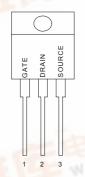


CMT04N60 POWER MOSFET


GENERAL DESCRIPTION


This advanced high voltage MOSFET is designed to withstand high energy in the avalanche mode and switch efficiently. This new high energy device also offers a drain-to-source diode with fast recovery time. Designed for high voltage, high speed switching applications such as power supplies, converters, power motor controls and bridge circuits.

FEATURES

- Higher Current Rating
- ◆ Lower Rds(on)
- ◆ Lower Capacitances
- Lower Total Gate Charge
- Tighter VSD Specifications
- Avalanche Energy Specified

PIN CONFIGURATION

SYMBOL

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain to Current — Continuous	I_D	4.0	Α
- Pulsed	I _{DM}	14	
Gate-to-Source Voltage Continue	V_{GS}	±20	V
Non-repetitive	V_{GSM}	±40	V
Total Power Dissipation	P _D		W
TO-220		96	7.100
TO-220FP	19.	38	ALC: N
Operating and Storage Temperature Range	T _J , T _{STG}	-55 to 150	$^{\circ}\mathbb{C}$
Single Pulse Drain-to-Source Avalanche Energy $-T_J = 25^{\circ}$ C	E _{AS}	80	mJ
$(V_{DD} = 100V, V_{GS} = 10V, I_L = 4A, L = 10mH, R_G = 25\Omega)$. ,		
Thermal Resistance — Junction to Case	θ_{JC}	1.30	°C/W
 Junction to Ambient 	θ_{JA}	100	
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	$^{\circ}\!\mathbb{C}$

ORDERING INFORMATION

Part Number	Package		
CMT04N60N220	TO-220		
CMT04N60N220FP	TO-220 Full Package		

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, T_J = $25^{\circ}\!\!\! \text{C}$.

			CMT04N60			
Cha	Symbol	Min	Тур	Max	Units	
Drain-Source Breakdown Voltage	V _{(BR)DSS}	600			V	
$(V_{GS} = 0 \text{ V}, I_D = 250 \ \mu \text{ A})$						
Drain-Source Leakage Current	I _{DSS}				mA	
$(V_{DS} = 600 \text{ V}, V_{GS} = 0 \text{ V})$					0.1	
Gate-Source Leakage Current-Forwa	ard	I_{GSSF}			100	nA
$(V_{gsf} = 20 \text{ V}, V_{DS} = 0 \text{ V})$						
Gate-Source Leakage Current-Rever	se	I_{GSSR}			100	nA
$(V_{gsr} = 20 \text{ V}, V_{DS} = 0 \text{ V})$						
Gate Threshold Voltage		$V_{GS(th)}$	2.0		4.0	V
$(V_{DS} = V_{GS}, I_{D} = 250 \ \mu A)$						
Static Drain-Source On-Resistance ($V_{GS} = 10 \text{ V}, I_D = 2.0 \text{A}) *$	R _{DS(on)}			2.4	Ω
Forward Transconductance (V _{DS} = 50) V, I _D = 2.0 A) *	g FS	2.5			mhos
Input Capacitance	$(V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$	C_{iss}		540	760	pF
Output Capacitance	$(v_{DS} = 25 \text{ v}, v_{GS} = 0 \text{ v},$ f = 1.0 MHz)	C_{oss}		125	180	pF
Reverse Transfer Capacitance	1 = 1.0 MH2)	C_{rss}		8.0	20	pF
Turn-On Delay Time	0/ 000 // 1 4 0 4	t _{d(on)}		12	20	ns
Rise Time	$(V_{DD} = 300 \text{ V}, I_D = 4.0 \text{ A},$ $V_{GS} = 10 \text{ V}.$	t _r		7.0	10	ns
Turn-Off Delay Time	$V_{GS} = 10 \text{ V},$ $R_G = 9.1\Omega) *$	$t_{d(off)}$		19	40	ns
Fall Time	$R_G = 9.1\Omega$)	t _f		10	20	ns
Total Gate Charge	0/ 400 \/ 1 40 4	Qg		5.0	10	nC
Gate-Source Charge	$(V_{DS} = 480 \text{ V}, I_{D} = 4.0 \text{ A},$ $V_{GS} = 10 \text{ V})^*$	Q_{gs}		2.7		nC
Gate-Drain Charge	V _{GS} = 10 V)	Q_{gd}		2.0		nC
Internal Drain Inductance		L _D		4.5		nH
(Measured from the drain lead 0.25	5" from package to center of die)					
Internal Drain Inductance	Ls		7.5		nH	
(Measured from the source lead 0.						
SOURCE-DRAIN DIODE CHARACT	ERISTICS					
Forward On-Voltage(1)	(1 = 40 A	V _{SD}			1.5	V
Forward Turn-On Time	$(I_S = 4.0 \text{ A}, d_{IS}/d_t = 100\text{A/µs})$	t _{on}		**		ns
Reverse Recovery Time	u _{IS} /u _t – 100Α/μ5)	t _{rr}		655		ns

^{*} Pulse Test: Pulse Width $\,\leq\!300\mu s,$ Duty Cycle $\,\leq\!2\%$

^{**} Negligible, Dominated by circuit inductance

TYPICAL CHARACTERISTICS

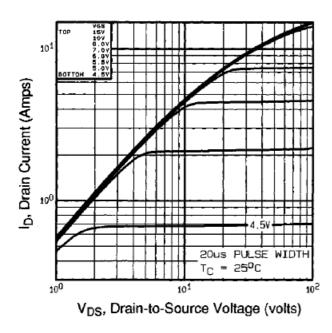


Fig 1. Typical Output Characteristics, Tc=25°C

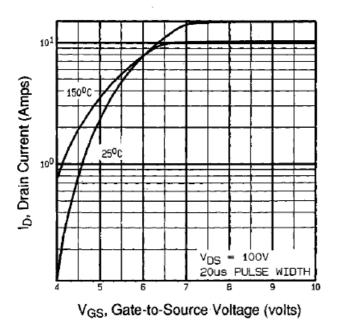
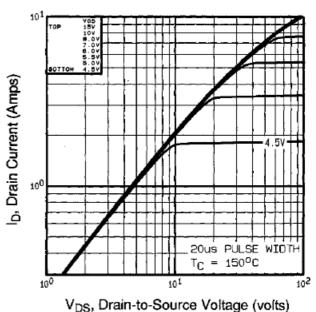



Fig 3. Typical Transfer Characteristics

Tos, Diam to occioe voltage (volta)

Fig 2. Typical Output Characteristics, T_C=150°C

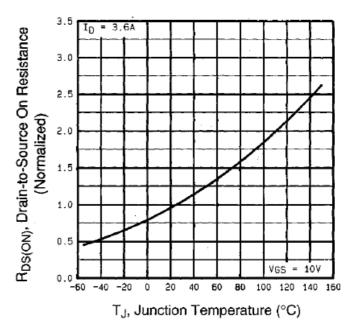
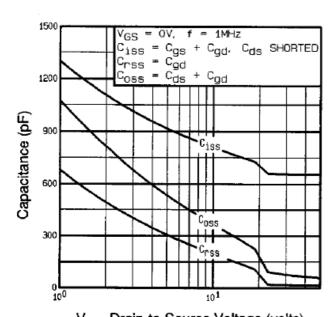



Fig 4. Normalized On-Resistance Vs. Temperature

V_{DS}, Drain-to-Source Voltage (volts)

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

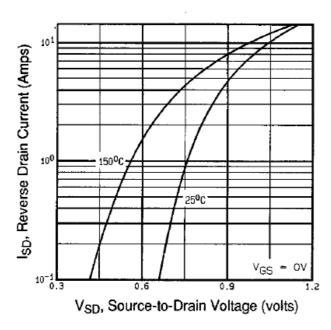
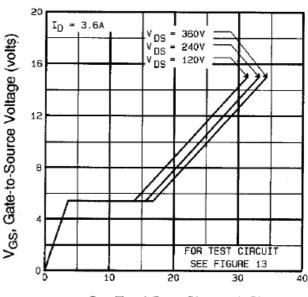



Fig 7. Typical Source-Drain Diode Forward Voltage

Q_G, Total Gate Charge (nC)

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

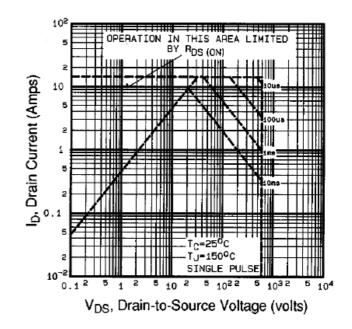
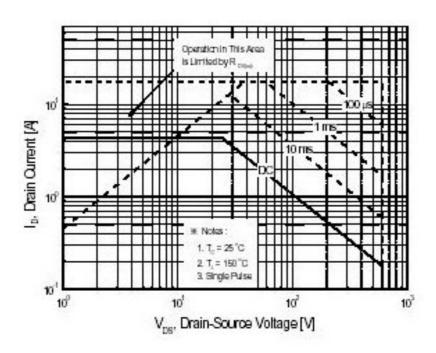
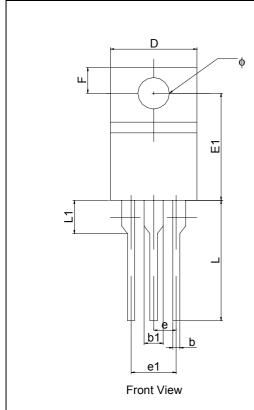
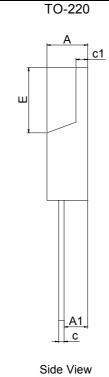



Fig 8. Maximum Safe Operating Area

Maximum Safe Operating Area

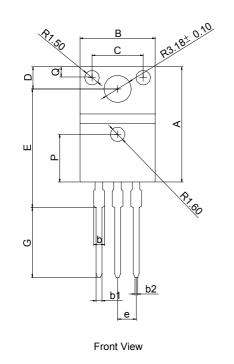
TO-220

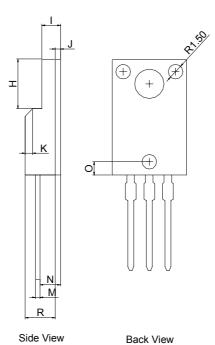



Maximum Safe Operating Area

TO-220FP

PACKAGE DIMENSION





PIN 1: GATE PIN 2: DRAIN PIN 3: SOURCE

avamor a	DIMENSIONS IN MILLIMETERS			DIMENS	SIONS IN I	NCHS
SYMBOLS	MIN	NOM	MAX	MIN	NOM	MAX
A	4.47		4.67	0.176		0.184
A1	2.52		2.82	0.099		0.111
b	0.71		0.91	0.028		0.036
b1	1.17		1.37	0.046		0.054
С	0.31		0.53	0.012		0.021
c1	1.17		1.37	0.046		0.054
D	10.01		10.31	0.394		0.406
E	8.50		8.90	0.335		0.350
E1	12.06		12.46	0.475		0.491
е		2.54			0.100	
e1	4.98		5.18	0.196		0.204
F	2.59		2.89	0.102		0.114
L	13.40		13.80	0.528		0.543
L1	3.56		3.96	0.140		0.156
φ	3.79		3.89	0.149		0.153

TO-220FP

SYMBOLS	DIMENSIONS IN MILLIMETERS			DIMENS	HONS IN I	NCHS
SIMBULS	MIN	NOM	MAX	MIN	NOM	MAX
A	15.67		16.07	0.617		0.633
В	9.96		10.36	0.392		0.408
С		7.00			0.275	
D	3.20		3.40	0.126		0.134
Е	15.60		16.00	0.614		0.630
G	9.45		10.05	0.372		0.396
н	6.48		6.88	0.255		0.279
1	2.34		2.74	0.092		0.108
L		0.70			0.028	
K		1.00			0.039	
М	0.45		0.60	0.018		0.024
N	2.56		2.96	0.101		0.117
0		1.80			0.071	
Р		6.50			0.256	
Q		1.50			0.059	
R	4.50		4.90	0.177		0.193
b			1.47			0.058
b1	0.70		0.90	0.028		0.035
b2	0.25		0.45	0.010		0.018
е		2.54			0.100	
_						

IMPORTANT NOTICE

Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of CMC products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

HsinChu Headquarter

Sales & Marketing

5F, No. 11, Park Avenue II,	11F, No. 306-3, SEC. 1, Ta Tung Road,
Science-Based Industrial Park,	Hsichih, Taipei Hsien 221, Taiwan
HsinChu City, Taiwan	
TEL: +886-3-567 9979	TEL: +886-2-8692 1591
FAX: +886-3-567 9909	FAX: +886-2-8692 1596