buffer or counter. The C register functions as an offset register for register-offset index addressing (refer to example 1 ③ above) and as a divisor register for the division instruction [DIV gg, C].

Example 1: Repeat processing

LD B, n ; Sets n as the number of repetitions to B

SREPEAT: processing (n + 1 times processing)

DEC B

JRS F, SREPEAT

Example 2: Unsigned integer division (16-bit ÷ 8-bit)

DIV WA, C; Divides the WA contents by the C contents, places the quotient in

Aand the remainder in W.

The general-purpose register banks are selected by the 4-bit register bank selector (RBS). During reset, the RBS is initialized to "0". The bank selected by the RBS is called the current bank.

Together with the flag, the RBS is assigned to address $003F_H$ in the SFR as the program status word (PSW). There are 3 instructions [LD RBS, n], [PUSH PSW] and [POP PSW] to access the PSW. The PSW can be also operated by the memory access instruction.

Example 1: Incrementing the RBS

INC (003FH); RBS \leftarrow RBS + 1

Example 2: Reading the RBS

LD A, (003FH); $A \leftarrow PSW (A_{3-0} \leftarrow RBS, A_{7-4} \leftarrow Flags)$

Highly efficient programming and high-speed task switching are possible by using bank changeover to save registers during interrupt and to transfer parameters during subroutine processing.

During interrupt, the PSW is automatically saved onto the stack. The bank used before the interrupt was accepted is restored automatically by executing an interrupt return instruction [RETI]/[RETN]; therefore, there is no need for the RBS save/restore software processing.

The TLCS-870 Series supports a maximum of 15 interrupt sources. One bank is assigned to the main program, and one bank can be assigned to each source. Also, to increase the efficiency of data memory usage, assign the same bank to interrupt sources which are not nested.

Example : Saving /restoring registers during interrupt task using bank changeover.

PINT1 : LD RBS, n ; RBS \leftarrow n (Bank changeover)

Interrupt processing

RETI ; Maskable interrupt return (Bank restoring)

1.6 Program Status Word (PSW)

The program status word (PSW) consists of a register bank selector (RBS) and four flags, and the PSW is assigned to address 003F_H in the SFR.

The RBS can be read and written using the memory access instruction (e. g. [LD A, (003FH)], [LD (003FH), A], however the flags can only be read. When writing to the PSW, the change specified by the instruction is made without writing data to the flags. For example, when the instruction [LD (003FH), 05H] is executed, "5" is written to the RBS and the JF is set to "1", but the other flags are not affected. [PUSH PSW] and [POP PSW] are PSW access instructions.

1.6.1 Register bank selector (RBS)

The register bank selector (RBS) is a 4-bit register used to select general-purpose register banks. For example, when RBS = 2, bank 2 is currently selected. During reset, the RBS is initialized to "0".

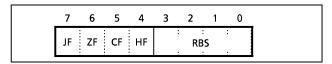


Figure 1-7. PSW (Flags, RBS) Configuration

1.6.2 Flags

The flags are configured with the upper 4 bits: a zero flag, a carry flag, a half carry flag and a jump status flag. The flags are set or cleared under conditions specified by the instruction. These flags except the half carry flag are used as jump condition "cc" for conditional jump instructions [JR cc, +2+d]/[JRS cc, +2+d]. After reset, the jump status flag is initialized to "1", other flags are not affected.

(1) Zero flag (ZF)

The ZF is set to "1" if the operation result or the transfer data is 00_H (for 8-bit operations and data transfers)/0000_H (for 16-bit operations); otherwise the ZF is cleared to "0".

During the bit manipulation instructions [SET, CLR, and CPL], the ZF is set to "1" if the contents of the specified bit is "0"; otherwise the ZF is cleared to "0".

This flag is set to "1" when the upper 8 bits of the product are 00_H during the multiplication instruction [MUL], and when 00_H for the remainder during the division instruction [DIV]; otherwise it is cleared to "0".

(2) Carry flag (CF)

The CF is set to "1" when a carry out of the MSB (most significant bit) of the result occurred during addition or when a borrow into the MSB of the result occurred during subtraction; otherwise the CF is cleared to "0". During division, this flag is set to "1" when the divisor is 00_H (divided by zero error), or when the quotient is 100_H or higher (quotient overflow error); otherwise it is cleared. The CF is also affected during the shift/rotate instructions [SHLC, SHRC, ROLC, and RORC]. The data shifted out from a register is set to the CF.

This flag is also a 1-bit register (a boolean accumulator) for the bit manipulation instructions. Set/clear/complement are possible with the CF manipulation instructions.

RORC A

(3) Half carry flag (HF)

The HF is set to "1" when a carry occurred between bits 3 and 4 of the operation result during an 8-bit addition, or when a borrow occurred from bit 4 into bit 3 of the result during an 8-bit subtraction; otherwise the HF is cleared to "0". This flag is useful in the decimal adjustment for BCD operations (adjustments using the [DAA r], or [DAS r] instructions).

Example: BCD operation

(The A becomes 47_H after executing the following program when A = 19_H , B = 28_H)

ADD A, B; $A \leftarrow 41_H$, $HF \leftarrow 1$

DAA A ; $A \leftarrow 41_H + 06H = 47_H$ (decimal-adjust)

(4) Jump status flag (JF)

Zero or carry information is set to the JF after operation (e.g. INC, ADD, CMP, TEST).

The JF provides the jump condition for conditional jump instructions [JRS T/F, +2+d], [JR T/F, +2+d] (T or F is a condition code). Jump is performed if the JF is "1" for a true condition (T), or the JF is "0" for a false condition (F).

The JF is set to "1" after executing the load/exchange/swap/nibble rotate/jump instruction, so that [JRS T, \$ + 2 + d] and [JR T, \$ + 2 + d] can be regarded as an unconditional jump instruction.

Example: Jump status flag and conditional jump instruction

INC A

JRS T, SLABLE1; Jump when a carry is caused by the immediately

: preceding operation instruction.

LD A, (HL)

JRS T, SLABLE2; JF is set to "1" by the immediately preceding

instruction, making it an unconditional jump instruction.

Example: The accumulator and flags become as shown below after executing the following instructions when the WA register pair, the HL register pair, the data memory at

address $00C5_{H}$, the carry flag and the half carry flag contents being "219 A_{H} ", "00 $C5_{H}$ ",

"D7_H", "1" and "0", respectively.

Instruction		Acc. after	Flag after execution				
	ti deti ori	execution	JF	ZF	CF	HF	
ADDC	A, (HL)	72	1	0	1	1	
SUBB	A, (HL)	C2	1	0	1	0	
СМР	A, (HL)	9A	0	0	1	0	
AND	A, (HL)	92	0	0	1	0	
LD	A, (HL)	D7	1	0	1	0	
ADD	А, 66Н	00	1	1	1	1	

Instruction	Acc. after	Flag after execution				
msa dellon	execution	JF	ZF	CF	HF	
INC A	9В	0	0	1	0	
ROLC A	35	1	0	1	0	
RORC A	CD	0	0	0	0	
ADD WA, 0F508H	16A2	1	0	1	0	
MUL W, A	13DA	0	0	1	0	
SET A.5	ВА	1	1	1	0	

1.7 Stack and Stack Pointer

1.7.1 Stack

The stack provides the area in which the return address or status, etc. are saved before a jump is performed to the processing routine during the execution of a subroutine call instruction or the acceptance of an interrupt. On a subroutine call instruction [CALL a] / [CALLP n] / [CALLV n], the contents of the PC (the return address) is saved; on an interrupt acceptance, the contents of the PC and the PSW are saved (the PSW is pushed first, followed by PC_H and PC_L). Therefore, a subroutine call occupies two bytes on the stack; an interrupt occupies three bytes.

When returning from the processing routine, executing a subroutine return instruction [RET] restores the contents to the PC from the stack; executing an interrupt return instruction [RETI] / [RETN] restores the contents to the PC and the PSW (the PC_L is popped first, followed by PC_H and PSW).

The stack can be located anywhere within the data memory space except the register bank area, therefore the stack depth is limited only by the free data memory size.

1.7.2 Stack pointer (SP)

The stack pointer (SP) is a 16-bit register containing the address of the next free locations on the stack. The SP is post-decremented when a subroutine call or a push instruction is executed, or when an interrupt is accepted; and the SP is pre-incremented when a return or a pop instruction is executed. Figure 1-9 shows the stacking order.

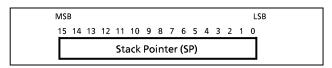


Figure 1-8. Stack Pointer

The SP is not initialized hardware-wise but requires initialization by an initialize routine (sets the highest stack address). [LD SP, mn], [LD SP, gg] and [LD gg, SP] are the SP access instructions (mn; 16-bit immediate data, gg; register pair).

Example 1: To initialize the SP

LD SP, 043FH; SP←043F_H

Example 2: To read the SP

LD HL, SP ; HL←SP

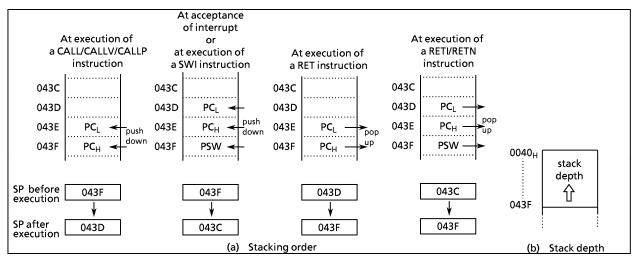


Figure 1-9. Stack

1.8 System Clock Controller

The system clock controller consists of a clock generator, a timing generator, and a stand-by controller.

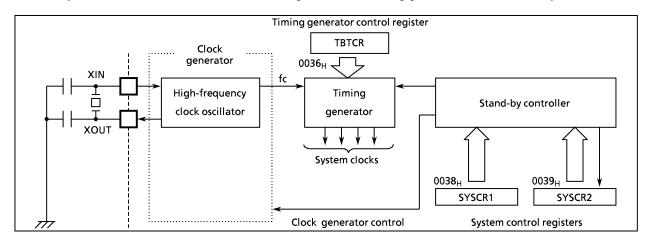


Figure 1-10. System Clock Controller

1.8.1 Clock generator

The clock generator generates the basic clock which provides the system clocks supplied to the CPU core and peripheral hardware. It contains a oscillation circuit for the high-frequency clock.

The high-frequency (fc) clock can be easily obtained by connecting a resonator between the XIN/XOUT pins, respectively. Clock input from an external oscillator is also possible. In this case, external clock is applied to the XIN pin with the XOUT pin not connected. The 87CH36/K36/M36 is not provided an RC oscillation.

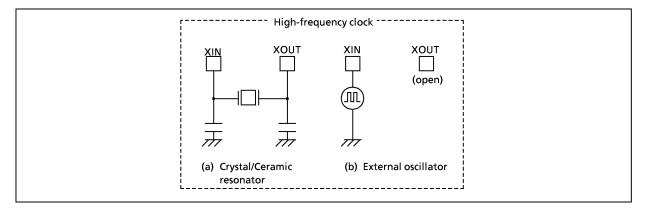


Figure 1-11. Examples of Resonator Connection

Note: Accurate Adjustment of the Oscillation Frequency:

Although hardware to externally and directly monitor the basic clock pulse is not provided, the oscillation frequency can be adjusted by providing a program to output fixed frequency pulses to the port while disabling all interrupts and monitoring this pulse. With a system requiring adjustment of the oscillation frequency, the adjusting program must be created beforehand.

1.8.2 Timing generator

The timing generator generates from the basic clock the various system clocks supplied to the CPU core and peripheral hardware. The timing generator provides the following functions:

- ① Generation of main system clock
- ② Generation of source clocks for time base timer
- 3 Generation of source clocks for watchdog timer
- ④ Generation of internal source clocks for timer/counters TC1 to TC4
- ⑤ Generation of warm-up clocks for releasing STOP mode
- 6 Generation of a clock for releasing reset output

(1) Configuration of Timing Generator

The timing generator consists of a 21-stage divider with a divided-by-4 prescaler, a main system clock generator, and machine cycle counters, shown in Figure 1-12 as follows. During reset and upon releasing STOP mode, the divider is cleared to "0", however, the prescaler is not cleared.

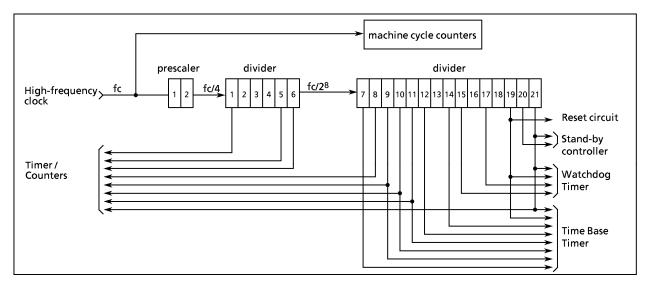


Figure 1-12. Configuration of Timing Generator

(2) Machine Cycle

Instruction execution and peripherals hardware operation are synchronized with the main system clock. The minimum instruction execution unit is called an "machine cycle". There are a total of 10 different types of instructions for the TLCS-870 Series: ranging from 1-cycle instructions which require one machine cycle for execution to 10-cycle instructions which require 10 machine cycles for execution.

A machine cycle consists of 4 states (S0 to S3), and each state consists of one main system clock.

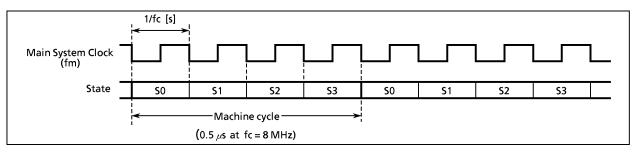


Figure 1-13. Machine Cycle

1.8.3 Stand-by controller

The stand-by controller starts and stops the oscillation circuit for the high-frequency clock. Operating modes are controlled by the system control registers (SYSCR1, SYSCR2).

Figure 1-14 shows the operating mode transition diagram and Figure 1-15 shows the system control registers.

(1) Operating mode

- ① NORMAL mode
 - In this mode, both the CPU core and on-chip peripherals operate.
- ② IDLE mode

In this mode, the internal oscillation circuit remains active. The CPU and the watchdog timer are halted; however, on-chip peripherals remain active. IDLE mode is started by setting IDLE bit in the system control register 2 (SYSCR2), and IDLE mode is released to NORMAL mode by an interrupt request from on-chip peripherals or external interrupt inputs. When IMF (interrupt master enable flag) is "1" (interrupt enable), the execution will resume upon acceptance of the interrupt, and the operation will return to normal after the interrupt service is completed. When IMF is "0" (interrupt disable), the execution will resume with the next instruction which follows IDLE mode start instruction.

3 STOP mode

In this mode, the internal oscillation circuit is turned off, causing all system operations to be halted. The internal status immediately prior to the halt is held with the lowest power consumption during this mode. The output status of all output ports can be set to either output hold or high-impedance under software control.

STOP mode is started by setting STOP bit in the system control register 1 (SYSCR1), and STOP mode is released by an input (either level-sensitive or edge-sensitive can be programmably selected) to the STOP pin. After the warming-up period is completed, the execution resumes with the next instruction which follows the STOP mode start instruction.

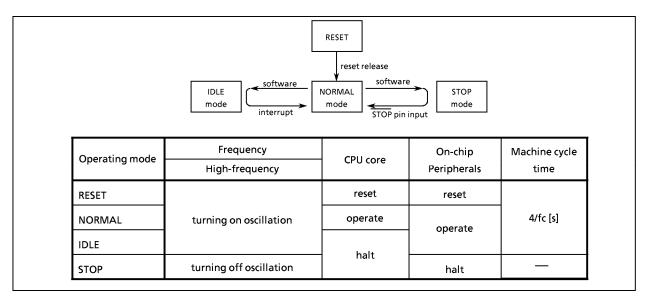


Figure 1-14. Operating Mode Transition Diagram

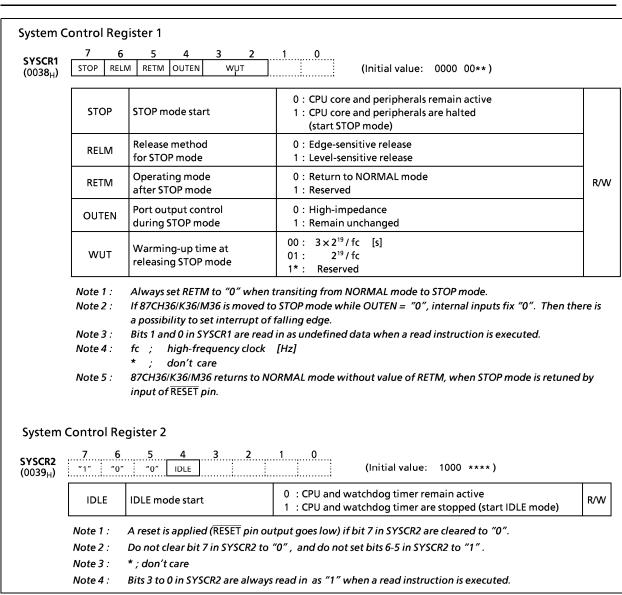


Figure 1-15. System Control Registers

1.8.4 Operating mode control

(1) **STOP** mode

STOP mode is controlled by the system control register 1 (SYSCR1) and the STOP pin input. The STOP pin is also used both as a port P20 and an INT5 (external interrupt input 5) pin. STOP mode is started by setting STOP (bit 7 in SYSCR1) to "1". During STOP mode, the following status is maintained.

- ① Oscillation is turned off, and all internal operations are halted.
- The data memory, registers and port output latches are all held in the status in effect before STOP mode was entered. The port output can be select either output hold or high-impedance by setting OUTEN (bit 4 in SYSCR1).
- 3 The divider of the timing generator is cleared to "0".
- The program counter holds the address of the instruction following the instruction which started STOP mode.

STOP mode includes a level-sensitive release mode and an edge-sensitive release mode, either of which can be selected with RELM (bit 6 in SYSCR1).

a. Level-sensitive release mode (RELM = 1)

In this mode, STOP mode is released by setting the $\overline{\text{STOP}}$ pin high. This mode is used for capacitor back-up when the main power supply is cut off and for long term battery back-up.

When the STOP pin input is high, executing an instruction which starts the STOP mode will not place in STOP mode but instead will immediately start the release sequence (warm-up). Thus, to start STOP mode in the level-sensitive release mode, it is necessary for the program to first confirm that the STOP pin input is low. The following method can be used for confirmation:

• Using an external interrupt input INT5 (INT5 is a falling edge-sensitive input).

Example: Starting STOP mode with an INT5 interrupt. (TMP87CH36/K36/M36)

PINT5: TEST (P2). 0 ; To reject noise, STOP mode does not start JRS F, SINT5 if port P20 is at high

LD (SYSCR1), 01000000B ; Sets up the level-sensitive release mode.

SET (SYSCR1) . 7 ; Starts STOP mode LDW

(clears interrupt latches)

SINT5: RETI

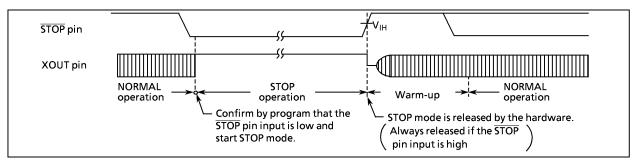


Figure 1-16. Level-sensitive Release Mode

Note1: After warming up is started, when STOP pin input is changed "L" level, STOP mode is not

Note2: When changing to the level-sensitive release mode from the edge-sensitive release mode, the release mode is not switched until a rising edge of the STOP pin input is detected.

b. Edge-sensitive release mode (RELM = 0)

In this mode, STOP mode is released by a rising edge of the $\overline{\text{STOP}}$ pin input. This is used in applications where a relatively short program is executed repeatedly at periodic intervals. This periodic signal (for example, a clock from a low-power consumption oscillator) is input to the $\overline{\text{STOP}}$ pin.

In the edge-sensitive release mode, STOP mode is started even when the STOP pin input is high.

Example: Starting STOP mode operation in the edge-sensitive release mode (TMP87CM36)

LD (SYSCR1), 00000000B ; OUTEN ← 0 (specifies high-impedance)

DI ; IMF ← 0 (disables interrupt service)

SET (SYSCR1). STOP ; STOP ← 1 (activates stop mode)

LDW (IL), 1110011111111111B; $IL12, 11 \leftarrow 0$

(clears interrupt latches)

EI ; IMF ← 1 (enables interrupt service)

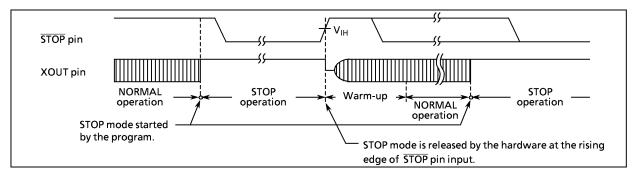


Figure 1-17. Edge-sensitive Release Mode

STOP mode is released by the following sequence:

- ① The high-frequency clock oscillator is turned on.
- ② A warming-up period is inserted to allow oscillation time to stabilize. During warm-up, all internal operations remain halted. Two different warming-up times can be selected with WUT (bits 2 and 3 in SYSCR1) as determined by the resonator characteristics.
- When the warming-up time has elapsed, normal operation resumes with the instruction following the STOP mode start instruction (e.g. [SET (SYSCR1). 7]). The start is made after the divider of the timing generator is cleared to "0".

	3 1			
WUT	At fc = 4.194304 MHz	At fc=8MHz		
3 × 2 ¹⁹ / fc [s]	375 [ms]	196.6 [ms]		
2 ¹⁹ / fc	125	65.5		

Table 1-1. Warming-up Time example

Note: The warming-up time is obtained by dividing the basic clock by the divider: therefore, the warming-up time may include a certain amount of error if there is any fluctuation of the oscillation frequency when STOP mode is released. Thus, the warming-up time must be considered an approximate value.

STOP mode can also be released by setting the $\overline{\text{RESET}}$ pin low, which immediately performs the normal reset operation.

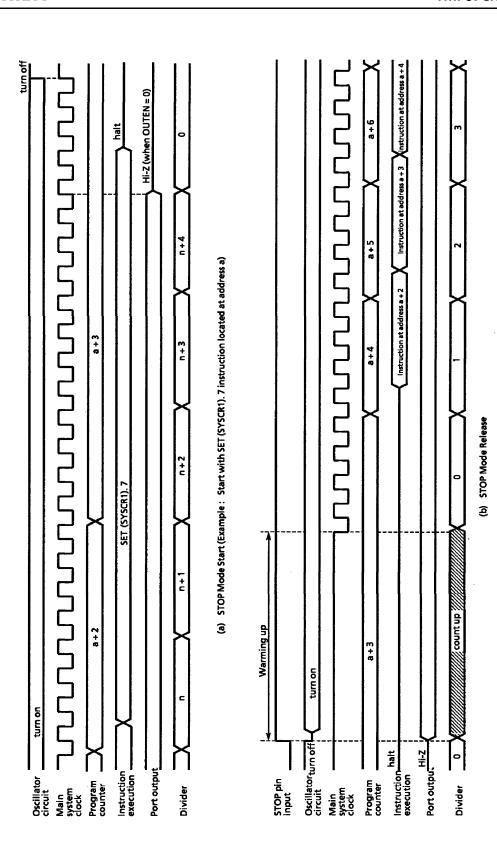


Figure 1-18. STOP Mode Start / Release

Note: When STOP mode is released with a low hold voltage, the following cautions must be observed. The power supply voltage must be at the operating voltage level before releasing the STOP mode. The RESET pin input must also be high, rising together with the power supply voltage. In this case, if an external time constant circuit has been connected, the RESET pin input voltage will increase at a slower rate than the power supply voltage. At this time, there is a danger that a reset may occur if input voltage level of the RESET pin drops below the non-inverting high-level input voltage (hysteresis input).

(2) IDLE mode

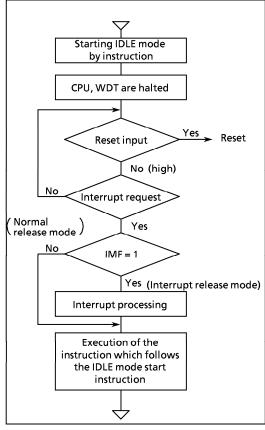
IDLE mode is controlled by the system control register 2 and maskable interrupts. The following status is maintained during IDLE mode.

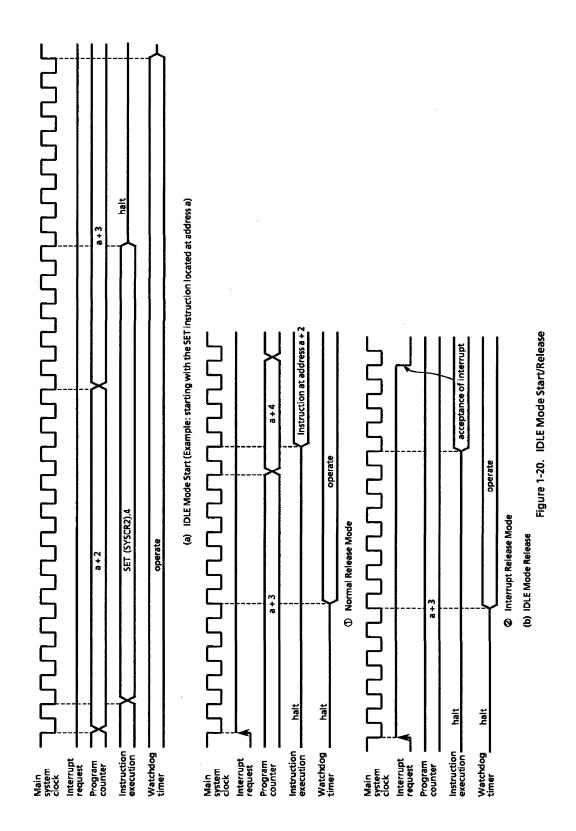
- ① Operation of the CPU and watchdog timer is halted. On-chip peripherals continue to operate.
- ② The data memory, CPU registers and port output latches are all held in the status in effect before IDLE mode was entered.
- 3 The program counter holds the address of the instruction following the instruction which started IDLE mode.

IDLE mode includes a normal release mode and an interrupt release mode. Selection is made with the interrupt master enable flag (IMF). Releasing the IDLE mode returns to NORMAL mode.

a. Normal release mode (IMF = "0")

IDLE mode is released by any interrupt source enabled by the individual interrupt enable flag (EF). Execution resumes with the instruction following the IDLE mode start instruction (e.g. [SET (SYSCR2).4]). Normally, IL (Interrupt Latch) of interrupt source to release IDLE mode must be cleared by load instructions.




Figure 1-19. IDLE Mode

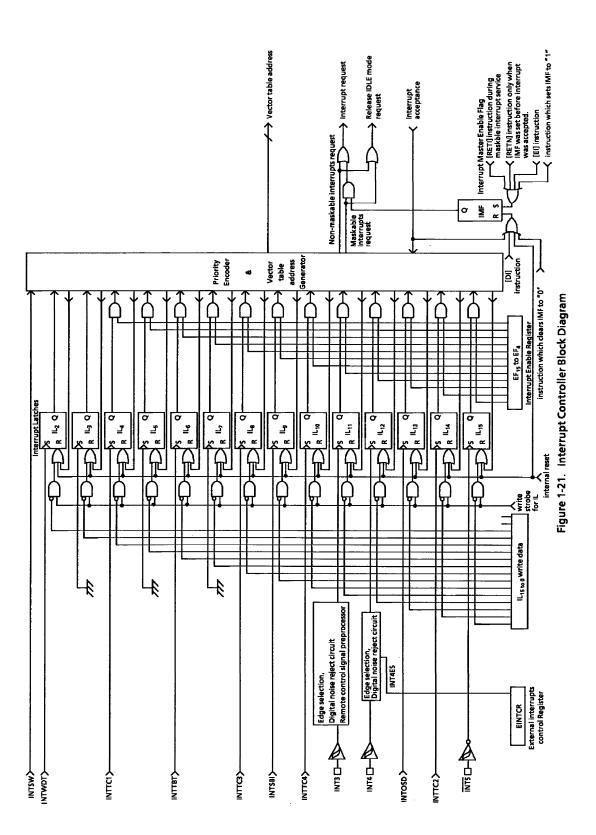
b. Interrupt release mode (IMF = "1")

IDLE mode is released and interrupt processing is started by any interrupt source enabled with the individual interrupt enable flag (EF). After the interrupt is processed, the execution resumes from the instruction following the instruction which started IDLE mode.

IDLE mode can also be released by setting the RESET pin low, which immediately performs the reset operation. After reset, the 87CH36/K36/M36 are placed in NORMAL mode.

Note: When a watchdog timer interrupt is generated immediately before IDLE mode is started, the watchdog timer interrupt will be processed but IDLE mode will not be started.

1.9 Interrupt Controller


The 87CH36/K36/M36 has a total of 12 interrupt sources: 3 externals and 9 internals. Nested interrupt control with priorities is also possible. Two of the internal sources are pseudo non-maskable interrupts; the remainder are all maskable interrupts.

Interrupt latches (IL) that hold the interrupt requests are provided for interrupt sources. Each interrupt vector is independent.

The interrupt latch is set to "1" when an interrupt request is generated and requests the CPU to accept the interrupt. The acceptance of maskable interrupts can be selectively enabled and disabled by the program using the interrupt master enable flag (IMF) and the individual interrupt enable flags (EF). When two or more interrupts are generated simultaneously, the interrupt is accepted in the highest priority order as determined by the hardware. Figure 1-21 shows the interrupt controller.

Table 1-2. Interrupt Sources

	Interrupt Source	Enable Condition	Interrupt Latch	Vector Table Address	Priority
Internal/ External	rnal (Reset) Non-Maskable		_	FFFE _H	High 0
Internal	INTSW (Software interrupt)	Pseudo	_	FFFC _H	1
Internal	INTWDT (Watchdog Timer interrupt)	non-maskable	IL ₂	FFFA _H	2
	reserved	IMF = 1, INT0EN = 1	IL ₃	FFF8 _H	3
Internal	INTTC1 (16-bit TC1 interrupt)	IMF · EF ₄ = 1	IL ₄	FFF6 _H	4
	reserved	IMF • EF ₅ = 1	IL ₅	FFF4 _H	5
Internal	INTTBT (Time Base Timer interrupt)	IMF • EF ₆ = 1	IL ₆	FFF2 _H	6
	reserved	IMF • EF ₇ = 1	IL ₇	FFF0 _H	7
Internal	INTTC3 (8-bit TC3 interrupt)	IMF • EF ₈ = 1	IL ₈	FFEE _H	8
Internal	INTSBI (Serial bus Interface interrupt)	IMF · EF ₉ = 1	IL ₉	FFEC _H	9
Internal	INTTC4 (8-bit TC4 interrupt)	IMF • EF ₁₀ = 1	IL ₁₀	FFEA _H	10
External	INT3 (External interrupt 3, Remote control receive interrupt)	IMF • EF ₁₁ = 1	IL ₁₁	FFE8 _H	11
External	INT4 (External interrupt 4)	IMF • EF ₁₂ = 1	IL ₁₂	FFE6 _H	12
Internal	INTOSD (OSD interrupt)	IMF • EF ₁₃ = 1	IL ₁₃	FFE4 _H	13
Internal	INTTC2 (16-bit TC2 interrupt)	IMF • EF ₁₄ = 1	IL ₁₄	FFE2 _H	14
External	INT5 (External interrupt 5)	IMF • EF ₁₅ = 1	IL ₁₅	FFEO _H	Low 15

(1) Interrupt Latches (IL₁₅ to ₂)

Interrupt latches are provided for each source, except for a software interrupt. The latch is set to "1" when an interrupt request is generated, and requests the CPU to accept the interrupt. The latch is cleared to "0" just after the interrupt is accepted. All interrupt latches except INT3 are initialized to "0" during reset. The interrupt latch of INT3 is unstable during reset.

The interrupt latches are assigned to addresses $003C_H$ and $003D_H$ in the SFR. Each latch can be cleared to "0" individually by an instruction; however, the read-modify-write instruction such as bit manipulation or operation instructions cannot be used (Do not clear the IL_2 for a watchdog timer interrupt to "0"). Thus, interrupt requests can be cancelled and initialized by the program. Note that interrupt latches cannot be set to "1" by any instruction.

The contents of interrupt latches can be read out by an instruction. Therefore, testing interrupt requests by software is possible.

Example 1: Clears interrupt latches

LDW (IL), 1110101010111111B; $|L_{12}, L_{10}, L_{8}, L_{6} \leftarrow 0$

Example 2 : Reads interrupt latches

LD WA, (IL) ; $W \leftarrow IL_H$, $A \leftarrow IL_L$

Example 3: Tests an interrupt latch

TEST (ILH).4 ; if $IL_{12} = 1$ then jump

JR F, SSET

(2) Interrupt Enable Register (EIR)

The interrupt enable registers (EIR) enable and disable the acceptance of interrupts, except for the pseudo non-maskable interrupts (software and watchdog timer interrupts). Pseudo non-maskable interrupts are accepted regardless of the contents of the EIR; however, the pseudo non-maskable interrupts cannot be nested more than once at the same time. For example, the watchdog timer interrupt is not accepted during the software interrupt service.

The EIR consists of an interrupt master enable flag (IMF) and individual interrupt enable flags (EF). These registers are assigned to addresses 003A_H and 003B_H in the SFR, and can be read and written by an instruction (including read-modify-write instructions such as bit manipulation instructions).

① Interrupt Master enable Flag (IMF)

The interrupt master enable flag (IMF) enables and disables the acceptance of all interrupts, except for pseudo non-maskable interrupts. Clearing this flag to "0" disables the acceptance of all maskable interrupts. Setting to "1" enables the acceptance of interrupts.

When an interrupt is accepted, this flag is cleared to "0" to temporarily disable the acceptance of maskable interrupts. After execution of the interrupt service program, this flag is set to "1" by the maskable interrupt return instruction [RETI] to again enable the acceptance of interrupts. If an interrupt request has already been occurred, interrupt service starts immediately after execution of the [RETI] instruction.

Pseudo non-maskable interrupts are returned by the [RETN] instruction. In this case, the IMF is set to "1" only when pseudo non-maskable interrupt service is started with interrupt acceptance enabled (IMF = 1). Note that the IMF remains "0" when cleared by the interrupt service program. The IMF is assigned to bit 0 at address 003AH in the SFR, and can be read and written by an instruction. The IMF is normally set and cleared by the [EI] and [DI] instructions, and the IMF is initialized to "0" during reset.

② Individual interrupt Enable Flags (EF₁₅ to EF₄)

These flags enable and disable the acceptance of individual maskable interrupts. Setting the corresponding bit of an individual interrupt enable flag to "1" enables acceptance of an interrupt, setting the bit to "0" disables acceptance.

Example 1 : Sets EF for individual interrupt enable, and sets IMF to "1".

LDW (EIR), 111010000000001B; EF_{15} to EF_{13} , EF_{11} , $IMF \leftarrow 1$

Example 2 : Sets an individual interrupt enable flag to "1".

SET (EIRH).4 ; $EF_{12} \leftarrow 1$

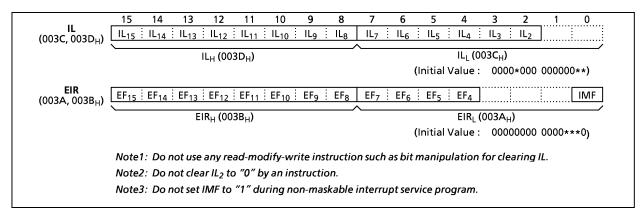


Figure 1-22. Interrupt Latch (IL) and Interrupt Enable Register (EIR)

1.9.1 Interrupt sequence

An interrupt request is held until the interrupt is accepted or the interrupt latch is cleared to "0" by a reset or an instruction. Interrupt acceptance sequence requires 8 machine cycles (4 μ s at fc = 8 MHz in NORMAL mode) after the completion of the current instruction execution. The interrupt service task terminates upon execution of an interrupt return instruction [RETI] (for maskable interrupts) or [RETN] (for pseudo non-maskable interrupts).

(1) Interrupt acceptance processing is as follows:

- ① The interrupt master enable flag (IMF) is cleared to "0" to temporarily disable the acceptance of any following maskable interrupts. When a non-maskable interrupt is accepted, the acceptance of any following interrupts is temporarily disabled.
- ② The interrupt latch (IL) for the interrupt source accepted is cleared to "0".
- ③ The contents of the program counter (return address) and the program status word are saved (pushed) onto the stack. The stack pointer is decremented 3 times.
- The entry address of the interrupt service program is read from the vector table address, and the entry address is loaded to the program counter.
- The instruction stored at the entry address of the interrupt service program is executed.

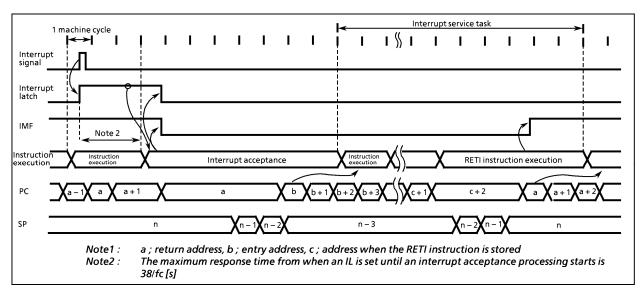
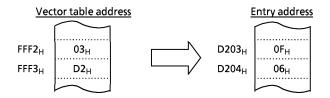



Figure 1-23. Timing Chart of Interrupt Acceptance and Interrupt Return Instruction

Example: Correspondence between vector table address for INTTBT and the entry address of the interrupt service program.

A maskable interrupt is not accepted until the IMF is set to "1" even if a maskable interrupt of higher priority than that of the current interrupt being serviced.

When nested interrupt service is necessary, the IMF is set to "1" in the interrupt service program. In this case, acceptable interrupt sources are selectively enabled by the individual interrupt enable flags.

(2) Saving/Restoring General-purpose Register

During interrupt acceptance processing, the program counter and the program status word are automatically saved on the stack, but not the accumulator and other registers. These registers are saved by the program if necessary. Also, when nesting multiple interrupt services, it is necessary to avoid using the same data memory area for saving registers.

The following method is used to save/restore the general-purpose registers:

① General-purpose register save/restore by register bank changeover: General-purpose registers can be saved at high-speed by switching to a register bank that is not in use. Normally, bank 0 is used for the main task and banks 1 to 15 are assigned to interrupt service tasks. To increase the efficiency of data memory utilization, the same bank is assigned for interrupt sources which are not nested.

The switched bank is automatically restored by executing an interrupt return instruction [RETI] or [RETN]. Therefore, it is not necessary for a program to save the RBS.

Example: Register Bank Changeover

```
PINTxx : LD RBS, n ; Switches to bank n (1 \( \mu \)s at 8 MHz)

Interrupt processing

RETI ; Restores bank and Returns
```

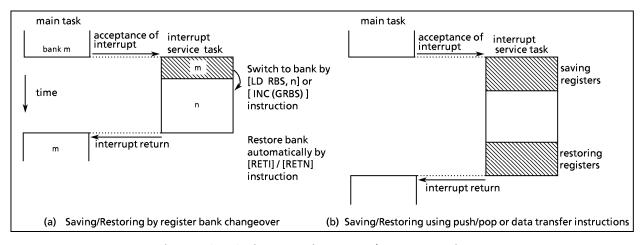
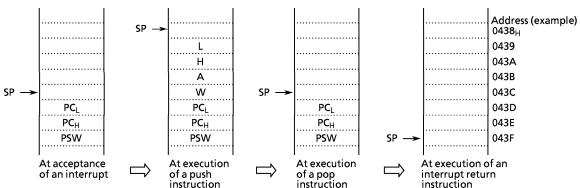


Figure 1-24. Saving/Restoring General-purpose Registers

② General-purpose register save/restore using push and pop instructions:

To save only a specific register, and when the same interrupt source occurs more than once, the general-purpose registers can be saved/restored using push/pop instructions.

Example: Register save using push and pop instructions


PINTxx : PUSH WA ; Save WA register pair

PUSH HL; Save HL register pair

interrupt processing

POP HL; Restore HL register pair POP WA; Restore WA register pair

RETI ; Return

③ General-purpose registers save/restore using data transfer instructions: Data transfer instructions can be used to save only a specific general-purpose register during processing of a single interrupt.

Example : Saving/restoring a register using data transfer instructions

PINTxx : LD (GSAVA), A ; Save A register

interrupt processing

LD A, (GSAVA); Restore A register

RETI : Return

The interrupt return instructions [RETI] / [RETN] perform the following operations.

	[RETI] Maskable interrupt return		[RETN] Non-maskable interrupt return
1	The contents of the program counter and the program status word are restored from the stack.	1	The contents of the program counter and program status word are restored from the stack.
2	The stack pointer is incremented 3 times.	2	The stack pointer is incremented 3 times.
3	The interrupt master enable flag is set to "1".	3	The interrupt master enable flag is set to "1" only when a non-maskable interrupt is accepted in interrupt enable status. However, the interrupt master enable flag remains at "0" when so clear by an interrupt service program.

Interrupt requests are sampled during the final cycle of the instruction being executed. Thus, the next interrupt can be accepted immediately after the interrupt return instruction is executed.

Note: When the interrupt processing time is longer than the interrupt request generation time, the interrupt service task is performed but not the main task.

1.9.2 Software interrupt (INTSW)

Executing the [SWI] instruction generates a software interrupt and immediately starts interrupt processing (INTSW is highest prioritized interrupt). However, if processing of a non-maskable interrupt is already underway, executing the SWI instruction will not generate a software interrupt but will result in the same operation as the [NOP] instruction. Thus, the [SWI] instruction behaves like the [NOP] instruction.

Note: At the development tool, if processing of a non-maskable interrupt is already underway, executing the SWI instruction will generate a software interrupt as a software brake.

Use the [SWI] instruction only for detection of the address error or for debugging.

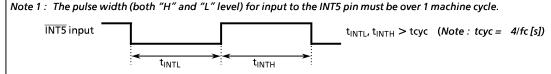
Address Error Detection

 FF_H is read if for some cause such as noise the CPU attempts to fetch an instruction from a non-existent memory address. Code FF_H is the SWI instruction, so a software interrupt is generated and an address error is detected. The address error detection range can be further expanded by writing FF_H to unused areas of the program memory. the address trap reset is generated in case that an instruction is fetched from RAM or SFR areas.

Note: The fetch data from addresses $7F80_H$ to $7FFF_H$ (test ROM area) is not "FFH".

② Debugging

Debugging efficiency can be increased by placing the SWI instruction at the software break point setting address.


1.9.3 External interrupts

The 87CH36/K36/M36 has three external interrupt inputs (INT3, INT4, and INT5). Two of these are equipped with digital noise rejection circuits (pulse inputs of less than a certain time are eliminated as noise). Edge selection is also possible with INT3 and INT4.

Edge selection of INT4 pin input is performed by the external interrupt control register (EINTCR). Edge selection and noise rejection control for INT3 pin input are performed by the Remote-control signal processor control registers. (refer to the selection of the Remote-control signal processor.)

Source	Pin	Secondary function pin	Enable conditions	Edge	Digital noise reject
INT3	INT3	P30/RXIN	IMF · EF ₁₁ = 1	falling edge, rising edge or falling/rising edge	Refer to the selection of the Remote control signal preprocessor.
INT4	INT4	P32	IMF · EF ₁₂ = 1	falling edge or rising edge	Pulses of less than 7/fc [s] are eliminated as noise. Pulses of equal to or more than 24/fc [s] are regarded as signals.
INT5	ĪNT5	P20/STOP	IMF • EF ₁₅ = 1	falling _{edge}	— (hysteresis input)

Table 1-3. External Interrupts

Note 2: If a noiseless signal is input to the external interrupt pin, the maximum time from the edge of input signal until the IL is set is as follows:

① INT4 pin 25/fc [s]

Note 3: When high-impedance is specified for port output in stop mode, port input is forcibly fixed to low level internally. Thus, interrupt latches of external interrupt inputs except P20 (INT5/STOP) which are also used as ports may be set to "1". To specify high-impedance for port output in stop mode, first disable interrupt service (IMF = 0), activate stop mode. After releasing stop mode, clear interrupt latches using load instruction, then, enable interrupt service.

Example : Activating stop mode (TMP87CH36/K36/M36) :

LD (SYSCR1), 01000000B ; OUTEN←0 (specifies high-impedance)
DI ; IMF←0 (disables interrupt service)
SET (SYSCR1).STOP ; STOP←1 (activates stop mode)

LDW (IL), 111001110101111B; IL12, 11, 7, 5, 3←0 (clears interrupt latches)

EI ; IMF←1 (enables interrupt service)

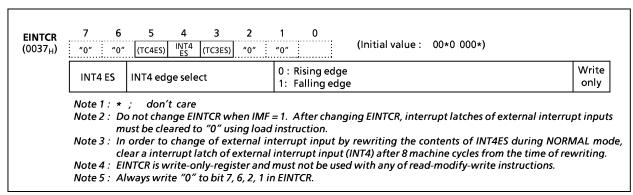


Figure 1-25. External Interrupt Control Register

1.10 Watchdog Timer (WDT)

The watchdog timer rapidly detects the CPU malfunction such as endless looping caused by noise or the like, and resumes the CPU to the normal state.

The watchdog timer signal for detecting malfunction can be selected either as a reset output or a non-maskable interrupt request. However, selection is possible only once after reset. At first, the reset output is selected.

When the watchdog timer is not being used for malfunction detection, it can be used as a timer to generate an interrupt at fixed intervals.

1.10.1 Watchdog timer configuration

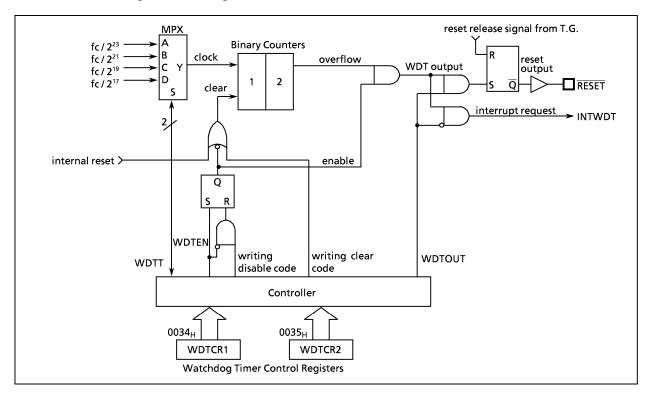
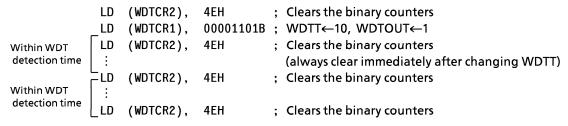


Figure 1-26. Watchdog Timer Configuration

1.10.2 Watchdog timer control


Figure 1-26 shows the watchdog timer control registers (WDTCR1, WDTCR2). The watchdog timer is automatically enabled after reset.

- (1) Malfunction detection methods using the watchdog timer The CPU malfunction is detected as follows:
 - ① Setting the detection time, selecting output, and clearing the binary counter.
 - ② Repeatedly clearing the binary counter within the setting detection time.

If a CPU malfunction occurs for any cause, the watchdog timer output will become active on the rise of an overflow from the binary counters unless the binary counters are cleared. At this time, when WDTOUT = 1 a reset is generated, which drives the RESET pin low to reset the internal hardware and the external circuits. When WDTOUT = 0, a watchdog timer interrupt (INTWDT) is generated.

The watchdog timer temporarily stops counting in STOP mode (including warm-up) or IDLE mode, and automatically restarts (continues counting) when STOP/IDLE mode is released.

Example: Sets the watchdog timer detection time to 221/fc [s] and resets the CPU malfunction.

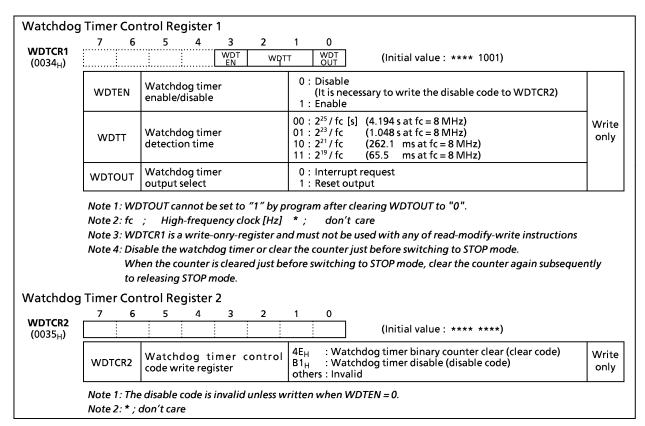


Figure 1-27. Watchdog Timer Control Registers

2004-10-01

(2) Watchdog Timer Enable

The watchdog timer is enabled by setting WDTEN (bit 3 in WDTCR1) to "1". WDTEN is initialized to "1" during reset, so the watchdog timer operates immediately after reset is released.

Example: Enables watchdog timer

LD (WDTCR1), 00001000B; WDTEN←1

(3) Watchdog Timer Disable

The watchdog timer is disabled by writing the disable code (B1_H) to WDTCR2 after clearing WDTEN (bit 3 in WDTCR1) to "0". The watchdog timer is not disabled if this procedure is reversed and the disable code is written to WDTCR2 before WDTEN is cleared to "0". The watchdog timer is halted temporarily in STOP mode (including warm-up) and IDLE mode, and restarts automatically after STOP or IDLE mode is released.

During disabling the watchdog timer, the binary counters are cleared to "0".

Example: Disables watchdog timer

LDW (WDTCR1) , 0B101H ; WDTEN←0, WDTCR2←disable code

1.10.3 Watchdog timer interrupt (INTWDT)

This is a pseudo non-maskable interrupt which can be accepted regardless of the contents of the EIR. If a watchdog timer interrupt or a software interrupt is already accepted, however, the new watchdog timer interrupt waits until the previous non-maskable interrupt processing is completed (the end of the [RETN] instruction execution).

The stack pointer (SP) should be initialized before using the watchdog timer output as an interrupt source with WDTOUT.

Example: Watchdog timer interrupt setting up.

LD SP, 043FH; Sets the stack pointer

LD (WDTCR1), 00001000B; WDTOUT←0

1.10.4 Watchdog timer reset

If the watchdog timer output becomes active, a reset is generated, which drives the $\overline{\text{RESET}}$ pin (sink open drain output) low to reset the internal hardware and the external circuits. The reset output time is 2^{20} /fc [s] (131 ms at fc = 8 MHz).

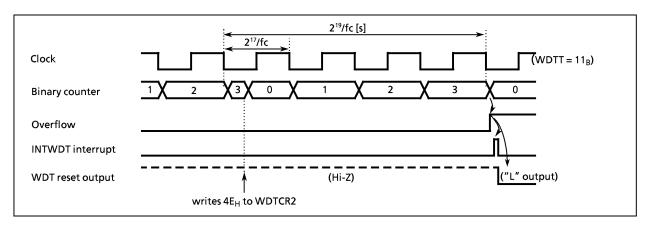


Figure 1-28. Watchdog Timer Interrupt / Reset

1.11 Reset Circuit

The TLCS-870 Series has four types of reset generation procedures: an external reset input, an address-trap-reset, a watchdog timer reset and a system-clock-reset. Table 1-4 shows on-chip hardware initialization by reset action. The internal source reset circuit (watchdog timer reset, address trap reset, and system clock reset) is not initialized when power is turned on. Thus, output from the RESET pin may go low (2²⁰/fc [s.] 131msec at 8 MHz) when power is turned on.

On-chip Hardware		Initial Value	On-chip Hardware	Initial Value
Program counter	(PC)	(FFFF _H)·(FFFE _H)	Divider of Timing generator	0
Register bank selector	(RBS)	0		
Jump status flag	(JF)	1	Watchdog timer	Enable
Interrupt master enable flag	(IMF)	0	Output latches of I/O ports	Refer to I/O port circuitry
Interrupt individual enable flag Interrupt latches	(IL)	0	Control registers	Refer to each of control register

Table 1-4. Initializing Internal Status by Reset Action

1.11.1 External reset input

When the RESET pin is held at low for at least 3 machine cycles (12/fc [s]) with the power supply voltage within the operating voltage range and oscillation stable, a reset is applied and the internal state is initialized.

When the $\overline{\text{RESET}}$ pin input goes high, the reset operation is released and the program execution starts at the vector address stored at addresses FFFEH to FFFFH.

The RESET pin contains a Schmitt trigger (hysteresis) with an internal pull-up resistor. A simple power-on-reset can be applied by connecting an external capacitor and a diode.

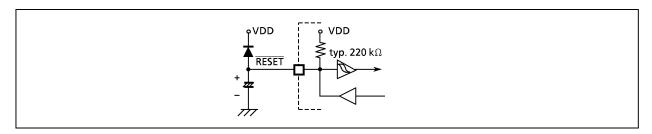


Figure 1-29. Simple Power-on-Reset Circuitry

1.11.2 Address-trap-reset

If a CPU malfunction occurs and an attempt is made to fetch an instruction from the RAM or the SFR area (addresses 0000_H to $043F_H$), an address-trap-reset will be generated. Then, the $\overline{\text{RESET}}$ pin output will go low. The reset time is $2^{20}/\text{fc}$ [s] (131ms at fc = 8 MHz).

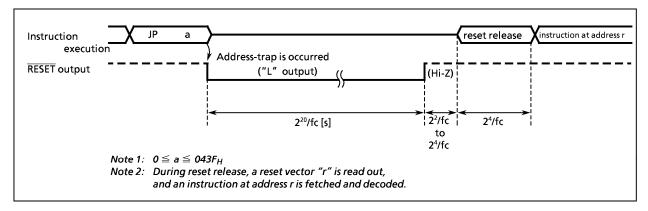


Figure 1-30. Address-Trap-Reset

1.11.3 Watchdog timer reset

Refer to Section "1.10 Watchdog Timer".

1.11.4 System-clock-reset

Clearing both bits 7 and 6 in SYSCR2 to "0" stops high-frequency oscillation, and causes the MCU to deadlock. This can be prevented by automatically generating a reset signal whenever (bit7 in SYSCR2) = (bit6 in SYSCR2) = 0 is detected to continue the oscillation. Then, the $\overline{\text{RESET}}$ pin output goes low from high-impedance. The reset time is $2^{20}/\text{fc}$ [s] (131 ms at fc = 8 MHz).

2. On-Chip Peripherals Functions

2.1 Special Function Registers (SFR) and Data Buffer Registers (DBR)

The TLCS-870 Series uses the memory mapped I/O system and all peripherals control and data transfers are performed through the special function registers (SFR) and data buffer registers (DBR). The SFR are mapped to addresses $0000_{\rm H}$ to $003F_{\rm H}$, and the DBR to addresses $0F80_{\rm H}$ to $0FFF_{\rm H}$. Figure 2-1 shows the list of the 87CH36/K36/M36 SFRs and DBRs.

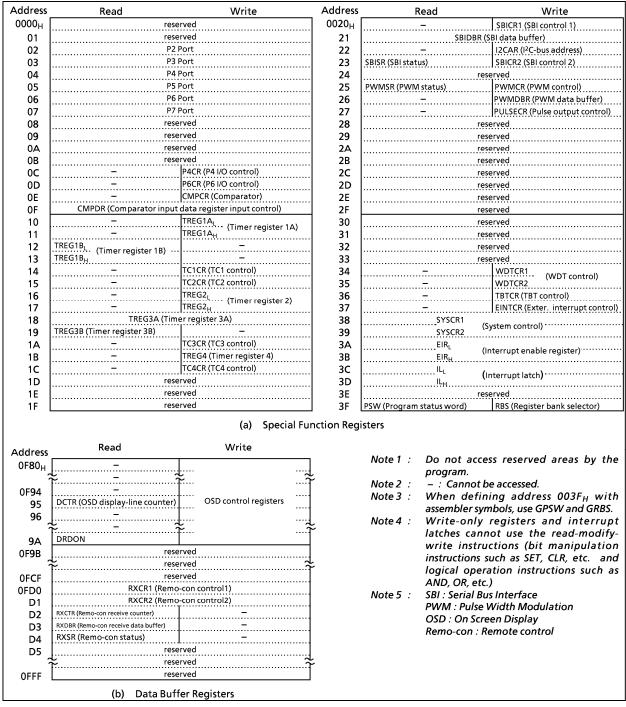


Figure 2-1. SFR & DBR

2.2 **I/O Ports**

The 87CH36/K36/M36 has 6 parallel input/output ports (34pins) as follows:

	Primary Function	Secondary Functions
Port P2	1-bit I/O port	external interrupt input, and STOP mode release signal input
Port P3	7-bit I/O port	external interrupt input, remote control signal input, timer/counter input, and serial bus interface input/output
Port P4	8-bit I/O port	pulse width modulation output
Port P5	8-bit I/O port	pulse width modulation output, pulse output, and comparator input
Port P6	8-bit I/O port	R, G, B and Y/BL output from OSD circuitry
Port P7	2-bit I/O port	horizontal synchronous pulse input and vertical synchronous pulse input to OSD circuitry

Each output port contains a latch, which holds the output data. All input ports do not have latches, so the external input data should either be held externally until read or reading should be performed several times before processing. Figure 2-2 shows input/output timing examples.

External data is read from an I/O port in the S1 state of the read cycle during execution of the read instruction. This timing can not be recognized from outside, so that transient input such as chattering must be processed by the program.

Output data changes in the S2 state of the write cycle during execution of the instruction which writes to an I/O port.

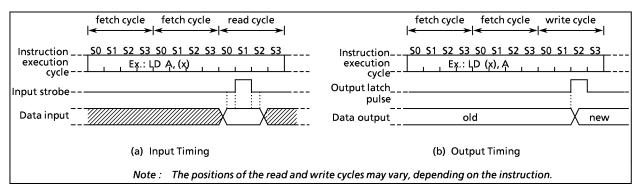


Figure 2-2. Input/Output Timing (Example)

When reading an I/O port except programmable I/O ports, whether the pin input data or the output latch contents are read depends on the instructions, as shown below:

- (1) Instructions that read the output latch contents
 - ① XCH r, (src)
- ⑤ LD (pp) . b, CF
- ② CLR/SET/CPL (src).b
- 3 CLR/SET/CPL (pp).q
- ⑦ (src) side of ADD/ADDC/SUB/SUBB/AND/OR/XOR (src), (HL)
- 4 LD (src).b, CF
- (2) Instructions that read the pin input data
 - ① Instructions other than the above (1)
 - ② (HL) side of ADD/ADDC/SUB/SUBB/AND/OR/XOR (src), (HL)

2.2.1 Port P2 (P20)

Port P2 is a 1-bit input/output port. It is also used as an external interrupt input, and a STOP mode release signal input. When used as an input port, or a secondary function pin, the output latch should be set to "1". During reset, the output latch is initialized to "1".

It is recommended that pin P20 should be used as an external interrupt input, a STOP mode release signal input, or an input port. If used as an output port, the interrupt latch is set on the falling edge of the P20 output pulse.

When a read instruction for port P2 is executed, bits 7 to 1 in P2 are read in as undefined data.

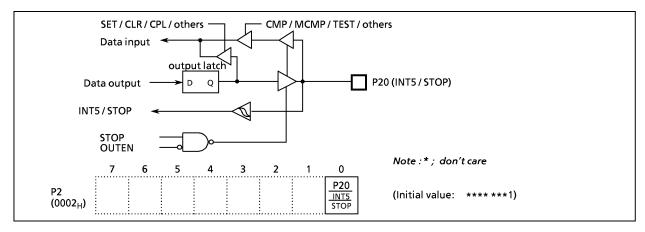


Figure 2-3. Port P2

2.2.2 Port P3 (P36 to P30)

Port P3 is a 7-bit input/output port, and is also used as serial bus interface input/output, an exrernal interrupt input a timer/counter input, and Remote-control signal input. When used as an input port or a secondary function pin, the output latch should be set to "1". The output latches are initialized to "1" during reset.

Example 1 : Outputs an immediate data 5A_H to port P3.

LD (P3), 5AH ; P3←5AH

Example 2 : Inverts the output of the lower 4bits (P33 - P30) in port P3. XOR (P3), 00001111B ; P33 to P30 \leftarrow P33 to P30

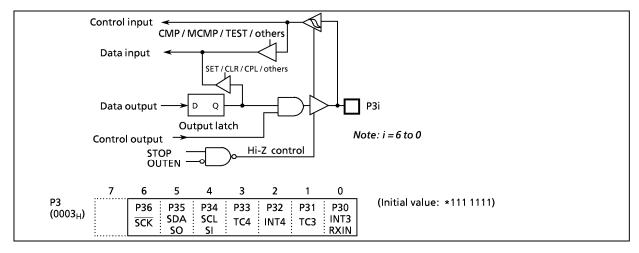


Figure 2-4. Port P3

2.2.3 Port P4 (P47 to P40)

Port P4 is an 8-bit input/output port which can be configured as an input or an output in one-bit unit under software control. Input/output mode is specified by the corresponding bit in the port P4 input/output control register (P4CR). Port P4 is configured as an input if its corresponding P4CR bit is cleared to "0", and as an output if its corresponding P4CR bit is set to "1". During reset, P4CR is initialized to "0", which configures port P4 as an input. The P4 output latches are also initialized to "1". Data is written into the output latch regardless of the P4CR contents. Therfore initial output data should be written into the output latch before setting P4CR. Port P4 is also used as a pulse width modulation (PWM) output. When used as a PWM output pin, the output pins should be set to the output mode and beforehand the output latch should be set to "1".

Note: Input mode port is read the state of input pin. When input/output mode is used to mixed, the contents of output latch setting input mode may be changed by executing bit manipulation instructions.

Figure 2-5. Ports P4 and P4CR

2.2.4 Port P5 (P57 to P50)

Port P5 is an 8-bit input/output port, and is also used as comparator input, a pulse output, and a pulse width modulation (PWM) output. When used as an input port or a secondary function pin, the output latch should be set to "1". The output latches are initialized to "1" during reset.

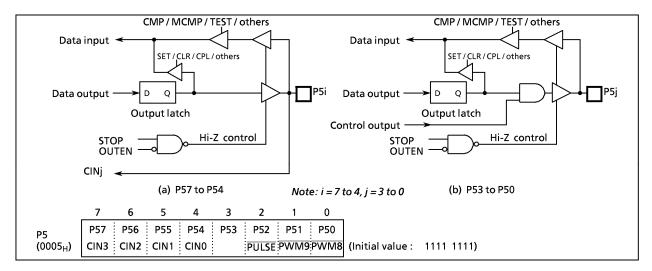


Figure 2-6. Ports P5

2.2.5 Port P6 (P67 to P60)

Port P6 is an 8-bit input/output port which can be configured as an input or an output in one-bit unit under software control. Input or output mode is selected by the corresponding bit in the input/output control register (P6CR). For example, port P6 is configured as an input if its corresponding P6CR bit is cleared to "0", and as an output if its corresponding bit is set to "1". During reset, P6CR is initialized to "0", which configures port P6 as an input. The P6 output latches are also initialized to "1".

Data is written into the output latch regardless of the P6CR contents. Therefore initial output data should be written into the output latch before setting P6CR. Pins P63 to P60 are available high current output, so LEDs can be driven directly.

Port P6 is also used as an on screen display (OSD) output (R, G, B, and Y/BL signal). When used as an OSD output pin, the OSD output pins should be set to the output mode and beforehand the port P6 data selection register (P67DS to P64DS) should be set to "1".

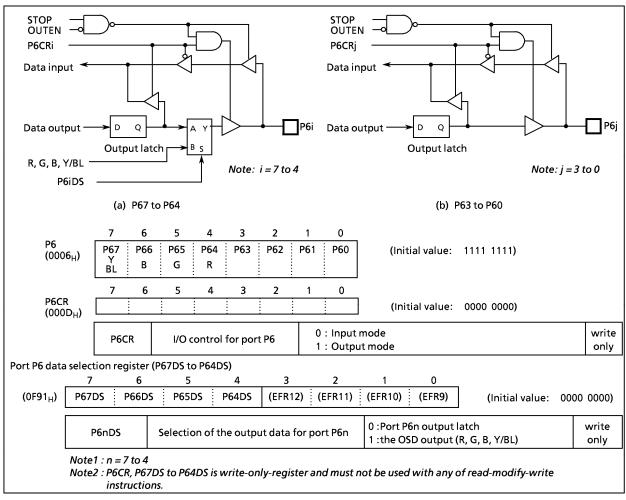


Figure 2-7. Ports P6, P6CR, and P67DS - P64DS

Note: Input mode port is read the state of input pin. When input/output mode is used to mixed, the contents of output latch setting input mode may be changed by executing bit manipulation instructions.

Example : Set the lower 4 bit in port P6 (P63 to 60) to the output port and Set the other to the input port.

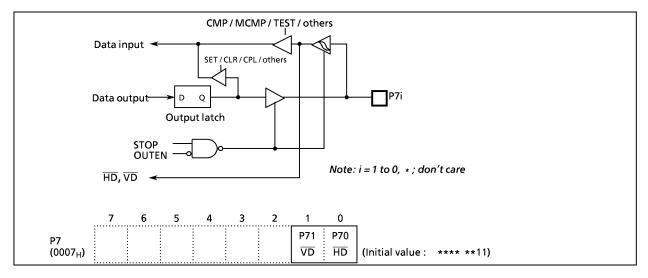
LD (P6CR), 0FH; P6CR \leftarrow 0000 1111_B

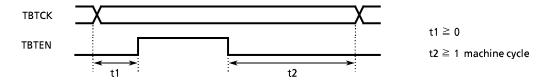
2.2.6 Port P7 (P71 to P70)

Port P7 is a 2-bit input /output port, and is also used as a vertical synchronous signal (VD) input and a horizontal synchronous signal (HD) input for the on screen display (OSD) circuitry.

The output latches are initialized to "1" during reset. When used as an input port or a secondary function pin, the output latch should be set to "1".

When a read instruction for port P7 is executed, bits 7 to 2 in P7 are read in as undefined data.




Figure 2-8. Ports P7

2.3 Time Base Timer (TBT)

The time base timer generates time base for key scanning, dynamic displaying, etc. It also provides a time base timer interrupt (INTTBT). The time base timer is controlled by a control register (TBTCR) shown in Figure 2-10.

An INTTBT is generated on the first rising edge of source clock (the divider output of the timing generator) after the time base timer has been enabled. The divider is not cleared by the program; therefore, only the first interrupt may be generated ahead of the set interrupt period.

The interrupt frequency (TBTCK) must be selected with the time base timer disabled (When the time base timer is changed from enabling to disabling, the interrupt frequency can't be changed.) (both frequency selection and enabling can be performed simultaneously).

Example: Sets the time base timer frequency to fc/216 [Hz] and enables an INTTBT interrupt.

LD (TBTCR), 00001010B SET (EIRL). 6

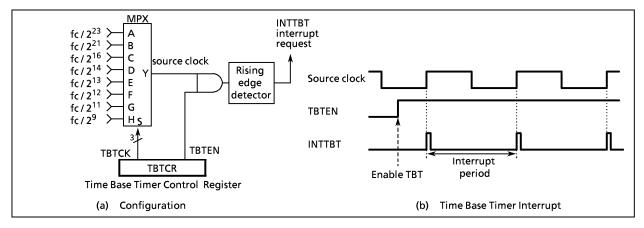


Figure 2-9. Time Base Timer

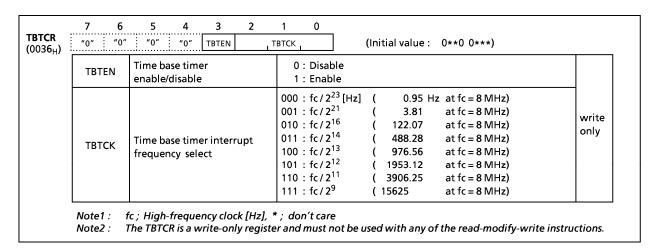


Figure 2-10. Time Base Timer Control Register

2.4 16-bit Timer 1 (TC1)

2.4.1 Configuration

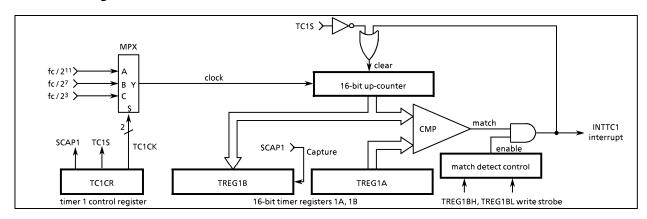


Figure 2-11. Timer 1 (TC1)

2.4.2 Control

The timer 1 is controlled by a timer 1 control register (TC1CR) and two 16-bit timer registers (TREG1A and TREG1B). Reset does not affect TREG1A and TREG1B.

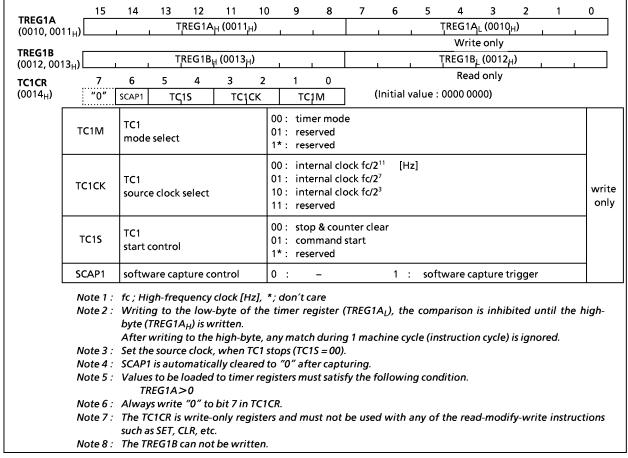


Figure 2-12. Timer Registers and TC1 Control Register

2.4.3 Function

The contents of TREG1A are compared with the contents of up-counter. If a match is found, an INTTC1 interrupt is generated, and the counter is cleared to "0". Counting up resumes after the counter is cleared. The current contents of up-counter can be transferred to TREG1B by setting SCAP1 (bit 6 in TC1CR) to "1" (software capture function). SCAP1 is automatically cleared after capturing.

Table 2-1. Timer 1 Source Clock (Internal Clock)

Source clock	Resolution (At fc = 8 MHz)	Maximum time setting (At $fc = 8 MHz$)
fc / 2 ³ [Hz]	1 <i>μ</i> s	65.535 ms
fc / 2 ⁷	16 μs	1.04856 s
fc / 2 ¹¹	256 μs	16.77696 s

Example 1 : Sets the source clock to $fc/2^7$ [Hz] and generates an interrupt 1 [s]. later (at fc = 8 MHz).

LD (TC1CR), 00000100B; Sets the TC1 source clock

LDW (TREG1A), 0F424H ; Sets the timer register (1 s \div 27 / fc = F424H)

SET (EIRL). EF4 ; Enables INTTC1 interrupt

ΕI

LD (TC1CR), 00010100B; Starts TC1

Note: The TC1CR is write-only register and can not be started by [SET (TC1CR). 4] instruction.

Example 2 : Software capture

LD (TC1CR), 01010100B; SCAP1←1 (Captures) LD WA, (TREG1B); Reads captured value

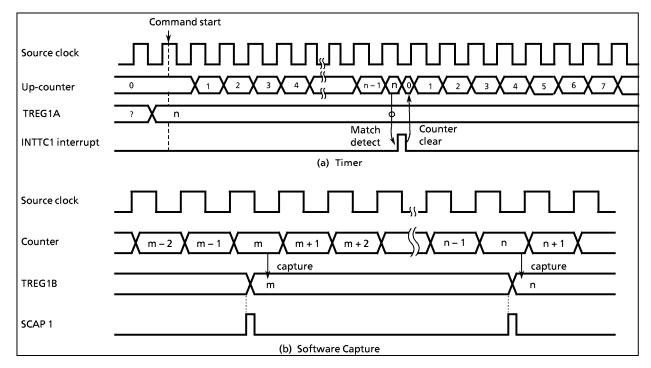


Figure 2-13. Timer Mode Timing Chart

2.5 16-bit Timer 2 (TC2)

2.5.1 Configuration

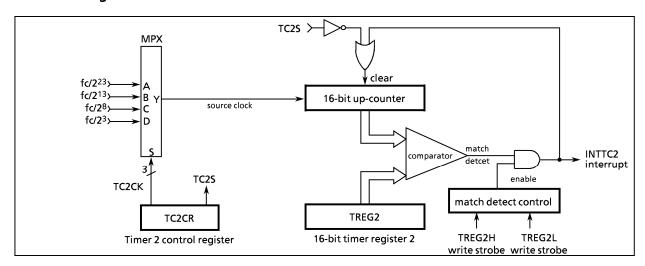


Figure 2-14. Timer 2 (TC2)

2.5.2 Control

The timer 2 is controlled by a timer 2 control register (TC2CR) and a 16-bit timer register 2 (TREG2). Reset does not affect TREG2.

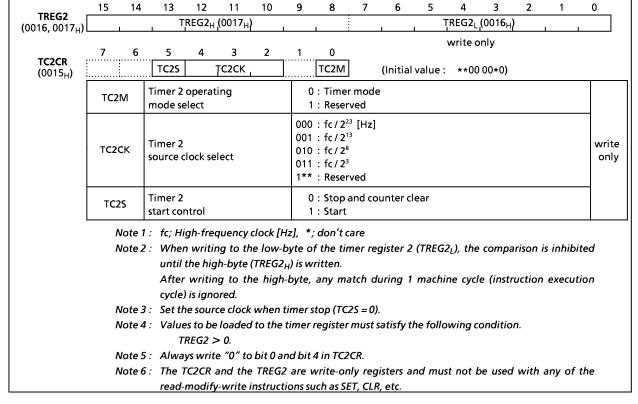


Figure 2-15. Timer Register 2 and TC2 Control Register

2.5.3 Function

The contents of TREG2 are compared with the contents of the up-counter. If a match is found, a timer 2 interrupt (INTTC2) is generated, and the counter is cleared. Counting up is resumed after the counter is cleared.

Table 2-2. Source Clock (Internal Clock) for Timer 2

Source clock	Resolution (At fc	= 8 MHz)	Maximu	m time	settin	ıg (At f	c = 8 M	Hz)
fc / 2 ²³ [Hz]	1.048576	s	19	hour	5	min	18.4	s
fc / 2 ¹³	1.024	ms	1	min	7.1	S		
fc / 2 ⁸	32	μ S	2.09712	s				
fc / 2 ³	1	μ S	65.535	ms				

Example : Sets the source clock $fc/2^3$ [Hz] and generates an interrupt every 25 ms (at fc = 8 MHz).

LD (TC2CR), 00001100B; Sets the source clock

LDW (TREG2), 61A8H; Sets TREG2 (25 ms \div 23/fc = 61A8_H)

SET (EIRH). EF14 ; Enables INTTC2 interrupt

ΕI

LD (TC2CR), 00101100B; Starts TC2

2.6 8-Bit Timer/Counter 3 (TC3)

2.6.1 Configuration

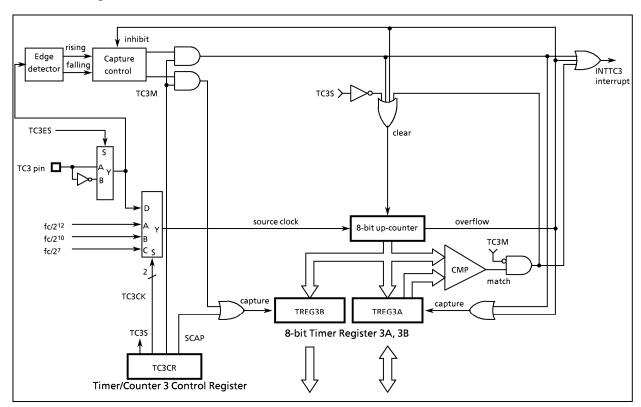


Figure 2-16. Timer/Counter 3

2.6.2 Control

The timer/counter 3 is controlled by a timer/counter 3 control register (TC3CR), an external interrupt control register (EINTCR) and two 8-bit timer registers (TREG3A and TREG3B). Reset does not affect these timer registers.

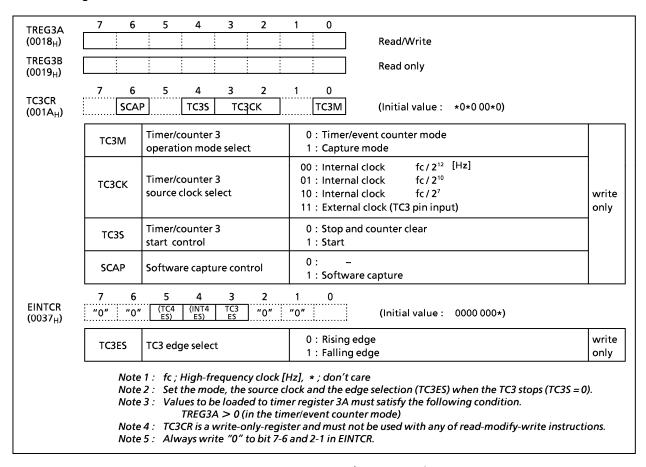


Figure 2-17. Timer Register 3 and TC3 Control Registers

2.6.3 Function

The timer/counter 3 has three operating modes: timer, event counter, and capture mode.

(1) Timer mode

In this mode, the internal clock shown in Table 2-3 is used for counting up. The contents of TREG3A are compared with the contents of the up-counter. If a match is found, a timer/counter 3 interrupt (INTTC3) is generated, and the up-counter is cleared. Counting up resumes after the up-counter is cleared. The current contents of up-counter are loaded into TREG3B by setting SCAP (bit 6 in TC3CR) to "1". SCAP is automatically cleared after capturing.

Table 2-3. Source Clock (Internal Clock) for Timer/Counter 3

Source clock	Resolution (AT fc = 8 MHz)	Maximum setting time (AT $fc = 8 MHz$)
fc / 2 ¹²	512 <i>μ</i> s	130.56 ms
fc / 2 ¹⁰	128 μs	32.64 ms
fc / 2 ⁷	16 μs	4.08 ms

(2) Event counter mode

In this mode, the TC3 pin input pulse are used for counting up. Either the rising or falling edge can be selected with TC3ES (bit 3 in EINTCR). The contents of TREG3A are compared with the contents of the up-counter. If a match is found, an INTTC3 interrupt is generated and the counter is cleared. The maximum applied frequency is fc/2⁴ [Hz]. Two or more machine cycles are required for both the high and low levels of the pulse width.

The current contents of up-counter are loaded into TREG3B by setting SCAP (bit 6 in TC3CR) to "1". SCAP is automatically cleared after capturing.

Example : Generates an interrupt every 0.5 [s], inputting 50Hz pulses to the TC3 pin.

LD (TC3CR), 00001100B; Sets TC3 mode and source clock

LD (TREG3A), 19H ; $0.5 [s] \div 1/50 = 25 = 19_H$ SET (EIRH).EF8 ; Enables INTTC3 interrupt

ΕI

LD (TC3CR), 00011100B; Starts TC3

(3) Capture mode

The pulse width, period and duty of the TC3 pin input are measured in this mode, which can be used in decoding the remote control signal, etc. The counter is running free by the internal clock. On the rising (falling) edge of the TC3 pin input, the current contents of counter is loaded into TREG3A, then the up-counter is cleared to "0" and an INTTC3 interrupt is generated. On the falling (rising) edge of the TC3 pin input, the current contents of the counter is loaded into TREG3B. In this case, counting contineus. On the next rising (falling) edge of the TC3 pin input, the current contents of counter are loaded into TREG3A, then the counter is cleared again and an interrupt is generated. If the counter overflows before the edge is detected, FF_H is set into TREG3A and an overflow interrupt (INTTC3) is generated. During interrupt processing, it can be determined whether or not there is an overflow by checking whether or not the TREG3A value is FF_H. Also, after an interrupt (capture to TREG3A, or overflow detection) is generated, capture and overflow detection are halted until TREG3A has been read out; however, the counter continues. Therefore, TREG3B has been read out earlier than TREG3A.

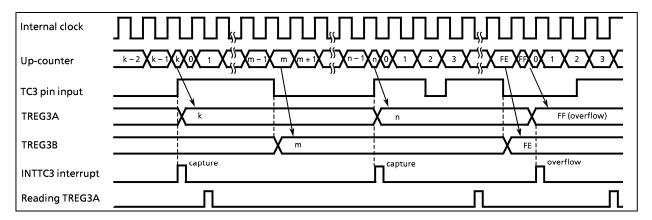


Figure 2-18. Timing Chart for Capture Mode (TC3ES = 0)

2.7 8-bit Timer/Counter (TC4)

2.7.1 Configuration

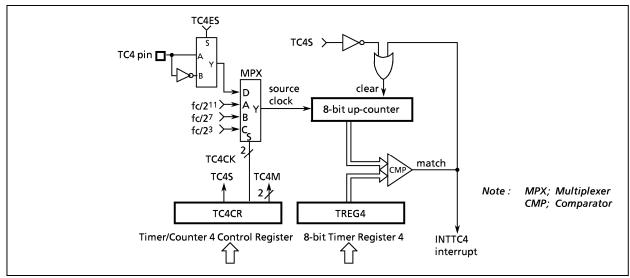


Figure 2-19. Timer/Counter 4

2.7.2 Control

The timer/counter 4 is controlled by a timer/counter 4 control register (TC4CR) and an 8-bit timer register 4 (TREG4). Reset does not affect the TREG4.

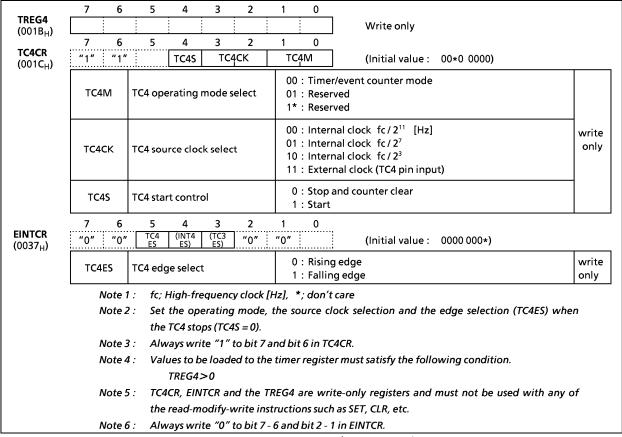


Figure 2-20. Timer Register 4 and TC4 Control Registers

2.7.3 Function

The timer/counter 4 has two operating modes: timer and event counter mode.

(1) Timer mode

In this mode, the internal clock is used for counting up. The contents of TREG4 are compared with the contents of the up-counter. If a match is found, a timer/counter 4 interrupt (INTTC4) is generated and the counter is cleared. Counting up resumes after the counter is cleared.

Table 2-4. Source Clock (Internal Clock) for Timer/Counter 4

Source clock	Resolution (At fc = 8 MHz)	Maximum setting time (At fc = 8 MHz)		
fc / 2 ¹¹ [Hz]	256 μ s	65.28 ms		
fc / 2 ⁷	16 μ s	4.08 ms		
fc / 2 ³	1 μ s	255 μs		

(2) Event counter mode

In this mode, the TC4 pin input (external clock) pulse is used for counting up. Either the rising or falling edge can be selected with TC4ES (bit 5 in EINTCR). The contents of TREG4 are compared with the contents of the up-counter. If a match is found, an INTTC4 interrupt is generated and the counter is cleared. The maximum applied frequency is fc/2⁴ [Hz]. Two or more machine cycles are required for both the high and low levels of the pulse width.

87CH36-55 2004-10-01

2.8 Serial Bus Interface (SBI-ver.A)

The 87CH36/K36/M36 has a 1-channel serial bus interface which employs a clocked-synchronous 8-bit serial bus interface and an I²C bus.

The serial bus interface is connected to an external device through P35 (SDA0) and P34 (SCL0) in the I²C bus mode; and through P36 (SCK0), P35 (SO0) and P34 (SI0) in the clocked-synchronous 8-bit SIO mode. The serial bus interface pins are also used as the port. When used as serial bus interface pins, set the P3

output latches of these pins to "1". When not used as serial bus interface pins, the P3 port is used as a normal I/O port.

I²C bus has no an arbitration function which is necessary when two or more master devices scramble for the bus control. In master mode, other devices which are connected on the same bus need be slave devices. (single master)

Note: When a multi master I²C bus system operates in I²C bus mode of this serial bus interface circuit, there is a possibility that the following problems raise. I²C bus mode of this serial bus interface circuit should be used by a single master I²C bus system.

- 1. The SCL line is fixed to low level and transferring stops by the serial bus interface circuit. The other devices can not run on the SCL line. Thus the bus locks.
- 2. The SCL pin is pulled down to low level regardless of the state of the SCL line by the serial bus interface circuit. A period of high-level SCL clock pulse which other devices output is shortened. The minimum value of which the SCL clock holds high level is not satisfied, which is specified with the I2C bus standard.

2.8.1 Configuration

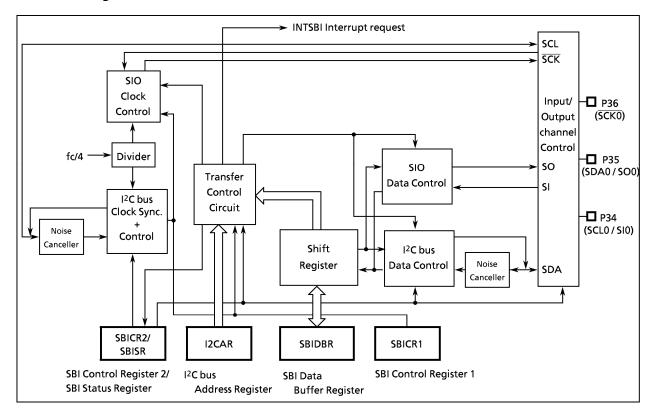


Figure 2-21. Serial Bus Interface (SBI-ver.A)

2.8.2 Serial bus interface (SBI-ver.A) control

The following reginsters are used for control and operation status monitoring when using the serial bus interface (SBI-ver.A).

- Serial bus interface control register 1 (SBICR1)
- Serial bus interface control register 2 (SBICR2)
- Serial bus interface data buffer register (SBIDBR)
- I²C bus address register (I2CAR)
- Serial bus interface status register (SBISR)

The above registers differ depending on a mode to be used.

Refer to Section "2.8.4 I²C bus Mode Control" and "2.8.6 Clocked-synchronous 8-bit SIO Mode Control".

2.8.3 The data formats in the I²C bus mode

The data formats when using the serial bus interface circuit in the I²C bus mode are shown below.

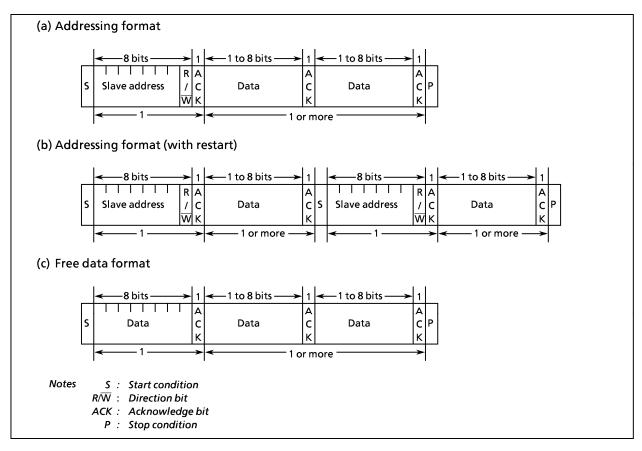


Figure 2-22. Data Format

2.8.4 I²C bus mode control

The following registers are used for control and operation status monitoring when using the serial bus interface (SBI-ver.A) in the I^2C bus mode.

CDICD4	us Interfa 7	6 5	4	3	. 2		1 0					
BICR1 0020 _H)		BC ,	ACK	Jž		SC		(Initi	al value: 00	000 *000)		
		<u> </u>	•					 ACK			< = 1	Π
							вс	Number of Clock	Bits	Number of Clock	Bits	
	вс	Number	of transf	erred	bits		000 001 010 011 100 101 110 111	8 1 2 3 4 5 6 7	8 1 2 3 4 5 6 7	9 2 3 4 5 6 7 8	8 1 2 3 4 5 6 7	Write only
	ACK	Acknowle	edge mo	ode spe	ecifica	tion	(mas ackn 1: Gene	ter mode) / Do owledgment. erates clock pu	oes not count (slave mode) ulse for ackno	or acknowledg : clock pulse for) owledgment. (m rledgment. (slav	naster mode)	Read/ Write
	SCK	Serial clo	ck select	tion			001 : R 010 : 5 011 : 2 100 : 1 101 : 7 110 : 3	leserved (Note leserved (Note 7.1 [kHz] 9.9 [kHz] 5.3 [kHz] .72 [kHz] .88 [kHz] leserved	e 5)	8 MHz (Output	on SCL pin)	Write only
	Note 3 :	Note 1: fc; high-frequency clock [Hz], *; don't care Note 2: Set the BC to "000" before switching to a clock-synchronous 8-bit SIO mode. Note 3: SBICR1 has write-only register bits, which cannot access any of in read-modify-write instructions such a bit operate, etc. Note 4: Clear "0" to bit 3 in SBICR1. Note 5: This PC bus circuit does not support the Fast mode. It supports the Standard mode only. Although the bus circuit itself allows the setting of a baud rate over 100 kbps, the compliance with the PC specificate is not guaranteed in that case.					ne I²C					
Serial Bu	us Interfa	_										
	Note 2 : (i	When writi Cannot read Independer Operate, etc	d the da nt in SBI c.	mitte ta whi DBR.	d data ich wa Theref	s writ ore, c	ten into annot ac	I e MSB. SBIDBR, since	n read-modi	buffer and a rea fy-write instruct		
	Note4:	; don't ca	re									
I ² C bus A	Address R	_		_			_					
2CAR	7 6 SA6 SA		4 addres SA3	-	2 SA1	1 SA0	0 ALS	(Initia	al value: 00	00 0000)		
0022 _H)		87CH36/K3	6/M36 s	lave ac	ddress							
0022 _H)	SA I	selection										Write

Figure 2-23. Serial Bus Interface Control Register 1 / Serial Bus Interface Data Buffer Register/ I²C bus Address Register in the I²C bus Mode

BICR2	7	6 5 4 3 2 1 0			
0023 _H)	MST 1	TRX BB PIN SBIM "0" "0" (Initial value	e: 0001 00**)		
	MST	Master / slave selection 0 : Slave			
	TRX	1 : Master Transmitter / receiver selection 0 : Receiver			
	'''	1 : Transmitter			
	ВВ	Start / stop generation 0 : Generate the stop	0: Generate the stop condition when the MST, TRX, and		
		PIN are "1".	11.1	Write only	
		1: Generate the start and PIN are "1".	condition when the MST, TRX,		
	PIN	Cancel interrupt service request 0: –			
		1 : Cancel interrupt se	rvice request		
		· ·	bus interface output disable)		
	SBIM	Serial bus interface operating mode 01 : SIO mode selection 10 : I ² C bus mode			
		11 : Reserved			
erial Rı	Note Note us Interfa	as bit operate, etc. 5: Clear bits 1 and 0 in SBICR2 to "0".		suci	
BISR	Note us Interfa	 4: SBICR2 has write-only register bits, which can not access any as bit operate, etc. 5: Clear bits 1 and 0 in SBICR2 to "0". ace Status Register 6 5 4 3 2 1 0 TRX BB PIN AL AAS ADO LRB (Initial value)		suci	
erial Bu BISR 0023 _H)	Note us Interfa	 4: SBICR2 has write-only register bits, which can not access any as bit operate, etc. 5: Clear bits 1 and 0 in SBICR2 to "0". ace Status Register 6 5 4 3 2 1 0 	y of in read-modify-write instructions	such	
BISR	Note us Interfa 7 MST 1	4: SBICR2 has write-only register bits, which can not access any as bit operate, etc. 5: Clear bits 1 and 0 in SBICR2 to "0". acce Status Register 6 5 4 3 2 1 0 TRX BB PIN AL AAS ADO LRB (Initial value) Master / Slave selection status monitor 0: Slave	y of in read-modify-write instructions	such	
BISR	Note us Interfa 7 MST 1	A: SBICR2 has write-only register bits, which can not access any as bit operate, etc. 5: Clear bits 1 and 0 in SBICR2 to "0". ace Status Register 6 5 4 3 2 1 0 TRX BB PIN AL AAS ADO LRB (Initial value) Master / Slave selection status monitor 0: Slave 1: Master Transmitter / Receiver selection status 0: Receiver	y of in read-modify-write instructions	such	
BISR	Note us Interfa 7 MST 1 MST TRX	4: SBICR2 has write-only register bits, which can not access any as bit operate, etc. 5: Clear bits 1 and 0 in SBICR2 to "0". ace Status Register 6 5 4 3 2 1 0 TRX BB PIN AL AAS ADO LRB (Initial value) Master / Slave selection status monitor 0: Slave 1: Master Transmitter / Receiver selection status monitor 0: Receiver monitor 1: Transmitter Bus status monitor 0: Bus free	e: 0001 0000) upt service	Rea	
BISR	Note us Interfa 7 MST 1 MST TRX BB	A: SBICR2 has write-only register bits, which can not access any as bit operate, etc. 5: Clear bits 1 and 0 in SBICR2 to "0". ace Status Register 6 5 4 3 2 1 0 TRX BB PIN AL AAS ADO LRB (Initial value) Master / Slave selection status monitor Transmitter / Receiver selection status monitor Bus status monitor 0: Slave 1: Master 1: Transmitter Bus status monitor 0: Bus free 1: Bus busy Interrupt service request status 0: Requesting interrupt	e: 0001 0000) upt service ot service request		
BISR	Note us Interfa 7 MST 1 MST TRX BB	A: SBICR2 has write-only register bits, which can not access any as bit operate, etc. 5: Clear bits 1 and 0 in SBICR2 to "0". acce Status Register 6	e: 0001 0000) upt service ot service request bise	Rea	
BISR	Note us Interfa 7 MST 1 MST TRX BB PIN AL	A: SBICR2 has write-only register bits, which can not access any as bit operate, etc. 5: Clear bits 1 and 0 in SBICR2 to "0". acce Status Register 6	e: 0001 0000) upt service ot service request bise ave address match or "GENERAL ess match or "GENERAL CALL"	Rea	

Figure 2-24. Serial Bus Interface Control Register 2 / Serial Bus Interface Status Register in the I²Cbus Mode

(1) Acknowledgment mode specification

Set the ACK (bit 4 in SBICR1) to "1" for operation in acknowledgment mode. When the serial bus interface circuit is the master mode, an additional clock pulse is generated for an acknowledge signal. In the transmitter mode during this additional clock pulse cycle, the SDA pin is released in order to receive the acknowledge signal from the receiver. In the receiver mode during this additional clock pulse cycle, the SDA pin is set to low level generating the acknowledge signal.

Clear the ACK to "0" for operation in the non-acknowledgment mode. When the serial bus interface circuit is the master mode, a clock pulse for the acknowledge signal is not generated.

In the acknowledgment mode, when the serial bus interface circuit is the slave mode, clocks are counted for the acknowledge signal. During the clock for the acknowledge signal, when a received slave address matches to a slave address set to the I2CAR or a "GENERAL CALL" is received, the SDA pin is set to low level generating an acknowledge signal.

After a received slave address matches to a slave address set to the I2CAR and a "GENERAL CALL" is received, in the transmitter mode during the clock for the acknowledge signal, the SDA pin is released in order to receive the acknowledge signal from the receiver. In the receiver mode, the SDA pin is set to low level generating an acknowledge signal.

In the non-acknowledgment mode, when the serial bus interface circuit is the slave mode, clocks for the acknowledge signal are not counted.

(2) Number of transfer bits

The BC (bits 7 to 5 in the SBICR1) is used to select a number of bits for next transmitting and receiving data.

Since the BC is cleared to "000" by a start condition, a slave address and direction bit transmissions are executed in 8 bits. Other than these, the BC retains a specified value.

(3) Serial clock

a. Clock source

The SCK (bits 2 to 0 in the SBICR1) is used to select a maximum transfer frequency outputed on the SCL pin in the master mode. Set a communication baud rate that meets the I^2C bus specification, such as the shortest pulse width of t_{LOW} , based on the equations shown below.

Four or more machine cycles are required for both the high and low levels of the pulse width of a clock which is input externally in both the master and slave mode.

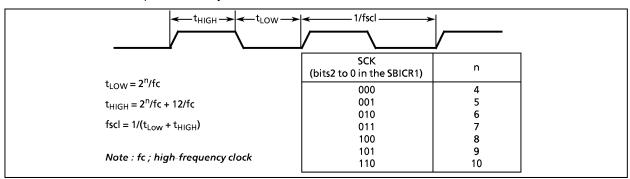


Figure 2-25. Clock Source

b. Clock synchronization

The I²C bus has a clock synchronization function to meet the transfer speed to a slow processing device when a transfer is performed between devices which have different process speed.

The clock synchronization functions when the SCL pin is high level and the SCL line of the bus is low level in the serial bus interface circuit. The serial bus interface circuit waits counting a clock pulse in high level until the SCL line of the bus is high level. When the SCL line of the bus is high level, the serial bus interface circuit starts counting during high level. The clock synchronization function holds clocks which are output from the serial interface circuit to be high level.

The slave device can stop the clock output of the master device on one word or one bit basis. Additionally, the transfer speed by the master device matches to the process speed of the slave device.

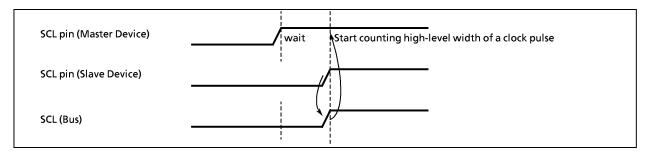


Figure 2-26. Clock Synchronization

(4) Slave address and address recognition mode specification

To operate the serial bus interface circuit in the addressing format which recognizes the slave address, clear the ALS (bit 0 in I2CAR) to "0" and set the slave address to the SA (bits 7 to 1 in I2CAR). To operate the serial bus interface circuit in the free data format which does not recognize the slave address, set the ALS to "1". When the serial bus interface circuit is used in the free data format, the slave address and the direction bit are not recognized. They are handled as data just after generation of start conditions.

(5) Master/slave selection

Set the MST (bit 7 in the SBICR2) to "1" for operating the serial bus interface as a master device. Clear the MST to "0" for operation as a slave device. The MST is cleared to "0" by the hardware after a stop condition on a bus is detected or the noise is detected.

(6) Transmitter / receiver selection

Set the TRX (bit 6 in the SBICR2) to "1" for operating the serial bus interface circuit as a transmitter. Clear the TRX to "0" for operation as a receiver. When data with an addressing format is transferred in the slave mode, the TRX is set to "1" by the hardware if the direction bit (R/W) sent from the master device is "1", and is cleared to "0" by the hardware if the bit is "0". In the master mode, after an acknowledge signal is returned from the slave device, the TRX is cleared to "0" by the hardware if a transmitted direction bit is "1", and is set to "1" by the hardware if it is "0". When an acknowledge signal is not returned, the current condition is maintained.

The TRX is cleared to "0" by the hardware after a stop condition on the bus is detected or the noise is detected.

The following sho	ows TRX change c	onditions in each	mode and TR	X after changing.

Mode	Direction bit	Change condition	TRX after changing
Slave mode	0	A received slave address is the	0
Slave mode	1	same as a value set to I2CAR.	1
Master mode	0	ACK signal is returned	1
iviaster mode	1	ACK signal is returned.	0

When the serial bus interface circuit operates in the free data format, the slave address and the direction bit are not recognized. They are handled as data just after generating a start condition. The TRX was not changed by the hardware.

(7) Start/stop condition generation

When the BB (bit 5 in the SBICR2) is "0", the slave address and the direction bit which are set to the SBIDBR are output on a bus after generating a start condition by writing "1" to the MST, TRX, BB, and PIN. It is necessary to set transmitted data to the data buffer register (SBIDBR) and set "1" to ACK beforehand.

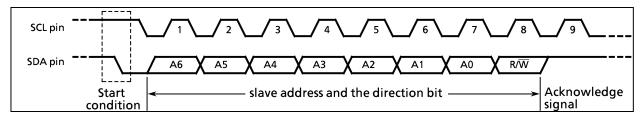


Figure 2-27. Start Condition Generation and Slave Address Generation

When the BB is "1", a sequence of generating a stop condition is started by writing "1" to the MST, TRX, and PIN, and "0" to the BB. Do not modify the contents of MST, TRX, BB and PIN until a stop condition is generated on a bus.

When a stop condition is generated and the SCL line on the bus is set to low level by another device, a stop condition is generated after releasing the SCL line.

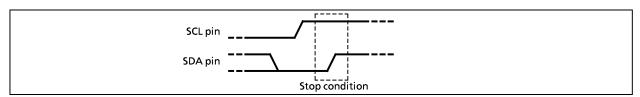


Figure 2-28. Stop Condition Generation

The bus condition can be indicated by reading the contents of the BB (bit 5 in the SBISR). The BB is set to "1" when a start condition on a bus is detected, and is cleared to "0" when a stop condition is detected on a bus.

(8) Interrupt service request and cancel

When the serial bus interface circuit is the master mode and transferring a number of clocks set by the BC and the ACK is complete, a serial bus interface interrupt request (INTSBI) is generated.

In the slave mode, the INTSBI is generated when the received slave address is the same as the value set to the I2CAR and an acknowledge signal is output, when a "GENERAL CALL" is received and an acknowledge signal is output, or when transferring / receiving data is complete after the received slave address is the same as the value set to the I2CAR and a "GENERAL CALL" is received.

When the serial bus interface interrupt request occurs, the PIN (bit 4 in the SBISR) is cleared to "0". During the time that the PIN is "0", the SCL pin is set to low level.

Either writing or reading data to or from the SBIDBR sets the PIN to "1".

The time from the PIN being set to "1" until the SCL pin is released takes t_{LOW}.

Although the PIN (bit 4 in the SBICR2) can be set to "1" by the program, the PIN is not cleared to "0" when it is written "0".

(9) Serial bus interface operating mode selection

The SBIM (bits 3 and 2 in the SBICR2) is used to specify the serial bus interface operation mode. Set the SBIM to "10" when used in the I²C bus mode after confirming that the serial bus interface pin is high level. Switch a mode to port after confirming that the bus is free.

(10) Noise detection monitor

The I²C bus is easy to be affected by noise, because the bus is driven by the open drain and the pull-up resistor.

With the serial bus interface circuit, the SDA pin output and the SDA line level are compared at a rise of the SCL line on the bus, and whether data are output correctly on the bus is detected only in the master transmitter mode.

When the SDA pin output differs from the SDA line level, the AL (bit 3 in the SBISR) is set to "1". When the AL is set to "1", the SDA pin is released and the MST and the TRX are cleared to "0" by the hardware. The serial bus interface circuit changes to the slave receiver mode, and the serial bus interface circuit continues outputting clocks until transferring data when the AL was set to "1" is completed.

Either writing or reading data to or from the SBIDBR, or writing data to the SBICR2 clears to the AL to "0".

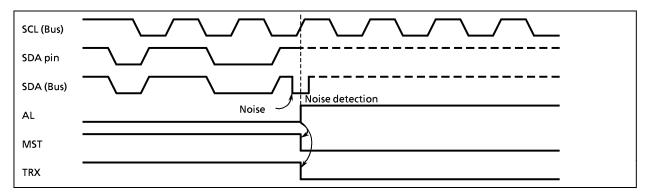


Figure 2-29. Noise Detection Monitor

(11) Slave address match detection monitor

The AAS (bit 2 in the SBISR) is set to "1" in the slave mode, in the address recognition mode (ALS = 0), when receiving "GENERAL CALL" or a slave address with the same value that is set to the I2CAR. When the ALS is "1", the AAS is set to "1" after receiving the first 1-word of data. The AAS is cleared to "0" by writing / reading data to / from a data buffer register.

(12) GENERAL CALL detection monitor

The AD0 (bit 1 in the SBISR) is set to "1" in the slave mode, when all 8-bit received data is "0", after a start condition (GENERAL CALL). The AD0 is cleared to "0" when a start or stop condition is detected on a bus.

(13) Last received bit monitor

The SDA value stored at the rising edge of the SCL is set to the LRB (bit 0 in the SBISR). In the acknowledge mode, immediately after an INTSBI interrupt request is generated, an acknowledge signal is read by reading the contents of the LSB.

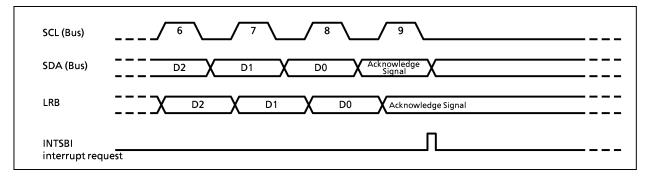


Figure 2-30. Last Received bit Monitor

2.8.5 Data transfer in I²C bus mode

(1) Device initialization

Set the ACK in the SBICR1 to "1", and the BC to 000. Specify the data length to 8 bits to count clocks for acknowledge. Set a transfer frequency to the SCK.

Subsequently, set a slave address to the SA in the I2CAR and clear the ALS to "0" to set an addressing format.

After confirming that the serial bus interface pin is high-level, for specifying the default setting to a slave receiver mode, clear "0" to the MST, TRX, and BB in the SBICR2, set "1" to the PIN, "10" to the SBIM, and "0" to bits 1 and 0,

Note: The initialization of the serial bus interface circuit must be complete within the time from all devices which are connected to the bus have initialized to any device does not generate a start condition. If not, there is a possibility that another device starts transferring before an end of the initialization of the serial bus interface circuit. Data can not be received correctly.

(2) Start condition and slave address generation

Confirm a bus free status (when BB = 0).

Set the ACK to "1" and specify a slave address and a direction bit to be transmitted to the SBIDBR. When the BB is "0", the start condition are generated and the slave address and the direction bit which are set to the SBIDBR are output on a bus by writing "1" to the MST, TRX, BB and PIN. An INTSBI interrupt request occurs at the 9th falling edge of the SCL clock cycle, and the PIN is cleared to "0". The SCL pin is pulled down to the low-level while the PIN is "0". When an interrupt request occurs, the TRX changes by the hardware according to the direction bit only when an acknowledge signal is returned from the slave device.

- Note 1: Do not write a slave address to be output to the SBIDBR while data are transferred. If data is written to the SBIDBR, data to been outputting may be destroyed.
- Note 2: Do not start transferring due to another master from writing a slave address to be output to the SBIDBR to writing a start condition generation command to the SBICR2. The serial bus interface circuit malfunctions because it has not an arbitration function.

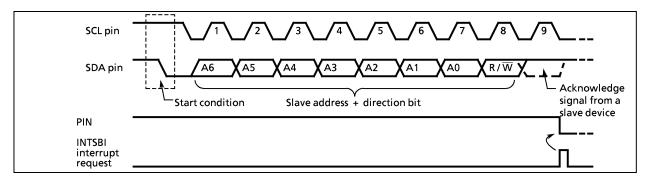


Figure 2-31. Start Condition Generation and Slave Address Transfer

(3) 1-word data transfer

Check the MST by the INTSBI interrupt process after an 1-word data transfer is completed, and determine whether the mode is a master or slave.

a. When the MST is "1" (Master mode)

Check the TRX and determine whether the mode is a transmitter or receiver.

① When the TRX is "1" (Master mode)

Test the LRB. When the LRB is "1", a receiver does not request data. Implement the process to generate a stop condition (described later) and terminate data transfer.

When the LRB is "0", the receiver requests new data. When the next transmitted data is other than 8 bits, set the BC, set the ACK to "1", and write the transmitted data to the SBIDBR. After writing the data, the PIN becomes "1", a serial clock pulse is generated for transferring a new 1-word of data from the SCL pin, and then the 1-word data is transmitted. After the data is transmitted, and an INTSBI interrupt request occurs. The PIN becomes "0" and the SCL pin is set to low level. If the data to be transferred is more than one word in length, repeat the procedure from the LRB test above.

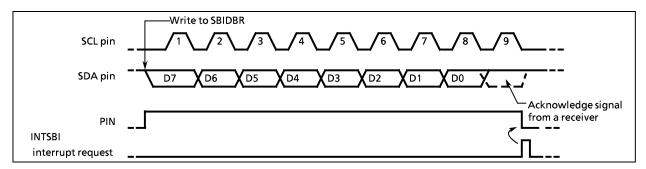


Figure 2-32. Example when BC = "000", ACK = "1" in Transmitter Mode

2 When the TRX is "0" (Receiver mode)

When the next transmitted data is other than 8 bits, set the BC again. Set the ACK to "1" and read the received data from the SBIDBR (data which is read immediately after a slave address is sent is undefined). After the data is read, the PIN becomes "1". The serial bus interface circuit outputs a serial clock pulse to the SCL to transfer new 1-word of data and sets the SDA pin to "0" at the acknowledge signal timing.

An INTSBI interrupt request occurs and the PIN becomes "0". Then the serial bus interface circuit pulls down the SCL pin to the low level. The serial bus interface circuit outputs a clock pulse for 1-word of data transfer and the acknowledge signal each time that received data is read from the SBIDBR.

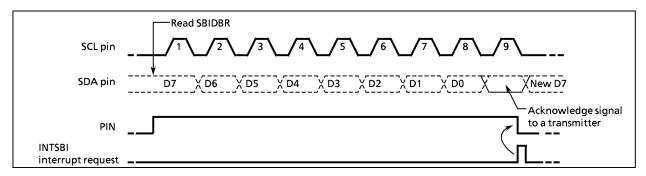


Figure 2-33. Example when BC = "000", ACK = "1" in Receiver Mode

In order to terminate transmitting data to a transmitter, clear the ACK to "0" before reading data which is 1 word before the last data to be received. The last data does not generate a clock pulse for the acknowledge signal. After the data is transmitted and an interrupt request has occurred, set the BC to "001" and read the data. The serial bus interface circuit generates a clock pulse for a 1-bit data transfer. Since the master device is a receiver, the SDA line on a bus keeps the high level. The transmitter receives the high-level signal as an ACK signal. The receiver indicates to the transmitter that data transfer is complete.

After 1-bit data is received and an interrupt request has occurred, the serial bus interface circuit generates a stop condition (Refer to 2.8.5. (4)) and terminates data transfer.

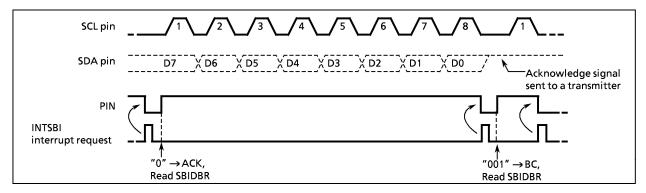


Figure 2-34. Termination of Data Transfer in Master Receiver Mode

b. When the MST is "0" (Slave mode)

In the slave mode, the serial bus interface circuit operates either in normal slave mode or in recovery process after a noise detection.

In the slave mode, an INTSBI interrupt request occurs when the serial bus interface circuit receives a slave address or a "GENERAL CALL" from the master device, or when a "GENERAL CALL" is received and data transfer is complete after matching a received slave address. In the master mode, the serial bus interface circuit operates in a slave mode if a noise is detected. An INTSBI interrupt request occurs when word data transfer terminates after a noise detection. When an INTSBI interrupt request occurs, the PIN (bit 4 in the SBICR2) is reset, and the SCL pin is set to low level. Either reading or writing from or to the SBIDBR or setting the PIN to "1" releases the SCL pin after taking t_{LOW} time. The serial bus interface circuit tests the AL (bit 3 in the SBISR), the TRX (bit 6 in the SBISR), the AAS (bit 2 in the SBISR), and the ADO (bit 1 in the SBISR) and implements processes according to conditions listed in the next table.

				rable 2-5. Operation in the Sia	ve iviode
TRX	AL	AAS	AD0	Conditions	Process
1	0	1	0	In the slave receiver mode, the serial bus interface circuit receives a slave address of which the value of the direction bit sent from the master is "1".	Set the number of bits in 1-word to the BC and write transmitted data to the SBIDBR.
		0	0	In the slave transmitter mode, 1-word data is transmitted.	Check the LRB. If the LRB is set to "1", set the PIN to "1" since the receiver does not request next data. Then, clear the TRX to "0" release the bus. If the LRB is cleared to "0", set the number of bits in a word to the BC and write transmitted data to the SBIDBR since the receiver requests next data.
0	1	0	0	The serial bus interface circuit detects the noise when transmitting a slave address or data and terminates transferring word data.	There is a possibility that a serial bus interface circuit does not receive data normally. The recovery process such as a data re-transfer, etc. is needed.
	0	1	1/0	In the slave receiver mode, the serial bus interface circuit receives a slave address or GENERAL CALL of which the value of the direction bit sent from the master is "0".	Read the SBIDBR for setting the PIN to "1" (reading dummy data) or set the PIN to "1".
		0	1/0	In the slave receiver mode, the serial bus interface circuit terminates receiving of 1-word data.	Set the number of bits in a word to the BC and read received data from the SBIDBR.

Table 2-5. Operation in the Slave Mode

(4) Stop condition generation

When the BB is "1", a sequence of generating a stop condition is started by setting "1" to the MST, TRX and PIN, and "0" to the BB. Do not modify the contents of the MST, TRX, BB, PIN until a stop condition is generated on a bus. When a SCL line of bus is pulled down by other devices, the serial bus interface circuit generates a stop condition after they release a SCL line.

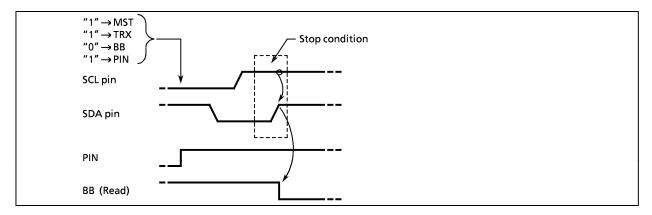


Figure 2-35. Stop Condition Generation

(5) Restart

Restart is used to change the direction of data transfer between a master device and a slave device during transferring data. The following explains how to restart the serial bus interface circuit.

Clear "0" to the MST, TRX, and BB and set "1" to the PIN. The SDA pin retains the high level and the SCL pin is released. Since a stop condition is not generated on the bus, the bus is assumed to be in a busy state from other devices. Test the BB until it becomes "0" to check that the SCL pin of the serial bus interface circuit is released. Test the LRB until it becomes "1" to check that the SCL line of the bus is not set to low level by other devices. After confirming that the bus stays in a free state, generate a start condition with procedure (2).

In order to meet setup time when restarting, take at least 4.7 μ s of waiting time by software from the time of restarting to confirm that the bus is free until the time to generate the start condition.

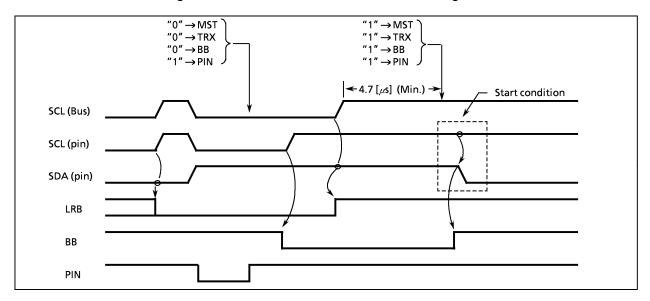


Figure 2-36. Timing Diagram when Restarting

2.8.6 Clocked-synchronous 8-bit SIO mode control

The following registers are used for control and operation status monitoring when using the serial bus interface (SBI-ver.A) in the clocked-synchronous 8-bit SIO mode.

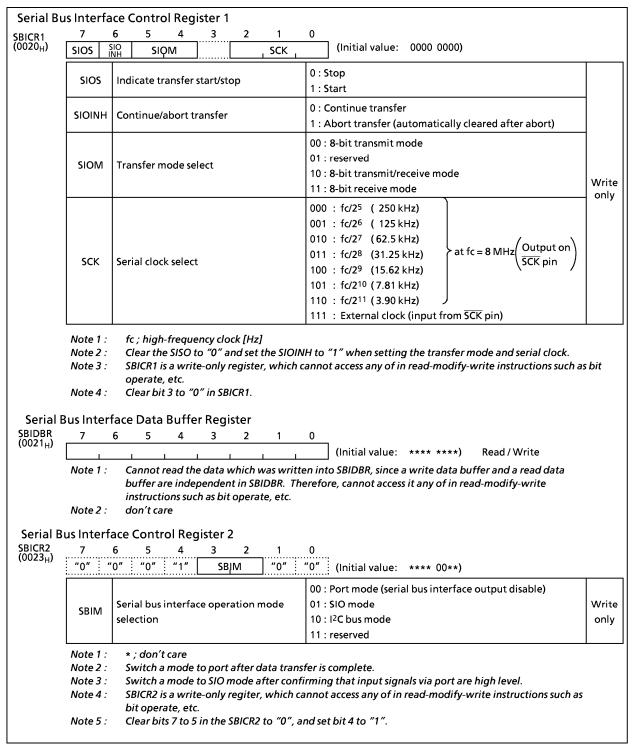


Figure 2-37-1. Serial Bus Interface Control Register 1 / Serial Bus Interface Data Buffer Register / Serial Bus Interface Control Register 2 in SIO Mode

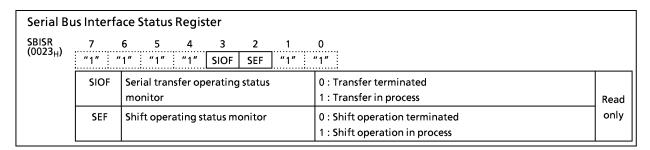


Figure 2-37-2. Serial Bus Interface Status Register in SIO Mode

(1) Serial clock

a. Clock source

The SCK (bit 2 to 0 in the SBICR1) is used to select the following functions.

1 Internal Clock

In an internal clock mode, any of seven frequencies can be selected. The serial clock is output to the outside on the \overline{SCK} pin. The \overline{SCK} pin becomes a high-level when data transfer starts. When writing (in the transmit mode) or reading (in the receive mode) data cannot follow the serial clock rate, an automatic-wait function is executed to stop the serial clock automatically and hold the next shift operation until reading or writing is complete.

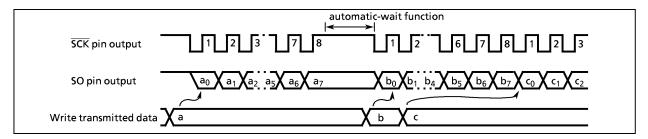


Figure 2-38. Automatic-wait Function

② External clock (SCK = "111")

An external clock supplied to the \overline{SCK} pin is used as the serial clock. In order to ensure shift operation, a pulse width of at least 4 machine cycles is required for both high-level and low-level in the serial clock. The maximum data transfer frequency is 250 kHz (when fc = 8 MHz).

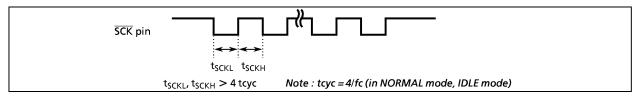


Figure 2-39. Maximum Data Transfer Frequency When External Clock Input

b. Shift edge

The leading edge is used to transmit data, and the trailing edge is used to receive data.

- 1 Leading edge shift
 - Data is shifted on the leading edge of the serial clock (at a falling edge of the SCK pin input/output).
- 2 Trailing edge shift

Data is shifted on the trailing edge of the serial clock (at a rising edge of the SCK pin input/output).

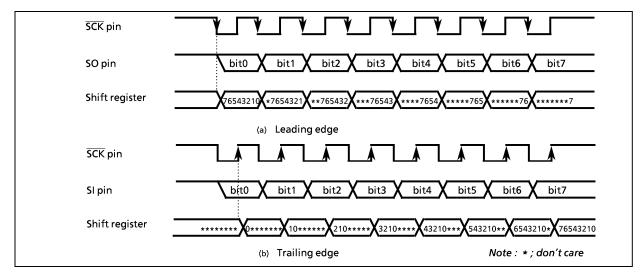


Figure 2-40. Shift Edge

(2) Transfer mode

The SIOM (bit 5 and 4 in the SBICR1) is used to select a transmit, receive, or transmit/receive mode. a. 8-bit transmit mode

Set a control register to a transmit mode and write transmit data to the SBIDBR.

After the transmit data is written, set the SIOS to "1" to start data transfer. The transmitted data is transferred from the SBIDBR to the shift register and output to the SO pin in synchronous with the serial clock, starting from the least significant bit (LSB). When the transmit data is transferred to the shift register, the SBIDBR becomes empty. The INTSBI (buffer empty) interrupt request is generated to request new data.

When the internal clock is used, the serial clock will stop and automatic-wait function will be initiated if new data is not loaded to the data buffer register after the specified 8-bit data is transmitted. When new transmit data is written, automatic-wait function is canceled.

When the external clock is used, data should be written to the SBIDBR before new data is shifted. The transfer speed is determined by the maximum delay time between the time when an interrupt request is generated and the time when data is written to the SBIDBR by the interrupt service program.

When the transmit is started, after the SIOF goes "1" output from the SO pin holds final bit of the last data until falling edge of the SCK.

Transmitting data is ended by clearing the SIOS to "0" by the buffer empty interrupt service program or setting the SIOINH to "1". When the SIOS is cleared, the transmitted mode ends when all data is output. In order to confirm if data is surely transmitted by the program, set the SIOF (bit 3 in the SBISR) to be sensed. The SIOF is cleared to "0" when transmitting is complete. When the SIOINH is set, transmitting data stops. The SIOF turns "0".

When the external clock is used, it is also necessary to clear the SIOS to "0" before new data is shifted; otherwise, dummy data is transmitted and operation ends.

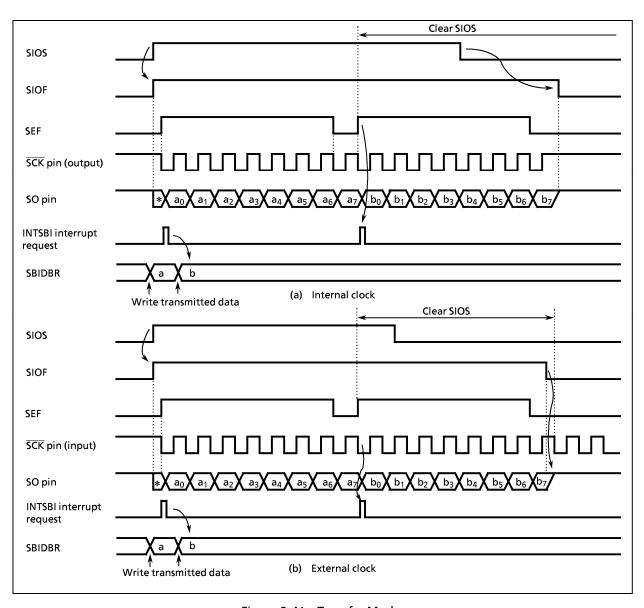


Figure 2-41. Transfer Mode

Example : Program to stop transmitting data (when external clock is used)

STEST1 : TEST (SBISR) . SEF ; If SEF = 1 then loop

JRS F , STEST1

STEST2: TEST (P3). 6; If $\overline{SCK} = 0$ then loop

JRS T , STEST2

LD (SBICR1), 00000111B; SIOS \leftarrow 0

87CH36-71 2004-10-01

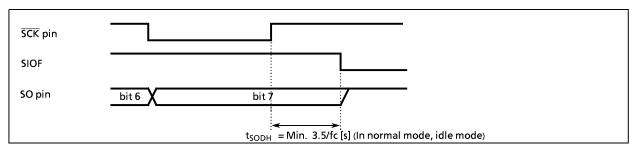


Figure 2-42. Transmitted Data Hold Time at End of Transmit

b.8-bit receive mode

Set the control register to receive mode and the SIOS to "1" for switching to receive mode. Data is received from the SI pin to the shift register in synchronous with the serial clock, starting from the least significant bit (LSB). When the 8-bit data is received, the data is transferred from the shift register to the SBIDBR. The INTSBI (buffer full) interrupt request is generated to request of reading the received data. The data is then read from the SBIDBR by the interrupt service program.

When the internal clock is used, the serial clock will stop and automatic-wait function will be initiated until the received data is read from the SBIDBR.

When the external clock is used, since shift operation is synchronized with the clock pulse provided externally, the received data should be read from the SBIDBR before next serial clock is input. If the received data is not read, further data to be received is canceled. The maximum transfer speed when the external clock is used is determined by the delay time between the time when an interrupt request is generated and the time when received data is read.

Receiving data is ended by clearing the SIOS to "0" by the buffer full interrupt service program or setting the SIOINH to "1". When the SIOS is cleared, received data is transferred to the SBIDBR in complete blocks. The received mode ends when the transfer is complete. In order to confirm if data is surely received by the program, set the SIOF (bit 3 in the SBIDBR) to be sensed. The SIOF is cleared to "0" when receiving is complete. After confirming that receiving has ended, the last data is read. When the SIOINH is set, receiving data stops. The SIOF turns "0" (the received data becomes invalid, therefore no need to read it).

Note: When the transfer mode is switched, the SBIDBR contents are lost. In case that the mode needs to be switched, receiving data is concluded by clearing the SIOS to "0", read the last data, and then switch the mode.

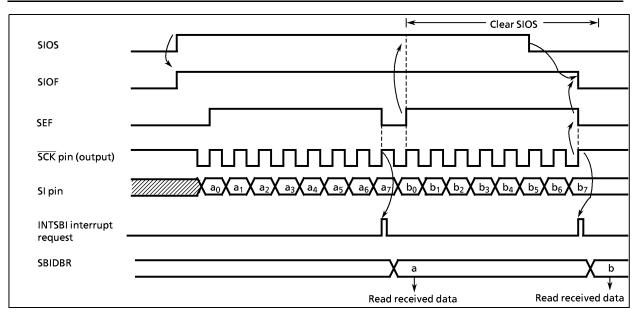


Figure 2-43. Receive Mode (Example: Internal clock)

c. 8-bit transmit / receive mode

Set a control register to a transmit/receive mode and write data to the SBIDBR. After the data is written, set the SIOS to "1" to start transmitting / receiving. When transmitting, the data is output from the SO pin on the leading edges in synchronous with the serial clock, starting from the least significant bit (LSB). When receiving, the data is input to the SI pin on the trailing edges of the serial clock. 8-bit data is transferred from the shift register to the SBIDBR, and the INTSBI interrupt request occurs. The interrupt service program reads the received data from the data buffer register and writes data to be transmitted. The SBIDBR is used for both transmitting and receiving. Transmitted data should always be written after received data is read.

When the internal clock is used, automatic-wait function is initiated until received data is read and next data is written.

When the external clock is used, since the shift operation is synchronized with the external clock, received data is read and transmitted data is written before new shift operation is executed. The maximum transfer speed when the external clock is used is determined by the delay time between the time when an interrupt request is generated and the time when received data is read and transmitted data is written.

When the transmit is started, after the SIOF goes "1" output from the SO pin holds final bit of the last data until falling edge of the SCK.

Transmitting / receiving data is ended by clearing the SIOS to "0" by the INTSBI interrupt service program or setting the SIOINH to "1". When the SIOS is cleared, received data is transferred to the SBIDBR in complete blocks. The transmit / receive mode ends when the transfer is complete. In order to confirm if data is surely transmitted / received by the program, set the SIOF (bit3 in the SBISR) to be sensed. The SIOF becomes "0" after transmitting / receiving is complete. When the SIOINH is set, transmitting / receiving data stops. The SIOF turns "0".

Note: When the transfer mode is switched, the SBIDBR contents are lost. In case that the mode needs to be switched, conclude transmitting / receiving data by clearing the SIOS to "0", read the last data, and then switch the transfer mode.

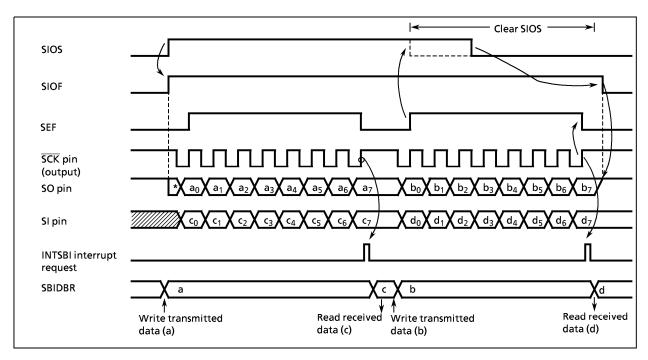


Figure 2-44. Transmit / Receive Mode (Example : Internal clock)

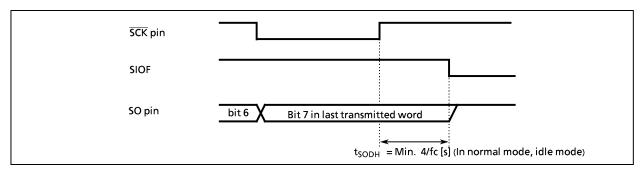


Figure 2-45. Transmitted Data Hold Time at End of Transmit / Receive

2.9 Remote control signal preprocessor/external interrupt 3 input pin

The remote control signal waveform can be determined by inputting the remote control signal waveform from which the carrier wave was eliminated by the receive circuit to P30 (INT3/RXIN) pin. When the remote control signal preprocessor/external interrupt 3 pin is also used as the P30 port, set the P30 port output latch to "1". When it is not used as the remote control signal preprocessor/external interrupt 3 input pin, it can be used for normal port.

2.9.1 Configuration

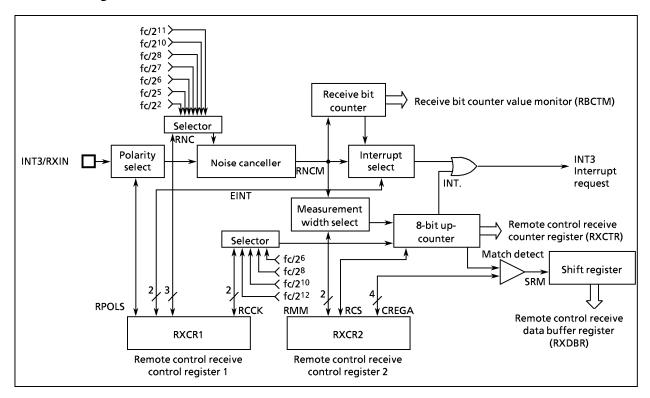


Figure 2-46. Remote Control Signal Preprocessor

2.9.2 Remote control signal preprocessor control

When the remote control signal preprocessor is used, operating states are controlled and monitored by the following registers. Interrupt requests also use the remote control signal preprocessor/external interrupt 3 input pin.

- Remote control receive control register 1 (RXCR1)
- Remote control receive control register 2 (RXCR2)
- Remote control receive counter register (RXCTR)
- Remote control receive data buffer register (RXDBR)
- Remote control receive status register (RXSR)

When this pin is used for the external interrupt 3 input, set EINT in RXCR1 to other than "11".

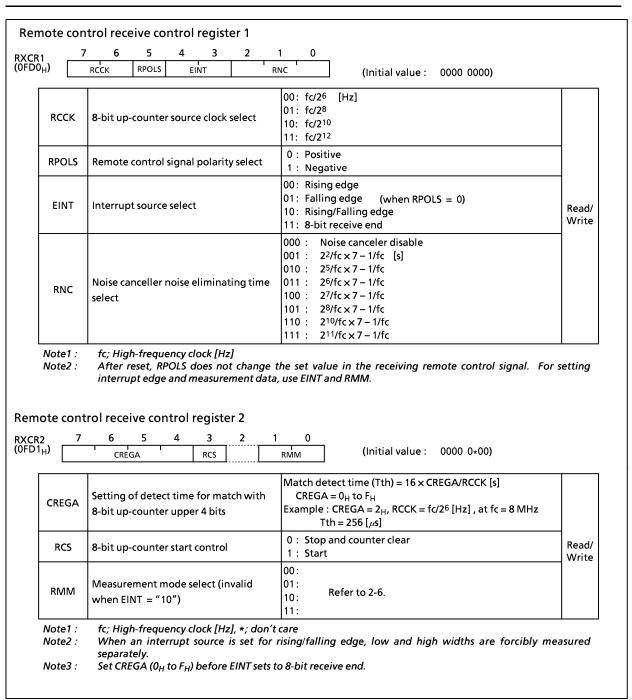


Figure 2-47. Remote Control Receive Control Register 1, 2

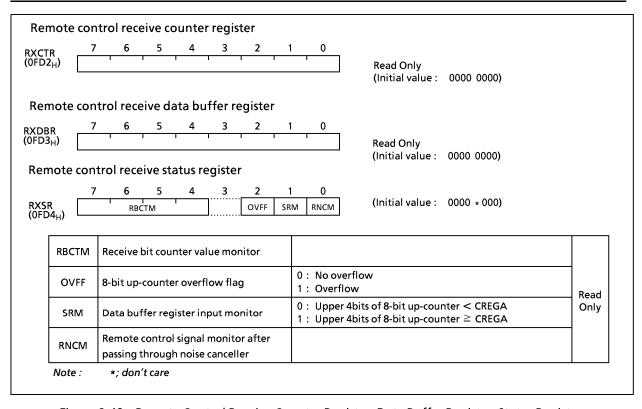


Figure 2-48. Remote Control Receive Counter Register, Data Buffer Register, Status Register

Table 2-6. Combination of Interrupt Source and Measurement Mode

RPOLS	EINT	RMM	Interrupt source	Measurement mode
	00	00 10 11		→ ← ← ← ← ← ← ← ← ← ←
0	01	01 10 11		→ ← ← ← ← ← ← ← ← ← ←
	10	_		→
	11	00 10	Receive end	→
	00	00 10 11		+ + + + + + + + + +
1	01	01 10 11		→ ← ← ←
	10	_		→
	11	00 10	Receive end	→ ← ←

2.9.3 Noise elimination time setting

The remote control receive circuit has a noise canceller. By setting RNC in RXCR1, input signals shorter than the fixed time can be eliminated as noise.

Maximum noise width to be RNC Minimum signal pulse width at fc = 8 MHzat fc = 8 MHzeliminated 000 001 $(2^5 + 5) / fc$ [s] 4.63 [*μ*s] $(2^2 \times 7 - 1) / fc$ [s] 3.38 $[\mu s]$ 010 (28 + 5) / fc32.63 $(2^5 \times 7 - 1) / fc$ 27.88 64.63 $(26 \times 7 - 1) / fc$ 011 $(2^9 + 5) / fc$ 55.88 $(2^{10} + 5) / fc$ 128.63 $(2^7 \times 7 - 1) / fc$ 111.88 100 101 $(2^{11} + 5) / fc$ 256.63 $(28 \times 7 - 1) / fc$ 223.88 110 $(2^{13} + 5) / fc$ 1.025 [ms] $(2^{10} \times 7 - 1) / fc$ 895.88 $(2^{14} + 5) / fc$ 2.049 $(2^{11} \times 7 - 1) / fc$ 1.792 [ms] 111

Table 2-7. Noise Elimination Time Setting

2.9.4 Operation

(1) interrupts at rising, falling, or rising/falling edge, and measurement modes

First set EINT and RMM. Next, set RCS to "1"; the 8-bit up-counter is counted up by the internal clock. After measurement, the 8-bit up-counter value is saved in RXCTR. Then, the 8-bit up-counter is cleared, an INT3 request is generated, and the 8-bit up-counter resumes counting. If the 8-bit up-counter overflows (FF_H) before measurement is completed, an INT3 request is generated and the overflow flag (OVFF) is set to "1". Then, the 8-bit up-counter is cleared. An

generated and the overflow flag (OVFF) is set to "1". Then, the 8-bit up-counter is cleared. An overflow can be detected by reading OVFF by the interrupt processing. To restart the 8-bit up-counter, set RCS to "1".

Setting RCS to "1" zero-clears OVFF.

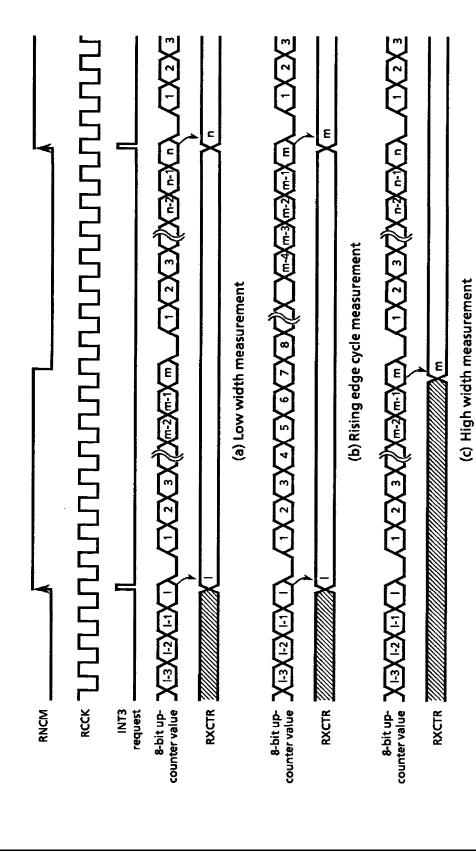


Figure 2-49. Rising Edge Interrupt Timing Chart (RPOLS = 0)

2004-10-01

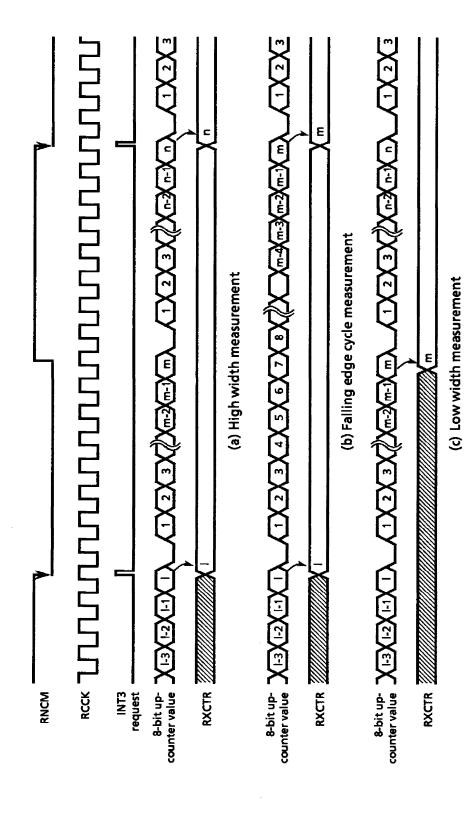


Figure 2-50. Falling Edge Interrupt Timing Chart (RPOLS = 0)

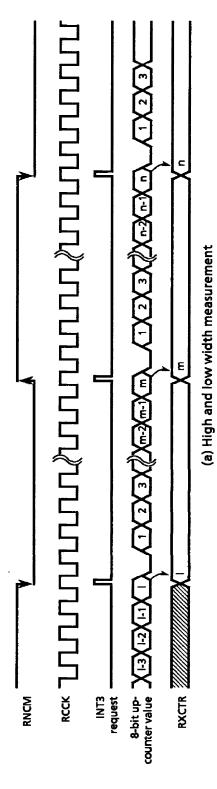


Figure 2-51. Rising/Falling Edge Interrupt Timing Chart

(2) 8-bit receive end interrupts and measurement modes

By determining one-cycle remote control signal or one-pulse width as one-bit data "0" or "1", an INT3 request is generated after 8-bit data is received. When "0" is determined, this means the upper four bits in the 8-bit up-counter have not reached the CREGA value. When "1" is determined, this means the upper four bits in the 8-bit up-counter have reached or exceeded the CREGA value. The 8-bit up-counter value is saved in RXCTR after one bit is determined. The determined data is saved, bit by bit, in RXDBR at the rising edge of the remote control signal (when RPOLS = 1, falling edge). The number of bits saved in RXDBR is counted by the receive bit counter and saved in RBCTM. RBCTM is set to "0001B" at the rising edge of the input (when RPOLS = 1, falling edge) after the INT3 request is generated.

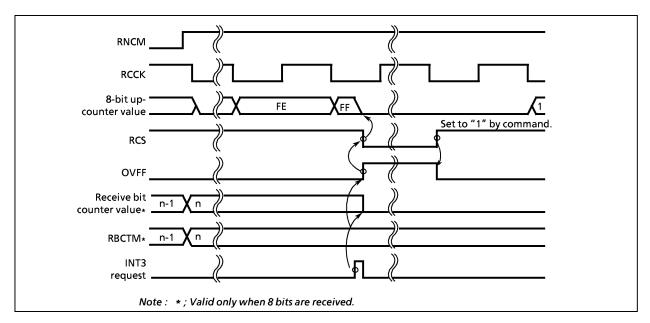
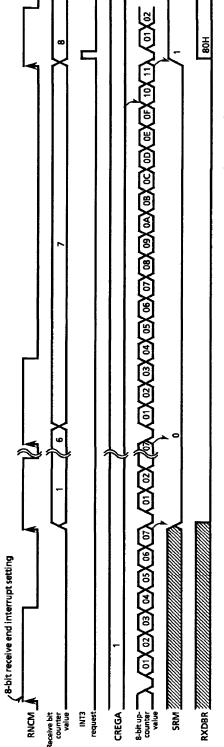



Figure 2-52. Overflow Interrupt Timing Chart

[Application] Low width measurement

Table 2-8. Count Clock for Remote Control Preprocessor Circuit

8-bit Receive End Interrupt Timing Chart (RPOLS = 0)

Figure 2-53.

(a) Rising edge cycle measurement

	at	at fc = 8 MHz
COUNT CIOCK (ACCK)	Resolution	Maximum setting time
fd/26 [Hz]	sr/ 8	2.048 ms
fc/28	32 µs	8.192 ms
fc/210	128 µs	32.768 ms
fc/212	512 48	131.072 ms

2.10 6-bit A/D Conversion (Comparator) Inputs

The comparator input is an analog input to discriminate key input or AFC (Auto Frequency Control) signal input, etc. The analog input voltage level (pins CIN3 to CIN0) can be detected as 64-stage by setting reference voltage.

The comparator input pins CIN3 to CIN0 can also be used as ports P57 to P54.

When used as a comparator input, the output latch should be set to "1".

2.10.1 Configuration

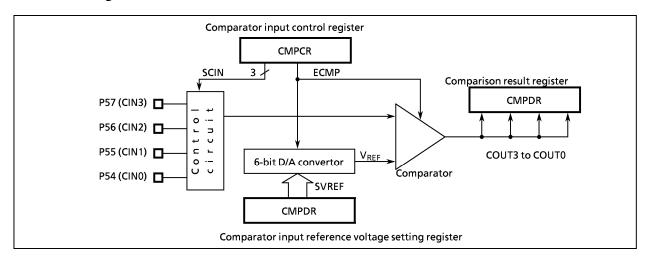


Figure 2-54. 6-bit A/D Conversion (Comparator) Inputs

2.10.2 Control

A/D conversion (comparator) inputs are controlled by a comparator input control register (CMPCR) and a comparator input data register (CMPDR). The CMPDR contains a reference voltage setting register (write-only) and a comparison result register (read-only).

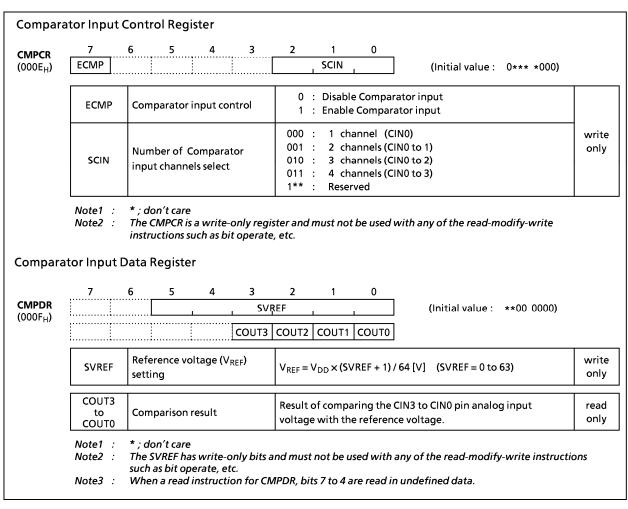


Figure 2-55. Comparator Input Control Register and Data Register

2.10.3 Function

Reference voltage (V_{REF}) is set with SVREF (bits 5 to 0 in CMPDR).

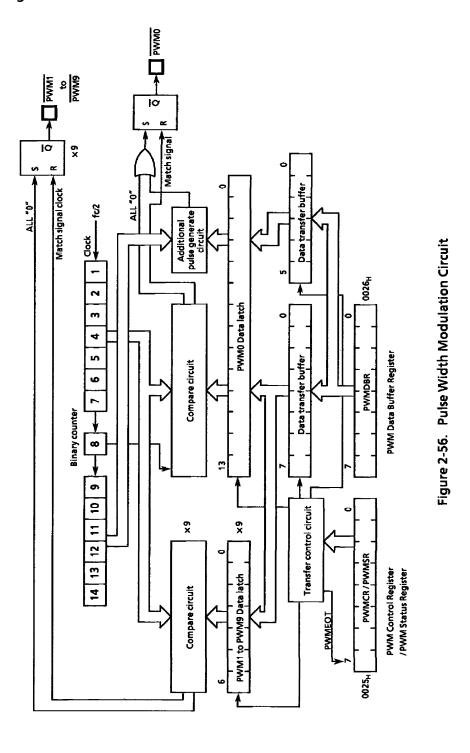
```
V_{REF} = V_{DD} \times (SVREF + 1) / 64 [V] (SVREF = 0 to 63)
```

The number of comparator input channels is selected with SCIN (bits 2 to 0 in CMPCR). Sequential comparison of the selected number of channels is started by setting ECMP (bit 7 in CMPCR) to "1". The comparison of one channel requires two machine cycles; therefore, the comparison result register (COUT3 to COUT0) should be read out at an interval equal to [number of channels \times 2 machine cycles] after setting the reference voltage (V_{REF}). COUT3 to COUT0 are set to "1" if the input voltage (pins CIN3 to CIN0) is higher than the reference voltage (V_{REF}); otherwise those are cleared to "0".

```
Note 1: When entering STOP mode, ECMP is automatically cleared and SCIN/SVREF are held. And, COUT3 to COUT0 are always set to "1".

Note 2: Any pins specified for comparator input with SCIN can no longer be used for normal digital input and, are read out as "0".

Note 3: COUT3 to COUT0 are read out as "1" when not used as a comparator input. For example, bit 3 in CMPDR is always read out as "1" when SCIN = 010<sub>B</sub>.
```


Table 2-9. Reference Voltage (at $V_{DD} = 5 \text{ V}$)

					S۷	'R	EF					V _{REF} [V]
	5	-	4	:	3	:	2	:	1	-	0	V KEF [V]
	0		0		0		0		0		0	0.078
	0		0		0		0		0		1	0.156
	0		0		0		0		1		0	0.234
~	٤					:					=	<u> </u>
	1		1		1		1		0		1	4.844
	1		1		1		1		1		0	4.922
	1		1		1		1		1		1	5.000

2.11 Pulse Width Modulation Circuit Output

87CH36/K36/M36 has a 14-bit resolution pulse width modulation (PWM) channel and 9 7-bit resolution PWM channels. D/A converter output can easily be obtained by connecting an external low-pass filter. PWM outputs are multiplexed with general purpose I/O ports as; P40 (PWM0) to P47 (PWM7), P50 (PWM8), P51 (PWM9). When these ports are used as PWM outputs, the corresponding bits of P4, P5 output latches and input/output control latches should be set to "1".

2.11.1 Configuration

2.11.2 PWM output wave form

(1) PWM0 output

This is 14-bit resolution PWM output and one period is $T_{\text{M}} = 2^{15}/\text{fc}$ [s].

The 8 high-order bits of the PWM data latch control the pulse width of the pulse output with a period of T_S ($T_S = T_M/64$), which is the sub-period of the $\overline{PWM0}$. When the 8-bit data are decimal n ($0 \le n \le 255$), this pulse width becomes $n \times t_0$, where $t_0 = 2/fc$.

The lower 6-bit of 14 bit data are used to control the generation of additional to wide pulse in each T_S period. When the 6-bit data are decimal m ($0 \le m \le 63$), the additional pulse is generated in each of m periods out of 64 periods contained in a T_M period. The relationship between the 6 bits data and the position of T_S period where the additional pulse is generated is shown in Table 2-10.

Table 2-10. Correspondence between 6 Bits Data and the Additional Pulse Generated T_S Period

Bit position of 6 bits data	Relative position of Ts where the output pulse is generated. (Number i of $T_{S(i)}$ is listed)
Bit 0	32
Bit 1	16, 48
Bit 2	8, 24, 40, 56
Bit 3	4, 12, 20, 28, 36, 44, 52, 60
Bit 4	2, 6, 10, 14, 18, 22, 26, 30,, 58, 62
Bit 5	1, 3, 5, 7, 9, 11, 13, 15, 17,, 59, 61, 63

Note: When the corresponding bit is "1", it is output.

(2) PWM1 to PWM9 outputs

These are 7-bit resolution PWM outputs and one period is $T_N = 28/\text{fc}$ [s]. When the 7-bit data are decimal k (0 $\leq k \leq$ 127), the pulse width becomes $k \times t_0$. The wave form is illustrated in Figure 2-57.

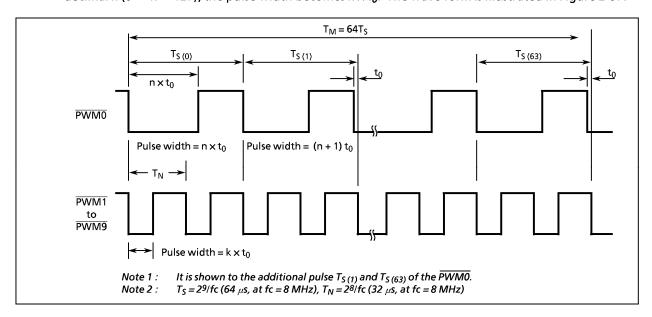


Figure 2-57. PWM Output Wave Form

2.11.3 Control

PWM output is controlled by PWM Control Register (PWMCR) and PWM Data Buffer Register (PWMDBR). The status of transfer PWM data from PWMDBR to PWM data latch is read by PWMEOT of PWM status register (PWMSR).

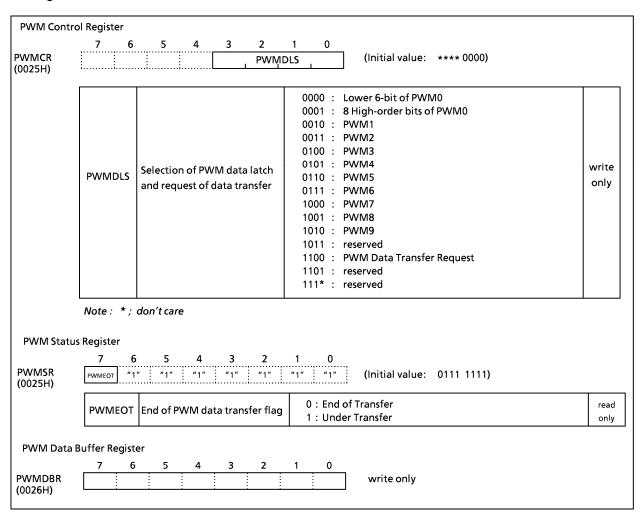


Figure 2-58. PWM Control Register / PWM Status Register / PWM Data Buffer Register

(1) Programing of PWM data

PWM output is controlled by writing the output data to data latches.

The sequence of writing the output data to data latch is shown as follows;

- 1. Write the channel number of PWM data latch to the PWMDLS.
- 2. Write PWM output data to the PWMDBR.
- 3. Write "0CH" to the PWMCR.

When transferring of the output data is completed, the PWMEOT becomes "0", indicating that the next data can be written. Do not write PWM data when the PWMEOT is "1" because write errors can occur in this case.

Note: When writing the output data to PWM0 data latch, write "0CH" to the PWMCR after writing of the 14-bits output data is completed.

While the output data are being written to the data latch, the previously written data are being output. The maximum time from the point at which " $0C_H$ " is written to the data latch until PWM output is switched is $2^{15}/\text{fc}$ [s] (4.096 ms, at fc = 8 MHz) for PWM0 output and $2^9/\text{fc}$ [s] (64 μ s, at fc = 8 MHz) for PWM1 to PWM9 output.

Example : $\overline{PWM0}$ pin outputs a PWM wave form with a low-level of 32 μ s width and no additional pulse.

PWM1 pin outputs a PWM wave form with a low-level of 16 μ s width. PWM2 pin outputs a PWM wave form with a low-level of 8 μ s width.

Note : at fc = 8 MHz

```
LD
                     (PWMCR),
                               00H
                                           Select lower 6-bit of PWM0
         LD
                     (PWMDBR),
                                           No additional pulse
                                00H
                                          Select 8 high-order bits of PWM0
         LD
                     (PWMCR), 01H
         LD
                     (PWMDBR),
                                80H
                                           32 \mus ÷ 2/fc = 80 H
         LD
                     (PWMCR), OCH
                                           Request PWM Data Transfer
WAITO:
         TEST
                     (PWMSR). 7
                                           PWMEOT = 0?
         JRS
                     F, WAITO
         LD
                     (PWMCR),
                               02H
                                          Select PWM1
         LD
                     (PWMDBR),
                                40H
                                           16 \mus ÷ 2/fc = 40 H
         LD
                     (PWMCR), OCH
                                           Request PWM Data Transfer
WAIT1: TEST
                     (PWMSR).
                               7
                                          PWMEOT = 0?
         JRS
                     F, WAIT1
         LD
                               03H
                                          Select PWM2
                     (PWMCR),
         LD
                     (PWMDBR),
                                20H
                                          8 \mu s \div 2/fc = 20 H
         LD
                     (PWMCR), OCH
                                          Request PWM Data Transfer
WAIT2: TEST
                                           PWMEOT = 0?
                     (PWMSR). 7
         JRS
                     F, WAIT2
```

87CH36-91

2.12 Pulse Output Circuit (PULSE)

Pulse output circuit generates the pulse clock of duty 50% by dividing the High-frequency clock. The pulse output is used for the basic clock for the PLL IC or peripheral ICs. When P52 port is used as the pulse output, set P52 output latch to "1".

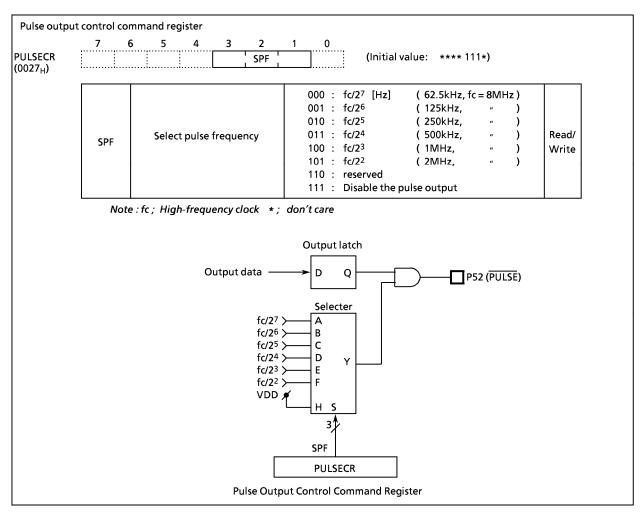


Figure 2-59. Pulse Output Circuit

2.13 On-Screen Display (OSD) Circuit

The TMP87CH36/K36/M36 features a built-in on-screen display circuit used to display characters and symbols on the TV screen. 288 characters in any of 128 character fonts can be displayed in 24 characters x 12 rows.

OSD circuit functions are as follows:

- ① Number of character fonts 128 (including the blank character)
- ② Number of display characters 288 (24 characters x 12 rows)
- 3 Composition of a character 14 x 18 dots
- 4 Character sizes3 (selectable line by line)
- ⑤ Display colors Character colors : 8 (selectable character by character)

Fringe color : 8 (selectable page by page)
Background color : 8 (selectable page by page)

- © Fringing function (for large, middle, and small characters)
- Smoothing function (for large and middle characters)
- B Display position horizontal : 128 steps; vertical : 256 steps
- 9 Full-raster blanking function
- Blinking function
- ① Reverse function
- Reverse Blinking function
- Window function

2.13.1 Configuration

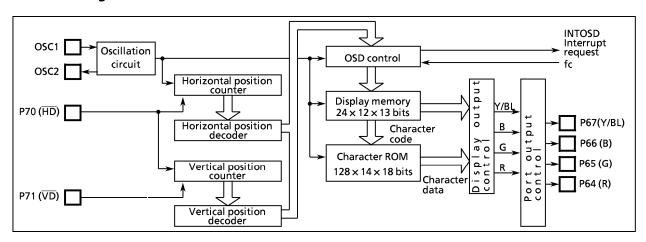


Figure 2-60. OSD Circuit

2.13.2 Character ROM and display memory

(1) Character ROM

The character ROM contains 128 character fonts. The user can set fonts as desired. The character ROM consists of 128 characters in 14 x 18 dots (character codes 00_H to $7F_H$). Each dot corresponds to one bit in the character ROM. When a bit in the character ROM is set to "1", the corresponding dot is displayed; if set to "0", the dot is not displayed. The start address in the character ROM corresponding to a character code is determined by the following expression:

Start address in character ROM = $CRA \times 40_H + 4000_H$

Since character code 00_H is used as blank character, the character font for this character code cannot be changed. Write "0" in the data of character code 00_H .

Set all unused bits (bit 7 with 0_H to 8_H in the lower 4-bit of an address) to "1" and write the data " F_H " to all unused address (the lower 4-bit of an address are 9_H to F_H) in character ROM.

Figure 2-61. (a) shows an example of the character font configuration for the character code 00_H and 01_H , together with the ROM addresses and data.

Figure 2-61. (b) shows the character ROM dump list for these 2 character fonts.

Note 1: CRA; Character code (00H to 7FH)

Note 2: A data can not be read from the character ROM by software.

Note 3: When ordering a mask, load the data to character ROM at address 4000H to 5FFFH.

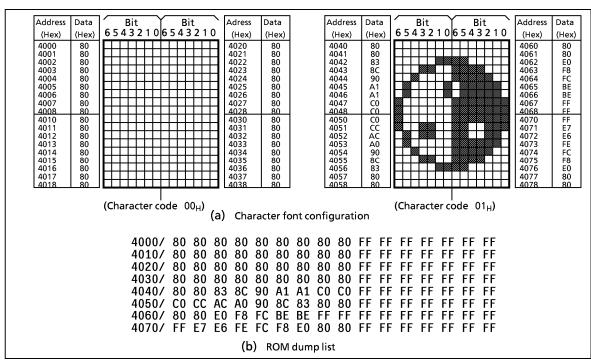


Figure 2-61. Character Font Configuration and ROM Dump List

(2) Display memory

Each character out of the 288 characters displayed in 24 characters x 12 rows consists of 13 bits in the display memory. Five data items are written to the display memory: character code, color data, blinking specification, reverse specification, and reverse blinking specification. The display memory contents become unstable after the reset operation is released.

There are two modes for writing display data to the display memory. One mode is for writing all display data (character code, color data, blinking specification, reverse specification, and reverse blinking specification) simultaneously. The other mode is for changing either character code or character ornamentation data (color data, blinking specification, reverse specification, and reverse blinking specification). How the display data is written to the display memory is described in section 2.13.3 (18).

Display memory configuration

• Character code specification register (7 bits) ··· CRA6 to 0

Color data specification register (3 bits)
 RDT / GDT / BDT

Blinking specification register (1 bit)
 Reverse specification register (1 bit)
 Reverse blinking specification register (1 bit)
 RBF

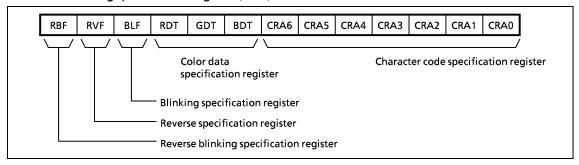


Figure 2-62. Display Memory Bit Configuration

Row	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	2
1	000	001	002	003	004	005	006	007	008	009	00A	00B	00C	00D	00E	00F	010	011	012	013	014	015	016	0
2	020	021	022	023	024	025	026	027	028	029	02A	02B	02C	02D	02E	02F	030	031	032	033	034	035	036	(
3	040	041																						(
4	060	061																						(
5	080	081																						(
6	0A0	0A1																						(
7	0C0	0C1																						(
8	0E0	0E1																						(
9	100	101																						ŀ
10	120	121																						ŀ
11	140	141														/								ŀ
12	160	161																					176	Γ

Figure 2-63. Display Memory Address Configuration

2.13.3 OSD circuit control

The OSD circuit is controlled by using the OSD control registers assigned to addresses $0F80_H$ to $0F9A_H$ in the data buffer register (DBR). For write to or read from the OSD control registers, see section 2.13.3 (19). The OSD control registers are used to set display start position, display character ornamentations (that is, fringing, smoothing, color data, character size, and etc.), display memory addresses, character codes, and etc.

After all settings are complete, setting the display on-off control bit, EDISP (bit 0 in ORDON) to "1" enables display (starts display). Setting EDISP to "0" disables display (halts display).

Note: The contents of OSD control registers are not initialized in STOP mode.

(1) Display position

The horizontal display start position can be set in 128 steps. The vertical display start positions can be specified for each line using 256 steps. The horizontal display start position is set with OSD control registers HS16 to HS10 (bit 6 to 0 in ORHS1). The vertical display start position of the line 1 is set with VS17 to VS10 (in ORVS1). The vertical display start position of the line 2 to 12 are determined by setting VS27 to VS20 ... VS127 to VS120 (ORVS2 to ORVS12) in the same way.

Horizontal display start position Specification unit: Display page Specification steps: 128

Specification horizontal display start position: Line 1 to 12: HS16 to HS10

When FORS is "0" (Normal mode) $HS1 = (HS16 \text{ to } HS10) \text{ } H \times 2T_{OSC} + 11T_{OSC} \text{ (Line1 to } 12)$

When FORS is "1" (Double frequency mode) $HS1 = (HS16 \text{ to } HS10)_{H} \times T_{OSC} + 6.5T_{OSC} \text{ (Line1 to 12)}$

Note: T_{OSC}; One cycle of OSC oscillation

Vertical display start position Specification unit: Line Specification steps: 256

Specification vertical display start position: Line1: VS17 to VS10

Line2: VS27 to VS20

Line12: VS127 to VS120

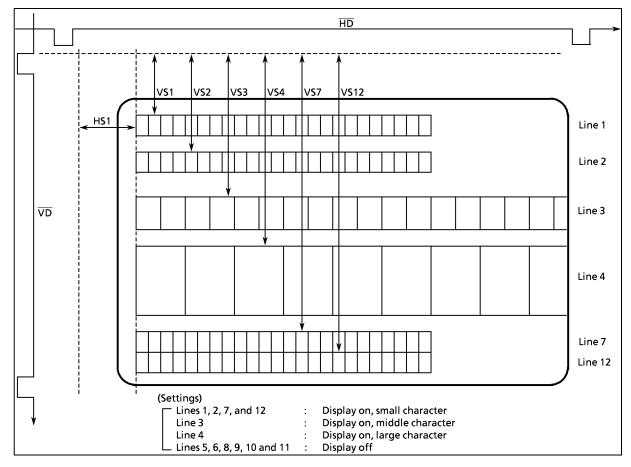
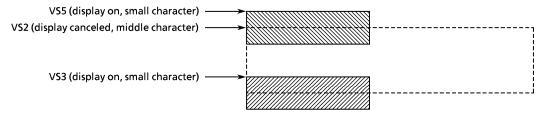


Figure 2-64. TV Screen Image

When VDSMD is "0" (Normal mode)


Line n : $VSn = (VSn7 \text{ to } VSn0)_{H} \times 2T_{HD}$ (n ; 1 to 12)

When VDSMD is "1" (Double scan mode)

Line n : $VSn = (VSn7 \text{ to } VSn0) \text{ }_{H} \times 4T_{HD}$ (n ; 1 to 12)

Note1: THD; One cycle of HD signal

Note2: If display lines are overlapped each other, previous display line is enabled and next line is disabled. Set the vertical display start position not to overlap display lines.

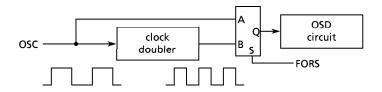
Occasion of overlapping

Note3: The line which is displayed off is managed as a small size character line. It is recommendable that its vertical display start position should be set out of TV screen.

Note4: Transfer the contents of vertical display start position registers into OSD circuit before the position of the scanning line coincides with their own vertical display start position.

(2) Double scan mode

The double scan mode is used to handle non-interlaced scanning TV. When double scan mode is enabled, the vertical display counter increases every 4 scan lines and a vertical dot size is double. This function is enabled by setting VDSMD (bit 3 in ORETC) in the OSD control register to "1".


Scan mode select register (1 bit) ··· VDSMD (bit 3 in ORETC)

"0" ··· Normal mode

"1" ··· Double scan mode

(3) Double frequency mode

The double frequency mode is used to display OSD by the OSC frequency doubled. When this function is enabled, the clock which is doubled by a clock doubler is inputted into an OSD circuit.

This function is ebabled by setting FORS (bit 4 in ORDON) in the OSD control register to "1".

OSC frequency select register (1 bit) ··· FORS (bit 4 in ORDON)

"0" ··· Normal mode

"1" ... Double frequency mode

(4) Character sizes and display on / off

Character size can be selected line by line from 3 sizes. And display on / off also can be set line by line. Small, middle and large character size and display on / off can be set with OSD control registers CS11, CS10...CS121, CS120 (ORCS4, ORCS8, and ORCS12) in the OSD control registers.

Character sizes : 3 sizes (Small, middle and large)
Character size and display on / off specification unit: Line
Character size select/display on / off register (2 bits x 12)

Line 1: CS11 and CS10 Line 2: CS21 and CS20

: :

Line 12: CS121 and CS120

Table 2-10. Character Size and Display On / Off Specifications (n; 1 to 12)

CSn1	CSn0	Character size	Display on/off
1	1	Small	On
1	0	Middle	On
0	1	Large	On
0	0	-	Off

Note: The line which is displayed off is managed as a small character size line by the overlap of vertical display start position, the display line counter function, and etc.

Table 2-11. Dot and Character Sizes

		VDSM (Norma	D = 0 l mode)	VDSM (Double so	D = 1 can mode)
		Dot size	Character size	Dot size	Character size
	Small	1 T _{OSC} × 1 T _{HD}	14 T _{OSC} × 18 T _{HD}	1 T _{OSC} × 2 T _{HD}	14 T _{OSC} × 36 T _{HD}
FORS = 0 (normal mode)	Middle	$2 T_{OSC} \times 2 T_{HD}$	28 T _{OSC} × 36 T _{HD}	$2 T_{OSC} \times 4 T_{HD}$	28 T _{OSC} × 72 T _{HD}
(Herman mode)	Large	4 T _{OSC} × 4 T _{HD}	56 T _{OSC} × 72 T _{HD}	4 T _{OSC} × 8 T _{HD}	56 T _{OSC} × 144 T _{HD}
FORS = 1	Small	0.5 T _{OSC} × 1 T _{HD}	7 T _{OSC} × 18 T _{HD}	$0.5T_{OSC}\times2T_{HD}$	7 T _{OSC} × 36 T _{HD}
(double frequency	Middle	$1 T_{OSC} \times 2 T_{HD}$	14 T _{OSC} × 36 T _{HD}	$1 T_{OSC} \times 4 T_{HD}$	14 T _{OSC} × 72 T _{HD}
mode)	Large	$2 T_{OSC} \times 4 T_{HD}$	28 T _{OSC} × 72 T _{HD}	2 T _{OSC} × 8 T _{HD}	28 T _{OSC} × 144 T _{HD}

Note: T_{OSC} ; One cycle of OSC oscillation T_{HD} ; One cycle of \overline{HD} signal

(5) Smoothing function

The smoothing function is used to make characters look smooth. Enabling smoothing displays 1/4 dot between two dots connecting corner to corner within a character. Small size character can not be enabled smoothing. Smoothing is enabled by setting ESMZ (bit 4 in ORETC) in the OSD control register to "1".

Smoothing specification unit: Display page

Smoothing specification register (1 bit) ... ESMZ (bit 4 in ORETC)

"0" ... Disable smoothing "1" ... Enable smoothing

(6) Fringing function

The fringing function is used to display a character with a fringe width is 1/2 dot in a different color from that of the character. For small characters, fringe width is 1 dot. When a character is displayed with the maximum of 14 vertical dots and 18 horizontal dots, the fringe exceeds right and left, top, and bottom of the character display area. The exceeded fringe can be displayed; however, display characters have higher priority to fringe horizontally.

Fringing is enabled for each line by setting EFR1 to EFR12 (OREFR and bit 3 to 0 in ORP6DS) in the OSD control register to "1".

A color for fringe is specified common to all lines using OSD control registers, RFDT, GFDT, and BFDT, (bit 2 to 0 in ORBK).

Fringing specification unit: Line

Fringing enable register (1 bit x 12) ... EFRn (n: 1 to 12) (OREFR and bit 3 to 0 in ORP6DS)

"0" ... Disable fringing
"1" ... Enable fringing

Fringe color specification unit: Display page

Fringe color register (3 bits) ··· RFDT, GFDT, BFDT (bit 2 to 0 in ORBK)

Note: When a display line is enabled fringing function, its vertical size is increased by one dot (by two dots when its character size is small) independent of its character font. Therefore, when a vertical display start position is specified to no space between the lines, the display line which is overlapped with increasing dot (s) is canceled.

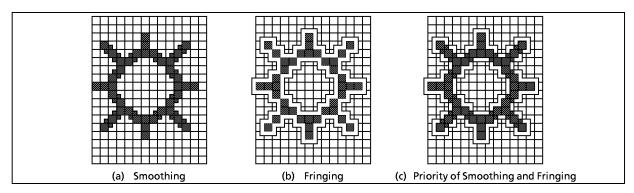


Figure 2-65. Smoothing / Fringing / Priority of Smoothing and Fringing

(7) Background color function

Background color function is used to color the entire background for the character area (14×18 dots). Except the character area whose character code is 00_H .

This function is specified for each display page by setting EBKGD (bit 7 in ORBK) in the OSD control register to "1".

A background color is specified for each display page by setting RBDT, GBDT, and BBDT (bit 5 to 3 in ORBK) in the OSD control registers. A color specification is same as them for full-raster blanking.

Background specification unit: Display page
Background enable register (1 bit) ... EBKGD (bit 7 in ORBK)

"0" ... Disable background "1" ... Enable background

Background color specification unit: Display page

Background color specification registers (3 bits) ... RBDT, GBDT, BBDT (bit 5 to 3 in ORBK)

Note: When the background color function is used, the blank character (code 00_H) can not be used as the first character on the fringing line.

(8) Full-raster blanking function

Full-raster blanking function is used to color the entire background for the display area (TV screen). When using the full-raster blanking function, set YBLCS (bit7 in ORETC) to "1", output BL signal from Y/BL pin, because Y signal cannot delete whole display page from video signal.

This function is specified for each display page by setting EXBL (bit 6 in ORBK) in the OSD register to "1". Color specification is same as them for background color.

Full-raster blanking specification unit: Display page

Full-raster blanking enable register (1 bit) ... EXBL (bit 6 in ORBK)

"0" ... Disable full-raster blanking
"1" ... Enable full-raster blanking

Full-raster blanking color specification registers (3 bits) ... RBDT, GBDT, BBDT (bit 5 to 3 in ORBK)

(9) Reverse function

This function is used to reverse the background and character colors. However, when fringing is specified, the fringe color does not change.

Reverse function is enabled by setting RVF (bit 4 in ORDSN) in the OSD control register to "1".

Reverse specification: Character

Reverse enable register (1 bit) ··· RVF (bit 4 in ORDSN)

"0" ... Disable reverse "1" ... Enable reverse

(10) Reverse blinking function

Reverse blinking function is used to reverse the background and character colors.

When RBMF is "1", characters specified for blinking by RBF are reversed the background and character colors. However, when fringing is specified, the fringe color does not change.

Reverse blinking specification unit: Character

Reverse blinking specification register (1 bit) ... RBF (bit 5 in ORDSN)

"0" ··· No reverse blinking
"1" ··· Reverse blinking

Reverse blinking master specification register (1 bit) ... RBMF (bit 5 in ORETC)

"0" ... Disable reverse blinking
"1" ... Enable reverse blinking

(Characters whose RBF is set to "1" are reversed the background and character colors.)

Table 2-12. Display Mode

RBF	RVF	RBMF	Display
0	0	*	Normal
0	1	*	Reverse
1	0	0	Normal
'	U	1	Reverse
1	1	*	reserved

*; don't care

(11) Blinking function

Blinking function is used to blink display characters.

When BKMF is "1", characters specified for blinking by BLF are not displayed. (If the background color function is used, the background color is not disappeared.)

Blinking specification unit: Character

Blinking specification register (1 bit) ... BLF (bit 3 in ORDSN)

"0" ··· No blinking
"1" ··· Blinking

Blinking master specification register (1 bit) ... BKMF (bit 6 in ORETC)

"0" ... Disable blinking

"1" ... Enable blinking (Characters whose BLF are set to "1" are not displayed.)

(12) Character

Characters: 128 (including blank character)

Character specification register (7 bits) ... CRA6 to CRA0 (bit 6 to 0 in ORCRA)

Character code "00_H" ... Blank character

Character code "01H" to "7FH" ... User programmable by character ROM

(13) Character color

Character colors: 8

Character color specification unit: Character

Character color specification register (3 bits) ... RDT / GDT / BDT (bit 2 to 0 in ORDSN)

RDT	GDT	BDT	Character Color
0	0	0	Black
0	0	1	Blue
0	1	0	Green
0	1	1	Cyan
1	0	0	Red
1	0	1	Magenta
1	1	0	Yellow
1	1	1	White

Table 2-13. Character Color

(14) OSD interrupt

1) Display line counter

The display line counter indicates number of display line(s) by OSD circuit on the TV screen. The display line counter is a 4-bit counter which is initialized to "0" by the falling edge of the $\overline{\text{VD}}$ signal and which increments when last scanning of each display line is completed (falling edge of the $\overline{\text{HD}}$ signal). It is necessary to be read out display line counter several times, because it does not synchronize CPU clock.

Display line counter register (4 bits) ··· DCTR (bit 3 to 0 in ORIRC)

"0000" ··· No display line is completed.
"0001" ··· 1'st display line is completed.
"0010" ··· 2'nd display line is completed.

to

"1111" ··· 15'th display line is completed.



Figure 2-66. Display Line Counter

2) Interrupt generator circuit

An interrupt request is generated when a falling edge of \overline{VD} signal or when line counter (DCTR) is counted to the certain value specified by ISDC.

Interrupt souce select register (1 bit) ··· SVD (bit4 in ORIRC)

"0" ... Interrupt request generated when the display line counter (DCTR) is counted to the certain value which is specified by ISDC.

"1" ... Interrupt request is generated when a falling edge of \overline{VD} signal.

Interrupt generation line specification register (4 bits) ···· ISDC (bit 3 to 0 in ORIRC)

"0000" ... Interrupt request generated when the display line counter is cleared.

"0001" ··· Interrupt request generated at end points of the last scanning line of the first displey line

"0010" ··· Interrupt request generated at end points of the last scanning line of the 2'nd display line

to

"1111" ··· Interrupt request generated at end points of the last scanning line of the 15'th display line

(15) P6 port output select function

This function is used to select whether the contents of port P67 to P64 will be output or R, G, B, Y/BL signals of the OSD circuit will be output on pins P67 to P64.

P6 port output select registers (4 bits) ··· P67DS to P64DS (bit 7 to 4 in ORP6DS) "1" ··· R, G, B, Y/BL signal output

"0" ··· Port contents output

(16) OSD pin output polarity control function

This function is used to select the polarity of the OSD outputs for RGB and Y/BL.

Output polarity control register (3 bits) ··· BLIV, YIV, RGBIV (bit 7 to 5 in ORIRC)

Table 2-14. Control of OSD Output Polarity

Symbol	Output port	Data "0"	Data "1"
BLIV	BL	Active High	Active Low
YIV	Υ	Active High	Active Low
RGBIV	RGB	Active High	Active Low

(17) Y/BL signal select function

This function is used to select either Y or BL signal output from the Y/BL pin.

Y/BL signal select register (1 bit) ···· YBLCS (bit 7 in ORETC)

"0" ··· Y signal output
"1" ··· BL signal output

Y signal ... Logical OR for R, G, B Character data, and Fringing data.

BL signal ... When EXBL is "0":

Output in all display character areas

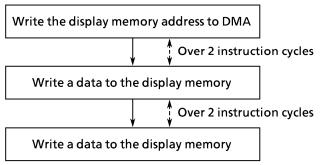
(except for character code 00_H: blank character)

When EXBL is "1":

Output in the whole page

(18) Writing display data to the display memory

Data are written to the display memory using DMA8 to DMA0, CRA6 to CRA0, RDT, GDT, BDT, BLF, RBF, RVF, and MBK registers.


Display memory address specification register (9 bits) ··· DMA8 to DMA0 (bit0 in ORETC and ORDMA)

Display memory bank switching register (1 bit) ··· MBK (bit1 in ORETC)

"0" ··· For changing either character code or character ornamentation "1" ··· For changing both character code and character ornamentation

Note 1: Don't use the 2 bytes transfer operation such as [LDW (HL), mn] when accessing to display memory.

Note 2: When writing a data to the display memory immediately after setting the display memory address to DMA, or when continuously writing a data to the display memory, insert over 2 instruction cycles between the instrunction for writing a data.

Example: Setting a character code (20_H) to the display memory (Address: 120_H to 121_H)

LD HL, ORCRA ; Set ORCRA address to HL reg. LD A, 20_H ; Load character code to A reg.

LD DE, ORDMA ; Set lower 8-bit addresses to DMA7 to 0

LD (DE), 20_H

LD DE, ORETC ; Set the most upper address to DMA8 and set MBK to "0"

LD (DE), 00000001B

LD DE, ORDMA ; Set lower 8-bit addresses to DMA7 to 0

LD (DE), 20_H

LD DE, ORETC ; Set the most upper address to DMA8 and set MBK to "0"

LD (DE), 00000001B

NOP ; Insert 2 instruction cycles

NOP

LD (HL), A ; Write a character code to display memory (Address : 120_H)

NOP ; Insert 2 instruction cycles

NOP

LD (HL), A ; Write a character code to display memory (Address: 121_H)

Note 3: Transfer the contents of display memory which affect displaying characters into OSD circuit, before the position of scanning line coincides with their own vertical display start position.

- a. Display memory write sequence when writing both character code and character ornamentation.
 - ① Write lower 8-bit addresses of display memory to DMA7 to DMA0 (in ORDMA).
 - ② Write the most upper addresses of display memory to DMA8 (bit 0 in ORETC) and set MBK (bit 1 in ORETC) to "1".

Note: It is necessary to write all bits of display memory address, writting DMA8 after DMA7 to DMA0, when writing display address, and repeat this sequence.

- Write character ornamentation data (blinking, reverse, reverse blinking, and color data) to RDT, GDT, BDT, BLF, RVF, and RBF.
 At this time, the character ornamentation data is transferred to the display memory.
- Write character code to CRA6 to CRA0. At this time, character code is transferred to the display memory together with the character ornamentation data which is written in ③ and DMA8 to DMA0 are automatically incremented.
- b. Display memory write sequence when writing either character code or character ornamentation
 - ① Write lower 8-bit addresses of display memory to DMA7 to DMA0 (in ORDMA).
 - ② Write the most upper address of display memory to DMA8 (bit 0 in ORETC) and clear MBK (bit 1 in ORETC) to "0".

Note: It is necessary to write all bits of display memory address, writting DMA8 after DMA7 to DMA0, when writing display address, and repeat this sequence.

③ Write character ornamentation data (blinking, reverse, reverse blinking, and color data) to RDT, GDT, BDT, BLF, RVF, and RBF or write character code to CRA6 to CRA0.
At this time, written data are transferred to the display memory and DMA8 to DMA0 are automatically incremented.

(19) OSD control register write / read

The address of the OSD control registers are assigned to the DBR area.

To write or to read from the OSD control registers, the method is the same as for accessing ordinary DBR registers.

The written data are transferred to the OSD circuit at the end point of the scanning line without display by setting RGWR register to "1" and become valid. And, be able to write value of OSD control register after RGWR flag is cleared to "0".

- Note 1: Do not write the contents of OSD control registers during RGWR flag is "1". If contents of OSD control registers are written during RGWR flag is "1", the written data are broken.
- Note 2: Do not clear RGWR register to "0". If RGWR register is cleared to "0", the contents of OSD contrd registers may be transferred to OSD circuit at unexpected timing.
- Note 3: Insert over 3 instruction cycles between the instruction which sets RGWR register to "1" and the instruction which checks RGWR flag.
- Note 4: Transfer the contents of all OSD control registers which affect displaying characters into OSD circuit before the position of scanning line coincides with their own vertical display start position.

Example 1: In the case of writing the data into OSD registers, setting RGWR register to "1" and checking RGWR flag

```
Writing the data into OSD registers
                   A, (TEMP ORDON)
                                           ; Set bit 2 of work-area to "1"
             LD
             SET
                   A.2
                   HL, ORDON
                                           ; Set RGWR register to "1" (Request data transfer)
             LD
             LD
                   (HL), A
             NOP
                                           ; Insert 3 instruction cycles
             NOP
             NOP
CHECK RGWR FLAG:
             TEST (HL).2
                                           ; Check RGWR flag until RGWR flag is "0"
                   F, CHECK RGWR FLAG
```

Example 2: In the case of checking RGWR flag, writing the data into OSD registers, and writing RGWR register to "1"

```
LD HL, ORDON

CHECK_RGWR_FLAG:

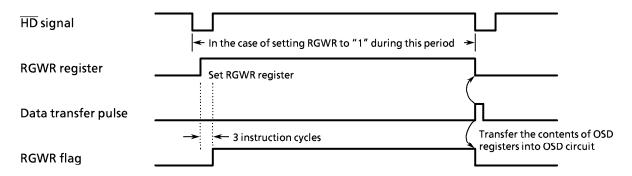
TEST (HL).2 ; Checking RGWR flag until RGWR flag is "0"

JR F, CHECK_RGWR_FLAG

Writing the data into OSD registers

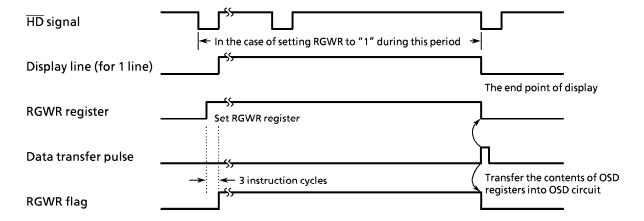
LD A, (TEMP_ORDON) ; Set bit 2 of work-area to "1"

SET A.2
```


87CH36-106 2004-10-01

```
LD HL, ORDON ; Set RGWR register to "1" (Request data transfer)
LD (HL), A

NOP ; Insert 3 instruction cycles
NOP
NOP
```


The timing chart of transferring the contents of OSD registers into OSD circuit is shown as follows;

In the case of setting RGWR register to "1" during the position of the scanning line is in no display area (except any lines specified as display off by CSn).
 The contents of OSD registers are transferred into OSD circuit when the position of the scanning line is at the falling edge of HD signal.

2. In the case of setting RGWR register to "1" during the position of the scanning line is in display area (including any lines specified as display off by CSn).

The contents of OSD registers are transferred into OSD circuit when the position of the scanning line is at the falling edge of HD signal of finishing the display line.

For registers (DMA8 to DMA0, CRA6 to CAR0, RDT, GDT, BDT, BLF, RBF, RVF, MBK) used for updating the display memory, P67DS to P64DS, YBLCS, BKMF, RBMF, ESMZ, VDSMD, FORS, and RGWR, the data become valid as soon as they are written.

```
Written data transfer register (1 bit) ... RGWR (bit 2 in ORDON)
```

"0" ··· Initial state

"1" ··· Transfer written data to OSD circuit. (After transfer, RGWR register and RGWR flag are automatically cleared to "0".)

Written data transfer monitor flag (1 bit) ... RGWR (bit 2 in ORDON)

"0" ··· Transfer completed.
"1" ··· During transfer

(20) Display on / off

This function is used to display characters specified for on / off display.

```
Display on / off specification unit : Display page
```

Display on / off specification register (1 bit) ... EDISP (bit 0 in ORDON)

"0" ... Disable display
"1" ... Enable display

Note: Do not start STOP mode during display is enabled.

(21) Window function

This function is used to set upper and lower limit of display page. Window upper limit is specified by WVSH (ORWVSH). Window lower limit is specified by WVSL (ORWVSL). This function is enabled by setting EWDW (bit 1 in ORDON) in the OSD control register to "1".

```
Window specification unit: Display page
```

Window function enable specification register (1 bit) ... EWDW (bit 1 in ORDON)

"0" ··· Disable window function
"1" ··· Enable window function

Window upper limit specification register (8 bits) ... WVSH7 to 0 (ORWVSH) Window lower limit specification register (8 bits) ... WVSL7 to 0 (ORWVSL)

Window upper and lower limit position ...

When VDSMD is "0" (Normal mode):

WVSH = (WVSH7 to WVSH0) $_{H} \times 2T_{HD}$

WVSL = (WVSL7 to WVSL0) $_{H} \times 2T_{HD}$

When VDSMD is "1" (Double scan mode):

WVSH = (WVSH7 to WVSH0) $_{H} \times 4T_{HD}$

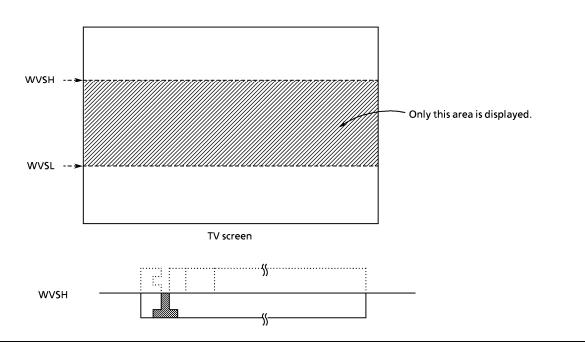
WVSL = (WVSL7 to WVSL0) $_{H} \times 4T_{HD}$

Note 1: T_{HD} ; One cycle of \overline{HD} signal

Note 2: $WVSL > WVSH \ge "1"$

Note 3: Modify the value of window upper and lower limit register as follows:

1. When WVSH_{NEW} \leq WVSH_{OLD} Finish to transfer the new value, during $\overline{\text{VD}}$ signal is low or before the position of the scanning line coincides with WVSH_{NEW}.


2. When WVSL > WVSH_{NEW} > WVSH_{OLD} Finish to transfer the new value, during \overline{VD} signal is low or before the position of the scanning line coincides with WVSH_{OLD}.

3. When $WVSL_{NEW} \subseteq WVSL_{OLD}$ Finish to transfer the new value, during \overline{VD} signal is low or before the position of the scanning line coincides with $WVSL_{NEW}$.

4. When WVSL_{NEW} > WVSL_{OLD}

Finish to transfer the new value, during \overline{VD} signal is low or before the position of the scanning line coincides with WVSL_{OLD}.

Note 4: It is recommendable that the window function is always enabled (EWDW = "1") and set WVSH to "01H", WVSL to "FEH". When the window function should be set to disable, clear EWDW to "0" independent of the value which this register has been set from detecting the rising edge of $\overline{\text{HD}}$ signal by software until the falling edge of $\overline{\text{HD}}$ signal.

(22) OSD control registers

Can not access all OSD control registers in any of read-modify-write instructions such as bit operation, etc.

OREFR 7 6 5 4 3 2 1 0		7	6	5	4	3	2	1	0			
ORVS12 (OF8C _H) ORVS13 (OF8C _H) ORVS14 (OF8C _H) ORVS15 (OF8C _H) ORVS15 (OF8C _H) ORVS16 (OF8C _H) ORVS16 (OF8C _H) ORVS17 (OF8C _H) ORVS18 (OF8C _H) ORVS19 (OF8C _H) ORVS19 (OF8C _H) ORVS19 (OF8C _H) ORVS10 (OF8C _H) ORVS10 (OF8C _H) ORVS10 (OF8C _H) ORVS11 (OF8C _H) ORCS12 (OF8C _H) ORCS13 (OF8C _H) ORCS14 (OF8C _H) ORCS15 (OF8C _H) ORCS16 (OF8C _H) ORCS17 (OF8C _H) ORCS18 (OF8C _H) ORCS18 (OF8C _H) ORCS19 (OF8C _H) ORCS10 (OF8C	0F80 _H)	"0"	HS16	HS15	HS14	HS13	HS12	HS11	HS10	(Initial value:	*000 0000)	
VS17		HS161	to 10	Horizo	ontal di	splay st	tart pos	ition				
VS17 VS16 VS15 VS14 VS13 VS12 VS11 VS10 (Initial value: 0000 0000)		7	6	5	1	2	2	1	0			
ORVS12 (OFBCH) VS127 VS126 VS125 VS124 VS123 VS122 VS121 VS120 (Initial value: 0000 0000) VSn7 to 0 Vertical display start position for line n (n = 1 to 12 Note 1: If display lines are overlapped each other, previous display line is enabled and next line is disabled. Set the vertical display start position not to overlap display lines. Note 2: Transfer the contents of vertical display start position registers into OSD circuit before a position of the scanning line coincides with their own vertical display start position. 7 6 5 4 3 2 1 0 ORCS4 (OFBCH) ORCS6 (OFBCH) ORCS12 (OFBFH) CSn Character size and display on/off for line n CSn Character size and display on/off for line n CSn Character size and display on/off for line n (n = 1 to 12 OREFR 7 6 5 4 3 2 1 0 OREFR 7 6 5 4 3 2 1 0 OREFR 7 6 5 4 3 2 1 0 OREFR 7 6 5 4 3 2 1 0 OREFR 7 6 5 4 3 2 1 0								_		(Initial value:	0000 0000)	
VS127 VS128 VS123 VS124 VS123 VS122 VS121 VS120 VS121 VS120 VS121 VS120 VS121 VS123 VS122 VS121 VS120 VS12			•							,	:	
VS127 VS128 VS12	:	,	•				•				:	
VS12/ VS128 VS128 VS124 VS123 VS124 VS123 VS122 VS121 VS120 VS17 to 0 Vertical display start position for line n (n = 1 to 12 Note 1 : If display lines are overlapped each other, previous display line is enabled and next line is disabled. Set the vertical display start position not to overlap display lines. Note 2 : Transfer the contents of vertical display start position registers into OSD circuit before a position of the scanning line coincides with their own vertical display start position. The image of the image of the image of the provious display line is enabled and next line is disabled. Set the vertical display start position not to overlap display lines. Note 2 : Transfer the contents of vertical display start position registers into OSD circuit before a position of the scanning line coincides with their own vertical display start position. The image of the i	:										:	
VSn7 to 0 Vertical display start position for line n Write only	DRVS12	V6407		V640F	V6404	. (6400		1,6424	\ <u>\(\(\(\) \\ \</u>	(laitial valva		
Note 1: If display lines are overlapped each other, previous display line is enabled and next line is disabled. Set the vertical display start position not to overlap display lines. Note 2: Transfer the contents of vertical display start position registers into OSD circuit before a position of the scanning line coincides with their own vertical display start position. 7 6 5 4 3 2 1 0 ORCS4 OF8D _H) ORCS8 OF8CS8 OF8CS9 CS9 CS9 CS1 CS1 CS1 CS1 CS1				<u> </u>				l		(initial value:	0000 0000)	Write
Note 1: If display lines are overlapped each other, previous display line is enabled and next line is disabled. Set the vertical display start position not to overlap display lines. Note 2: Transfer the contents of vertical display start position registers into OSD circuit before a position of the scanning line coincides with their own vertical display start position. 7 6 5 4 3 2 1 0 CS4 CS3 CS2 CS1 (Initial value: 0000 0000) DRCS8 CS8 CS7 CS6 CS5 (Initial value: 0000 0000) DRCS12 CS11 CS10 CS9 (Initial value: 0000 0000) CSn Character size and display on/off for 01: Large size 019 (Initial value: 019 000 0000) CCS CSA CS1 CS1 (Initial value: 0000 0000) CCS CS1 (Initial value: 0000 0000)		VSn7 t	to 0	Vertic	al displ	ay stari	positio	on for li	ine n			only
OF8D _H) CS4 CS3 CS2 CS1 (Initial value: 0000 0000) ORCS8 0F8E _H) CS8 CS7 CS6 CS5 (Initial value: 0000 0000) ORCS12 0F8F _H) CS12 CS12 CS11 CS11 CS10 CS9 CS9 (Initial value: 0000 0000) Write OS Display off 01: Large size 10: Middle size 11: Small size Write only OREFR 0F90 _H) 7 6 5 4 3 2 1 0	DDC\$4		•				•			neir own vertica	i aispiay start posi	ition.
OF8EH) CSB CSF CSF CSS CSS<	0F8D _H)	C:						1				
OF8F _H) CSn Character size and display on/off for line n CSn Character size and display on/off for line n CSn Character size and display on/off for line n CSn Character size and display on/off for line n CSn CHARACTER SIZE ON CSN ON CHARACTER SIZE ON CSN	DRCS8		\$4 '	CS	53			Ι		(Initial value:	0000 0000)	
CSn Character size and display on/off for 01 : Large size Write 10 : Middle size 11 : Small size (n = 1 to 12 to 1	0F8E _H)	C:	<u> </u>	<u> </u>		C	52	C	\$1 	•	,	
DREFR 7 6 5 4 3 2 1 0	0F8E _H) DRCS12		\$8 !	CS	57	CS	52 56	C	\$1 \$5	(Initial value:	0000 0000)	
(0F90 _H)	0F8E _H) DRCS12	CS	58	CS	11	CS CS	52 56 10	C	\$1 \$5 \$9	(Initial value: (Initial value: 00: Display off 01: Large size 10: Middle size	0000 0000)	
	(0F8E _H) (DRCS12 (0F8F _H)	CS	112 112 Sn	CS Charae line n	57 11 cter size	CS CS	52 56 10 isplay o	C: C: C:	\$1 \$5 \$5 \$5 \$9 ***************************	(Initial value: (Initial value: 00: Display off 01: Large size 10: Middle size	0000 0000)	
	OF8E _H) ORC\$12 OF8F _H) OREFR	cs cs	58 112 55n	CS Charac line n	57 111 cter size	CS CS e and d	66 10 isplay o	C: C	\$1 S55 S59 Gor	(Initial value: (Initial value: 00: Display off 01: Large size 10: Middle size 11: Small size	0000 0000) 0000 0000)	only
EFRn Fringing enable specfication register 1: Enable fringing only	OF8E _H) ORC\$12 OF8F _H) OREFR	CS	112 112 Sn	CS Charae line n	57 11 cter size	CS CS	52 56 10 isplay o	C: C: C:	\$1 \$5 \$5 \$5 \$9 ***************************	(Initial value: (Initial value: 00: Display off 01: Large size 10: Middle size 11: Small size (Initial value:	0000 0000) 0000 0000)	only (n = 1 to 12)
(n = 1 to 8)	OF8E _H) ORC\$12 OF8F _H) OREFR	CS CS	58 112 55n	CS Charac line n	11 cter size	CS CS CS and d	52 56 10 isplay o	Control of the contro	\$1 \$55 \$59 \$60r 0 EFR1	(Initial value: (Initial value: 00: Display off 01: Large size 10: Middle size 11: Small size (Initial value: 0: Disable frii	0000 0000) 0000 0000) e	only (n = 1 to 12) Write

ORP6DS (0F91 _H)	7 6	5 4 3 2 1 0			
	P67DS P66DS	S P65DS P64DS EFR12 EFR11 EFR10 EFR9	(Initial value: 0000 0000)		
	P67DS to P64DS	P6 port output select	0: Port contents output 1: R, G, B, Y/BL signal output	Write	
	EFRm	Fringing enable specification register	0: Disable fringing 1: Enable fringing	only	
				(m = 9 to 12)	
	dots verti	en a display line is enabled fringing function, when its character size is small) independent ical display start position is specified to no spa lapped with increasing dot(s) is canceled.	t of its character font. Therefore, wh	nen a	
	7 6	5 4 3 2 1 0			
RWVSH F92 _H)	WVSH7 WVSH6	WVSH5 WVSH4 WVSH3 WVSH2 WVSH1 WVSH0	(Initial value: 0000 0000)		
112	WVSH7 to 0	Window upper limit position (WVSL > WV	'SH ≧ 1)	Write only	
	7 6	5 4 3 2 1 0			
RWVSL DF93 _H)	WVSL7 WVSL6	WVSL5 WVSL4 WVSL3 WVSL2 WVSL1 WVSL0	(Initial value: 0000 0000)		
,, 33H)	WVSL7 to 0	Window lower limit position (WVSL > WV	SH ≧ 1)	Write only	
RBK	7 6	5 4 3 2 1 0			
F94 _H)	EBKGD EXBL	RBDT GBDT BBDT RFDT GFDT BFDT	(Initial value: 0000 0000)		
	EBKGD	Background function enable specification register	0 : Disable background 1 : Enable background		
	EXBL	Full-raster blanking enable specification register	0: Disable full-raster blanking 1: Enable full-raster blanking		
	RBDT/ GBDT/ BBDT	Background color select	000: Black 001: Blue 010: Green 011: Cyan 100: Red 101: Magenta 110: Yellow 111: White	Write only	
	RFDT / GFDT / BFDT	Fringing color select	000: Black 001: Blue 010: Green 011: Cyan 100: Red 101: Magenta 110: Yellow 111: White		

	7 6	5 4 3 2 1 0							
ORIRC (0F95 _H)	BLIV YIV	RGBIV SVD ISDC	(Initial value: 0000 0000)						
	BLIV	BL output polarity select	0 : Active high 1 : Active low						
	YIV	Y output polarity select	0 : Active high 1 : Active low						
	RGBIV	R, G, B output polarity select	0 : Active high 1 : Active low	Write only					
	SVD	Interrupt source select	0: Interrpt request by ISDC value 1: Interrupt request at falling edge of VD signal	,					
	ISDC	Interrupt generation line select							
ORIRC (0F95 _H)	7 6	5 4 3 2 1 0							
(OI 33H)		DCTR	(Initial value: **** 0000)						
	DCTR	Display line counter		Read only					
		display line counter also increments when a l ecified.	line with all blank data or a line with c	lisplay off					
	7 6	5 4 3 2 1 0							
ORETC (0F96 _H)	YBLCS BKMF	RBMF ESMZ VDSMD "0" MBK DMA8	(Initial value: 0000 0000)						
(с. 50Д)	YBLCS	Y/BL signal select	0: Y signal output 1: BL signal output						
	BKMF	Blinking master enable specification register	0: Disable blinking 1: Enable blinking						
	RBMF	Reverse blinking master enable specification register	0 : Disable reverse blinking 1 : Enable reverse blinking						
	ESMZ	Smoothing enable specification register	0: Disable smoothing 1: Enable smoothing	Write					
	VDSMD	Double scan mode select	0 : Normal mode 1 : Double scan mode	only					
	МВК	Display memory bank switching	O: Access to either character code or character display options 1: Access to Both character code and character display options						
	DMA8	Display memory address (bit 8)							
	Note2 : It is r	r "0" to bet 2 in ORETC. necessary to write all bits of display memory on n writing display address, and repeat this seq	•	DMA0,					
	7 6	5 4 3 2 1 0							
ORDMA (0F97 _H)	DMA7 DMA6	DMA5 DMA4 DMA3 DMA2 DMA1 DMA0	(Initial value: 0000 0000)						
11/	DMA7 to 0	Display memory address		Write only					
	Note: It is necessary to write all bits of display memory address, writing DMA8 after DMA7 to DMA0, when writing display address, and repeat this sequence.								

	7	6	5	4	3	2	1	0				
ORDSN (0F98 _H)			RBF	RVF	BLF	RDT	GDT	BDT	(Initial value:	******)		
	RBF		Reverse blinking enable specification register					ion	0 : Disale reverse blinking 1 : Enable reverse blinking			
	RVF		Reverse enable specification register					ter	0: Disale rev 1: Enable re			
	BLF		Blinki	ng enal	ble spe	cificati	on regi:	ster	0: Disale bli 1: Enable bl		Write	
	RDT/ GDT/ BDT		Character color select						000: Black 001: Blue 010: Green 011: Cyan 100: Red 101: Mage 110: Yello 111: White	n enta w	only	
	7	6	5	4	3	2	1	0				
RCRA)F99 _H)		CRA6	CRA5	CRA4	CRA3	CRA2	CRA1	CRA0	(Initial value:	******)		
	CRA	6 to 0	Chara	cter co	de						Write only	
	7	6	5	4	3	2	1	0				
RDON)F9A _H)	"0"	"0"	"0"	FORS	"1"	RGWR	EWDW	EDISP	(Initial value:	***0 0000)		
	FORS		fosc fr	sc frequency select				0 : Normal frequency mode 1 : Double frequency mode				
	RGWR		Written data transfer request register					ster	(Initial state) Transfer written data to OSD circuit. (After transfer, RGWR is cleared to "0".)		Write only	
	1								is cleared	to "0".)	Write Orling	
	EWDV	N	Windo registo		ction e	nable s	pecifica	tion	0 : Disable w	to "0".) vindow function indow function	write orny	
	EWDV		registe	er			pecifica n registo		0 : Disable w	vindow function indow function isplay	Write Only	
	EDISP	: * ; do 2 : The o circui is con	Displace on 't care data with by set in pletec	er ny on/ot e ritten tting Ro	ff speci to OSD GWR (b	fication control it2 in (n registe	er ters exc	0: Disable w 1: Enable w 0: Disable d 1: Enable di	vindow function indow function isplay splay er followed table is t ed to "0" automatical	ransmitted to OSD	
	EDISP	: * ; do 2 : The o circui is con P67DS	Displace on 't care data with by set on pleteon, P66DS	er y on/of e ritten i tting RG	ff specito OSD GWR (b	fication control it2 in (n registo ol regis ORDON,	er ters exc to "1".	0: Disable w 1: Enable w 0: Disable d 1: Enable di ept the registe	vindow function indow function isplay splay splay er followed table is the dot of the followed table is the followed table in the followed table is the followed table in the followed table in the followed table is the followed table in the followed table in the followed table is the followed table in the followed table in the followed table is the followed table in the followed table in the followed table is the followed table in the followed table in the followed table is the followed table in the followed table in the followed table is the followed table in the followed tabl	ransmitted to OSD ly after the transfer	
	EDISP	: * ; do : The o circui is con P67DS YBLCS	Displace on 't care data with by set on plete on	er y on/of e ritten i tting RG d. i, P65D2 , RBMF	ff speci to OSD GWR (b S, P64D , ESMZ	fication control it2 in (ol registo ORDON,	er ters exc to "1".	0: Disable w 1: Enable w 0: Disable d 1: Enable di ept the registe	vindow function indow function isplay splay er followed table is t ed to "0" automatical	ransmitted to OSD ly after the transfer	
	EDISP	: * ; do : The c circui is con P67DS YBLCS DMA7	Displace on 't care data with by set on plete on	er er er eritten i tting RG f. i, P65D: , RBMF	ff specific of the specific of	fication control oit2 in (os VDSW A4, DM	ol registo ORDON,	er ters exc to "1".	0: Disable w 1: Enable w 0: Disable d 1: Enable di ept the registe	vindow function indow function isplay splay splay er followed table is ted to "0" automatical bits 7 to 4 in ORP6DS bits 7 to 3, 1 to 0 in 0	ransmitted to OSD ly after the transfer	
	EDISP Note1 Note2	P67DS YBLCS DMA7 RBF, R'	pregistor on't care data wit by sein pletec, P66DS, BKMF, DMA6VF, BLF	er eritten s tting Ro d. s, P65Ds , RBMF 5, DMA	ff specifies of the spe	fication contribit2 in (ol registo ORDON,	ters exc to "1".	0: Disable w 1: Enable w 0: Disable d 1: Enable di ept the registe	vindow function indow function isplay splay splay er followed table is ted to "0" automatical bits 7 to 4 in ORP6DS bits 7 to 3, 1 to 0 in Olbits 7 to 0 in ORDMA	ransmitted to OSD ly after the transfer	
	EDISP Note1 Note2	P67DS YBLCS DMA7 RBF, R	pregistor on't care data wit by sein pletec, P66DS, BKMF, DMA6VF, BLF	er eritten s tting Ro d. s, P65Ds , RBMF 5, DMA	ff specifies of the spe	fication contribit2 in (ol registo ORDON, ID, MBK	ters exc to "1".	0: Disable w 1: Enable w 0: Disable d 1: Enable di ept the registe RGWR is cleare	prindow function indow function isplay splay splay er followed table is the ded to "0" automatical bits 7 to 4 in ORP6DS bits 7 to 3, 1 to 0 in Olbits 7 to 0 in ORDMA bits 5 to 0 in ORDSN	ransmitted to OSD ly after the transfer RETC	
	EDISP Note1 Note3	P67DS YBLCS DMA7 RBF, R' CRA6, FORS, When been Weite	pregisto Displa	er y on/of e ritten i tting RG , P65D , RBMF , DMA , RDT , RCR4, C W is clow m detee b bit 3 o r RGW	to OSD GWR (b S, P64D , ESMZ, 5, DMA GDT, BE CRA3, C eared t cting th f ORDO R regis	o control of control o	ol registo DRDON, ID, MBK A3, DM RA1, CF clear E g edge en writi "0". If	ters exc to "1". C, DMA8 A2, DMA RA0 WDW to of HD sing to Of RGWR	0: Disable w 1: Enable w 0: Disable d 1: Enable di 1: Enable di ept the registe RGWR is cleare A1, DMA0 o "0" independ gnal by softwar	bits 7 to 4 in ORDMA bits 5 to 0 in ORDMA bits 6 to 0 in ORDCRA bits 4 and 2 in ORDON dent of the value while until the falling edgered to "0", the conte	ransmitted to OSD ly after the transfer RETC N ch this register has e of HD signal.	
	Note3 Note4 Note5	P67DS YBLCS DMA7 RBF, R' CRA6, FORS, Whele been Write Cryptian CRA6, CRA6, FORS, When CRA6, CRA6, CRA6, FORS, FORS	pregisto Displa	er y on/of e ritten i tting RG , P65D , RBMF , DMA , RDT , RCR4, C W is clow m detee b bit 3 o r RGW	to OSD GWR (b S, P64D , ESMZ, 5, DMA GDT, BE CRA3, C eared t cting th f ORDO R regis	o control of control o	ol registo DRDON, ID, MBK A3, DM RA1, CF clear E g edge en writi "0". If	ters exc to "1". C, DMA8 A2, DMA RA0 WDW to of HD sing to Of RGWR	0: Disable w 1: Enable w 0: Disable di 1: Enable di 1: Enable di ept the registe RGWR is cleare A1, DMA0 o "0" independ conal by softwar DON. register is clear expected timing	bits 7 to 4 in ORDMA bits 5 to 0 in ORDMA bits 6 to 0 in ORDCRA bits 4 and 2 in ORDON dent of the value while until the falling edgered to "0", the conte	ransmitted to OSD ly after the transfer RETC N ch this register has e of HD signal.	
	Note3 Note4 Note5	P67DS YBLCS DMA7 RBF, R CRA6, FORS, : Whele	pregisto Displa	er er er ritten f, P65DS, RBMF 6, DMA 7, RDT, CCRA4, C W is cle m dete b bit 3 o r RGW y be tra	to OSD GWR (b S, P64D , ESMZ 5, DMA GDT, BE CRA3, C eared t cring th f ORD R regis ansferre	o control of control o	ol registo DRDON, ID, MBK A3, DM RA1, CF clear E g edge en writ. If DSD circo	ters exc to "1". C, DMA8 A2, DMA RA0 WDW to of HD sing to Of RGWR uit at un	0: Disable w 1: Enable w 0: Disable d 1: Enable di 1: Enable di ept the registe RGWR is cleare A1, DMA0 o "0" independ gnal by softwar DON register is cleare expected timing (Initial value: 0: Normal fi	prindow function indow function indow function isplay splay er followed table is the death of "0" automatical bits 7 to 4 in ORP6DS bits 7 to 3, 1 to 0 in Orbits 7 to 0 in ORDMA bits 5 to 0 in ORDSN bits 6 to 0 in ORCRA bits 4 and 2 in ORDON dent of the value while until the falling edgered to "0", the contege.	ransmitted to OSD ly after the transfer RETC N ch this register has e of HD signal.	
	Note3 Note4 Note5	P67DS YBLCS DMA7 RBF, R CRA6, FORS, When been Write Do n regis	registo Displa on't cam data w it by sei npletec , P66DS , BKMF , DMA6 VF, BLF CRA5, Q RGWR n EWDI set froi e "1" to ot clea ters ma	er y on/of e ritten f. 6, P65D9 6, RBMF 6, DMA 7, RDT, (CRA4, COMM is cleaned by the training of the community of the comm	to OSD GWR (b S, P64D , ESMZ, 5, DMA GDT, BE CRA3, C eared t cting th f ORDC R regis ansferre	fication fication fixed in Co	ol registo DRDON, ID, MBK A3, DM RA1, CF clear E g edge en writ. If DSD circo	ters exc to "1". C, DMA8 A2, DMA RAO WDW to of HD sign ng to OF RGWR uit at un	0: Disable w 1: Enable w 0: Disable di 1: Enable di 1: Enable di 2: En	bits 7 to 4 in ORPGDS bits 7 to 0 in ORDMA bits 5 to 0 in ORDMA bits 6 to 0 in ORDMA bits 4 and 2 in ORDON dent of the value while until the falling edg red to "0", the contege. ***0 *000) requency mode equency mode completed	ransmitted to OSD ly after the transfer RETC Ch this register has e of HD signal. Ints of OSD control	
ORDON OF9A _H)	Note3 Note4 Note5	: * ; doc circui is con P67DS YBLCS DMA7 RBF, R CRA6, FORS, 3 : Whele been 1 : Write 5 : Do n regis	registo Displa D	er y on/of e ritten i f, P65D0 , RBMF 6, DMA , RDT, C CRA4, C W is cle m detection of tr GW y be trained FORS requence en data ow functions	to OSD GWR (b S, P64D , ESMZ, 5, DMA GDRA3, C RA3, C Reared t ccting th f ORDC R regis ansferra	o control of control o	ol registo DRDON, ID, MBK A3, DM RA1, CF clear E g edge en writin "0". If SD circu	ters exc to "1".	0: Disable w 1: Enable w 0: Disable di 1: Enable di 1: Enable di 2: Enable w 3: Enable w 3: Enable w 3: Enable w 3: Enable w 4: Enable w 4: Enable w 6: Enable di 6: Enable di 6: Enable w 6: Enable di 6: Enable w 6: Enable di 6: Enable w 6: Enable w 6: Enable di 6: Enab	bits 7 to 4 in ORPGDS bits 7 to 0 in ORDMA bits 5 to 0 in ORDMA bits 6 to 0 in ORDMA bits 4 and 2 in ORDON dent of the value while until the falling edg red to "0", the contege. ***0 *000) requency mode equency mode completed	ransmitted to OSD ly after the transfer RETC N ch this register has e of HD signal.	

Input/Output Circuitry

(1) Control pins

The input/output circuitries of the 87CH36/K36/M36 control pins are shown below.

Control Pin	I/O	Input/Output Circuitry	Remarks
XIN XOUT	Input Output	Osc. enable VDD OVDD Rf XOUT	Resonator connecting pins (high-frequency) $R_f = 1.2 \text{M}\Omega \text{(typ.)} \\ R_O = 1.5 \text{k}\Omega \text{(typ.)}$
RESET	1/0	Address-trap-reset Watchdog-timer-reset System-clock-reset	Sink open drain output Hysteresis input Pull-up resistor $R_{IN} = 220 \text{ k}\Omega$ (typ.) $R = 1 \text{ k}\Omega$ (typ.)
STOP/INT5	Input	P20 STOP/INT5	Hysteresis input $R=1\ k\Omega\ \ \mbox{(typ.)}$
TEST	Input	RIN	Pull-down resistor $R_{\text{IN}} = 70 \text{ k}\Omega \text{(typ.)}$ $R = 1 \text{ k}\Omega \qquad \text{(typ.)}$
OSC1 OSC2	Input Output	Osc. enable fosc VDD O Rf OSC2	Osc. connecting pin for onscreen display $R_f = 1.2 \ M\Omega \qquad \text{(typ.)}$ $R_O = 1.5 \ k\Omega \qquad \text{(typ.)}$

(2) Input/Output Ports The input/output circuitries of the 87CH36/K36/M36 I/O ports are shown below.

Port	1/0	Input/Output Circuitry	Remarks
P20	I/O	initial "Hi-Z"	Sink open drain output $R=1~k\Omega \mbox{ (typ.)}$
Р3	1/0	initial "Hi-Z"	Sink open drain output Hysteresis input $R=1\ k\Omega\ (typ.)$
P4 P64 S P67	1/0	initial "Hi-Z"	Tri-state I/O $R=1~k\Omega~(typ.)$
P5	1/0	initial "Hi-Z"	Sink open drain output $R=1\ k\Omega\ (typ.)$
P60 \$ P63	1/0	initial "Hi-Z" disable	Sink open drain output High current output I_{OL} = 20 mA(typ.) $R = 1 \text{ k}\Omega \text{ (typ.)}$
P70 P71	1/0	initial "Hi-Z"	Sink open drain output Hysteresis input $R=1\ k\Omega\ (typ.)$

Electrical Characteristics

Absolute Maximum Ratings

 $(V_{SS} = 0 V)$

Parameter	Symbol	Pins	Ratings	Unit
Supply Voltage	V _{DD}		- 0.3 to 6.5	V
Input Voltage	V _{IN}		- 0.3 to V _{DD} + 0.3	V
Output Voltage	V _{OUT1}		- 0.3 to V _{DD} + 0.3	V
	I _{OUT1}	Ports P2, P3, P4, P5, P64 to P67, P7	3.2	
Output Current (Per 1 pin)	I _{OUT2}	Ports P60 to P63	30	mA
0.4.4647.4.10	ΣI_{OUT1}	Ports P2, P3, P4, P5, P64 to P67, P7	120	
Output Current (Total)	Σl _{OUT2}	Ports P60 to P63	120	mA
Power Dissipation [Topr = 70°C]	PD		600	mW
Soldering Temperature (time)	Tsld		260 (10 s)	°C
Storage Temperature	Tstg		– 55 to 125	°C
Operating Temperature	Topr		- 30 to 70	°C

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

Recommended Operating Conditions

 $(V_{SS} = 0 \text{ V}, \text{ Topr} = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Pins		Conditions		Max	Unit	
Supply Voltage	V _{DD}		fc = 8 MHz	NORMAL mode IDLE mode	4.5	5.5	V	
				STOP mode	2.0			
	V _{IH1}	Except hysteresis input			V _{DD} × 0.70		.,	
Input High Voltage	V _{IH2}	Hysteresis input		V _{DD} ≧4.5 V		- V _{DD}	V	
	V _{IL1}	Except hysteresis input		V _{DD} ≥4.5 V		$V_{DD} \times 0.30$		
Input Low Voltage	V_{IL2}	Hysteresis input				$V_{DD} \times 0.25$	V	
	fc	XIN, XOUT	V _{DI}	V _{DD} = 4.5 to 5.5 V		8.0		
Clock Frequency	_	0561 0563	1	Normal frequency mode (FORS = 0, V _{DD} = 4.5 to 5.5 V)		$f_{OSC} \le f_C \times 1$ $.2 \le 8.0$	MHz	
	f _{OSC}	OSC1, OSC2	1	Double frequency mode (FORS = 1, V _{DD} = 4.5 to 5.5 V)		$f_{OSC} \le f_C \times 0.6 \le 4.0$		

Note 1: The recommended operating conditions for a device are operating conditions under which it can be guaranteed that the device will operate as specified. If the device is used under operating conditions other than the recommended operating conditions (supply voltage, operating temperature range, specified AC/DC values etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to.

Note 2: Clock Frequency fc; The condition of supply voltage range is the value in NORMAL and IDLE modes.

D.C. Characteristics

 $(V_{SS} = 0 \text{ V}, T_{opr} = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Pins	Conditions	Min	Тур.	Max	Unit
Hysteresis Voltage	V _{HS}	Hysteresis inputs		_	0.9	-	V
	I _{IN1}	TEST	$V_{DD} = 5.5 \text{ V}, V_{IN} = 5.5 \text{ V} / 0 \text{ V}$	_	-	± 2	
In most Commont	I _{IN2}	Open drain ports	$V_{DD} = 5.5 \text{ V}, V_{IN} = 5.5 \text{ V}$	_	_	2] ,
Input Current	I _{IN3}	Tri-state ports	$V_{DD} = 5.5 \text{ V}, V_{IN} = 5.5 \text{ V} / 0 \text{ V}$	_	_	± 2	μΑ
	I _{IN4}	RESET, STOP	V _{DD} = 5.5 V, V _{IN} = 5.5 V / 0 V	_	_	± 2	
Input Resistance	R _{IN2}	RESET		100	220	450	kΩ
Output Leakage	I _{LO1}	Sink open drain ports	V _{DD} = 5.5 V, V _{OUT} = 5.5 V	_	-	2	
Current	I _{LO2}	Tri-state ports	$V_{DD} = 5.5 \text{ V}, \ V_{OUT} = 5.5 \text{ V} / 0 \text{ V}$	_	_	± 2	μΑ
Output High Voltage	V _{OH2}	Tri- state port	$V_{DD} = 4.5 \text{ V}, I_{OH} = -0.7 \text{ mA}$	4.1	_	-	٧
Output Low Voltage	V _{OL}	Except XOUT, OSC2 and ports P60 to P63	$V_{DD} = 4.5 \text{ V}, \ \ I_{OL} = 1.6 \text{ mA}$	-	-	0.4	٧
Output Low Current	I _{OL3}	Ports P60 to P63	$V_{DD} = 4.5 \text{ V}, \ V_{OL} = 1.0 \text{ V}$	_	20	_	mA
Supply Current in NORMAL mode			V _{DD} = 5.5 V fc = 8 MHz	-	10	16	mA
upply Current in IDLE I _{DD}			$V_{IN} = 5.3 \text{ V} / 0.2 \text{ V}$	-	6	8	mA
Supply Current in STOP mode			V _{DD} = 5.5 V V _{IN} = 5.3 V / 0.2 V	-	0.5	10	μΑ

Note 1 : Typical values show those at $T_{opr} = 25$ °C , $V_{DD} = 5$ V.

Note 2 : Input Current I_{IN1} , I_{IN4} ; The current through pull-up or pull-down resistor is not included.

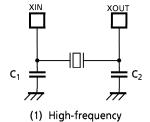
Note 3: Typical current consumption during A/D conversion is 1.2 mA.

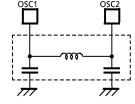
A/D Conversion Characteristics

 $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, Topr = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Pins	Conditions	Min	Тур.	Max	Unit
Analog Input Voltage Range	V _{AIN}	CIN3 to CIN0		V _{SS}	-	V _{DD}	V
Conversion Error			V _{DD} = 5.0 V	_	_	± 1.5	LSB

A.C. Characteristics


 $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, T_{opr} = -30 \text{ to } 70^{\circ}\text{C})$


Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Mashina Cuda Tima	tcy	In NORMAL mode	0.5	_	1.0	
Machine Cycle Time	icy	In IDLE mode	0.5	_		μ\$
High-Level Clock Pulse Width	t _{WCH}	For external clock operation	62.5		_	
Low-Level Clock Pulse Width	t _{WCL}	(XIN input) , fc = 8MHz	02.3	_	_	ns

Recommended Oscillating Condition

 $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, T_{opr} = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Oscillator	Eroguene	Recommended	Recommended Conditions		
rarameter	Oscillator	Frequency	Oscillator	C ₁	C ₂	
	Ceramic Resonator	8 MHz	KYOCERA KBR8.0M	30 pF	30 pF	
	Ceramic Resonator	4 MHz	KYOCERA KBR4.0MS	30 pr	30 μι	
High-frequency		4 101112	MURATA CSA4.00MG			
Oscillation	Crystal Oscillator	8 MHz	TOYOCOM 210B 8.0000			
		4 MHz	TOYOCOM 204B 4.0000	20 pF	20 pF	
OSD	LC Resonator	8 MHz	TOKO A285TNIS-11695			
OSD	LC Resonator	7 MHz	TOKO TBEKSES-30375FBY	_	_	

(2) LC Resonator for OSD

Note: On our OSD circuit, the horizontal display start position is determined by counting the clock from LC oscillator. So, the unstable start of oscillation after the rising edge of Horizontal Sync. Signal will be cause the OSD distortion.

Generally, smaller C and larger L make clearer wave form at the beginning of oscillation. We recommend that the value of LC oscillator should be equal and bigger than $33 \mu H$.

Note: To keep reliable operation, shield the device electrically with the metal plate on its package mold surface against the high electric field, for example, by CRT (Cathode Ray Tube).