CP1000 THRU CP1008

SINGLE-PHASE SILICON BRIDGE VOLTAGE - 50 to 800 Volts CURRENT - P.C. MTG 3A, HEAT-SINK MTG 10A

FEATURES

- Surge overload rating—200 Amperes peak
- Low forward voltage drop and reverse leakage
- Small size, simple installation
- Plastic package has Underwriter Laboratory
 Flammability Classification 94V-O
- Reliable low cost construction utilizing molded plastic technique

MECHANICAL DATA

Case: Molded plastic with heatsink integrally mounted in the bridge encapsulation

Terminals: Leads solderable per MIL-STD-202,

Method 208

Weight: 0.21 ounce, 6.1 grams

HOLEFOR NO.6 SCREW 750 (19.1) .050 (1.3) DIA TYP + 75 (19) HIM.

CP-10

Dimensions in inches and (millimeters)

MACXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

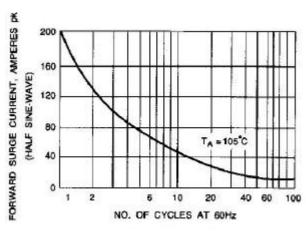
At 25 ambient temperature unless otherwise noted; resistive or inductive load at 60Hz.

The second second	CP1000	CP1001	CP1002	CP1004	CP1006	CP1008	UNITS
Max Recurrent Peak Rev Voltage	50	100	200	400	600	800	V
Max Bridge Input Voltage RMS	35	70	140	280	420	560	V
Max Average Rectified Output at T _C =50 *	10.0						Α
See Fig. 2 at T _C =100 *	3.0						Α
at T _A =50 **	3.0						_
Peak One Cycle Surge Overload Current	200						Α
Max Forward Voltage Drop per element at	1.1						V
5.0A DC & 25 . See Fig. 3							_
Max Rev Leakage at rated Dc Blocking							
Voltage per element at 25	10.0						A
See Fig 4 at100	1.0						mA
Typical junction capacitance per leg (Note 4) CJ	200						₽F
I ² t Rating for fusing (t<8.3ms)	164						A^2S
Typical Thermal Resistance (Note 2) R JA	25						/W
Typical Thermal Resistance (Note 3) R JC	5						
Operating Temperature Range	-55 TO +125						
Storage Temperature Range	-55 TO +150						

NOTES:

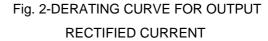
- * Unit mounted on metal chassis.
- ** Unit mounted on P.C. board.
- 1. Recommended mounting position is to bolt down on heatsink with silicone thermal compound

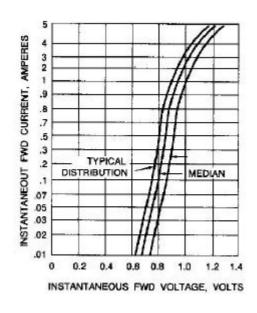
for maximum heat transfer with #6 screw.


2 Units Mounted in free air, no heatsink. P.C.B at 0.375"(9.5mm) lead length with 0.5×0.5"

df.dzsc.com

(12×12mm)copper pads.


- 3. Units Mounted on a 3.0×3.0" ×0.11" thick (7.5×7.5×0.3cm) AL plate heatsink.
- 4. Measured at 1.0MHZ and applied reverse voltage of 4.0 volts.


RATING AND CHARACTERISTIC CURVES CP1000 THRU CP1008

AMBIENT TEMPERATURE C

Fig. 1-NON-RECURRENT SURGE RATING

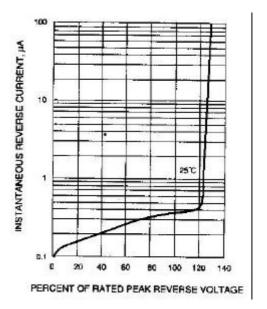


Fig. 3-TYPICAL FORWARD CHARACTERISTICS Fig. 4- TYPICAL REVERSE CHARACTERISTICS