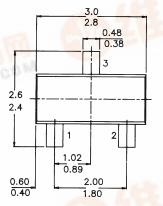
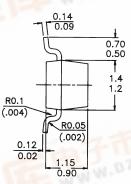


Continental Device India Limited

An ISO/TS16949 and ISO 9001 Certified Company

SOT-23 Formed SMD Package


CMBT3905


SILICON EPITAXIAL TRANSISTOR

P-N-P transistor

Marking CMBT3905 = 2Y

PACKAGE OUTLINE DETAILS
ALL DIMENSIONS IN mm

Pin configuration

1 = BASE

2 = EMITTER

3 = COLLECTOR

ABSOLUTE MAXIMUM RATINGS

Collector-base voltage (open emitter)
Collector-emitter voltage (open base)
Emitter-base voltage (open collector)
Collector current (d.c.)
Total power dissipation up to $T_{amb} = 60$ °C
D.C. current gain

$$-I_C = 10 \text{ mA}; -V_{CE} = 1 \text{ V}$$

Transition frequency at $f = 100 \text{ MHz}$
 $-I_C = 10 \text{ mA}; -V_{CE} = 20 \text{ V}$

min.

200 MHz

 f_T

CMBT3905

RATINGS (at $T_A = 25^{\circ}C$ unless otherwise specified)			
Limiting values			
Collector-base voltage (open emitter)	$-V_{CB0}$	max.	40 V
Collector-emitter voltage (open base)	-V _{CE0}	max.	40 V
Emitter-base voltage (open collector)	$-V_{EB0}$	max.	5 V
Collector current (d.c.)	$-I_C$	max.	200 mA
Total power dissipation*			
$up to T_{amb} = 25 {}^{\circ}C$	P_{tot}	max.	250 mW
Storage temperature	T_{stg}	–55 to	+150 °C
THERMAL CHARACTERISTICS			
$T_j = P(R_{th\ j-t} + R_{th\ t-s} + R_{th\ s-a}) + T_{amb}$ Thermal resistance			
from junction to ambient	$R_{th\ j-a}$	=	200 °W
CHARACTERISTICS (at $T_A = 25$ °C unless otherwise specific	fied)		
$T_{amb} = 25$ °C unless otherwise specified			
Collector-emitter breakdown voltage			
$-I_C = 1 \text{ mA}; I_B = 0$	-V _(BR) CE0	min.	40 V
Collector-base breakdown voltage	(DII) CLO		
$-I_C = 10 \mu A; I_E = 0$	-V _(BR) CB0	min.	40 V
Emitter-base breakdown voltage	(DIL)CD0		
$-I_E = 10 \mu A; I_C = 0$	-V _{(BR)EB0}	min.	5 V
Collector cut-off current	(DIC)LDO		
$-V_{CE} = 30 \ V; \ -V_{EB} = 3 \ V$	-I _{CEX}	max.	50 nA
Base current	-CLA		
with reverse biased emitter junction	$-I_{BEX}$	max.	50 nA
Output capacitance at $f = 100 \text{ kHz}$	-DEA		
$I_E = 0; -V_{CB} = 5 V$	$C_{\mathcal{C}}$	max.	4.5 pF
Input capacitance at $f = 100 \text{ kHz}$	c_c	max.	1.0 pi
$I_C = 0; -V_{BE} = 0.5 \text{ V}$	C_{e}	max.	10 pF
1C - 0, V _{BE} - 0,0 V	C _e	тил.	10 pi
Saturation voltages			
$-I_C = 10 \text{ mA}; -I_B = 1 \text{ mA}$	-V _{CEsat}	max.	0,25 V
$-I_C = 50 \text{ mA}; -I_B = 5 \text{ mA}$	-V _{CEsat}	max.	0,4 V
$-I_C = 10 \text{ mA}; -I_B = 1 \text{ mA}$	-V _{BEsat}	min.	0,65 V
10 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· DESat	max.	0,85 V
		шал.	0,00 V
$-I_C = 50 \text{ mA}; -I_B = 5 \text{ mA}$	-V _{BEsat}	max.	0,95 V
D.C. current gain			
$-I_C = 0.1 \text{ mA; } -V_{CE} = 1 \text{ V}$	h_{FE}	min.	30
$-I_C = 1 \text{ mA; } -V_{CE} = 1 \text{ V}$	h_{FE}	min.	40
0 / 01		•	
$-I_C = 10 \text{ mA; } -V_{CE} = 1 \text{ V}$	h_{FE}	min.	50
		max.	150

CMBT3905

$-I_C = 50 \text{ mA; } -V_{CE} = 1 \text{ V}$	$h_{\!F\!E}$	min.	<i>30</i>
$-I_C = 100 \text{ mA}; -V_{CE} = 1 \text{ V}$	$h_{\!F\!E}$	min.	15
Transition frequency at $f = 100 \text{ MHz}$			
$-I_C = 10mA; -V_{CE} = 20V$	f_T	min.	200 MHz
Noise figure at $R_S = 1 k\Omega$			
$-I_C = 100 \mu A; -V_{CE} = 5 V$			
f = 10 Hz to 15.7 kHz	F	max.	4 dB
Small Signal Current Gain			
$-V_{CE} = 10V$; $-I_{C} = 1$ mA; $f = 1$ KHz	h_{fe}	min.	<i>50</i>
		max.	200

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Discrete Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Discrete Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of Continental Device India Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India.

Telephone + 91-11-2579 6150, 5141 1112 Fax + 91-11-2579 5290, 5141 1119

email@cdil.com www.cdilsemi.com