

International

IGBT SIP MODULE

Features

- Fully isolated printed circuit board mount package
- Switching-loss rating includes all "tail" losses
- HEXFRED[™] soft ultrafast diodes
- Optimized for high operating frequency (over 5kHz)
 See Fig. 1 for Current vs. Frequency curve

Product Summary

Output Current in a Typical 20 kHz Motor Drive

10 A_{RMS} with $T_{C} = 90^{\circ}C$, $T_{J} = 125^{\circ}C$, Supply Voltage 360Vdc, Power Factor 0.8, Modulation Depth 80% (See Figure 1)

Description

The IGBT technology is the key to International Rectifier's advanced line of IMS (Insulated Metal Substrate) Power Modules. These modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power MOSFET. This superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. This package is highly suited to motor drive applications and where space is at a premium.

PD - 5.029 CPU165MU

Ultra-Fast IGBT

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	600	V
I _C @ T _C = 25°C	Continuous Collector Current, each IGBT	33	
I _C @ T _C = 100°C	Continuous Collector Current, each IGBT	17	
I _{CM}	Pulsed Collector Current ①	100	Α
I _{LM}	Clamped Inductive Load Current @	100	
I _F @ T _C = 100°C	Diode Continuous Forward Current	15	
IFM	Diode Maximum Forward Current	100	
V _{GE}	Gate-to-Emitter Voltage	±20	V
V _{ISOL}	Isolation Voltage, any terminal to case, 1 minute	2500	V _{RMS}
P _D @ T _C = 25°C	Maximum Power Dissipation, each IGBT	83	W
P _D @ T _C = 100°C	Maximum Power Dissipation, each IGBT	33	
TJ	Operating Junction and	-40 to +150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	
	Mounting torque, 6-32 or M3 screw.	5-7 lbf•in (0.55-0.8 N•m)	

Thermal Resistance

6 4 KE 19	Parameter	Тур.	Max.	Units
R _{0JC} (IGBT)	Junction-to-Case, each IGBT, one IGBT in conduction	—	1.5	
R _{0JC} (DIODE)	Junction-to-Case, each diode, one diode in conduction	—	2.0	°C/W
R _{0CS} (MODULE)	Case-to-Sink,flat,greased surface	0.1	—]
Wt	Weight of module	20 (0.7)	—	g (oz)

IØR

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Condition	S
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage 3	600	_	—	V	$V_{GE} = 0V, I_{C} = 250 \mu A$	
$\Delta V_{(BR)CES} / \Delta T_J$	Temperature Coeff. of Breakdown Voltage	—	0.60		V/°C	$V_{GE} = 0V, I_C = 1.0mA$	
V _{CE(on)}	Collector-to-Emitter Saturation Voltage	_	1.8	2.3		I _C = 17A	V _{GE} = 15V
		_	2.2		V	I _C = 33A	See Fig. 2, 5
			1.6	-		I _C = 17A, T _J = 150°C	
V _{GE(th)}	Gate Threshold Voltage	3.0		5.5		$V_{CE} = V_{GE}, I_C = 250 \mu A$	
$\Delta V_{GE(th)} / \Delta T_J$	Temperature Coeff. of Threshold Voltage	_	-13		mV/°C	$V_{CE} = V_{GE}, I_C = 250 \mu A$	
9 _{fe}	Forward Transconductance ④	16	24		S	$V_{CE} = 100V, I_{C} = 27A$	
I _{CES}	Zero Gate Voltage Collector Current	_		250	μA	$V_{GE} = 0V, V_{CE} = 600V$	
				6500		$V_{GE} = 0V, V_{CE} = 600V,$	T _J = 150°C
V _{FM}	Diode Forward Voltage Drop		1.3	1.7	V	I _C = 25A	See Fig. 13
			1.2	1.5		$I_C = 25A, T_J = 150^{\circ}C$	
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±500	nA	$V_{GE} = \pm 20V$	

Switching Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
Qg	Total Gate Charge (turn-on)	-	108	140		I _C = 27A
Q _{ge}	Gate - Emitter Charge (turn-on)		17	21	nC	$V_{CC} = 400V$
Q _{gc}	Gate - Collector Charge (turn-on)		52	70		See Fig. 8
t _{d(on)}	Turn-On Delay Time	-	23	_		$T_J = 25^{\circ}C$
tr	Rise Time		28	_	ns	$I_{C} = 27A, V_{CC} = 480V$
t _{d(off)}	Turn-Off Delay Time	—	100	200		V_{GE} = 15V, R_G = 5.0 Ω
t _f	Fall Time	—	45	140		Energy losses include "tail" and
Eon	Turn-On Switching Loss	_	0.76	_		diode reverse recovery.
Eoff	Turn-Off Switching Loss	_	0.26	_	mJ	See Fig. 9, 10, 11, 18
E _{ts}	Total Switching Loss	_	1.0	2.0		
t _{d(on)}	Turn-On Delay Time		24	—		T _J = 150°C, See Fig. 9, 10, 11, 18
tr	Rise Time	_	27	_	ns	$I_{C} = 27A, V_{CC} = 480V$
t _{d(off)}	Turn-Off Delay Time		180	—		V_{GE} = 15V, R_G = 5.0 Ω
t _f	Fall Time	_	130	_		Energy losses include "tail" and
E _{ts}	Total Switching Loss	_	3.7	_	mJ	diode reverse recovery.
Cies	Input Capacitance	—	2900	—		$V_{GE} = 0V$
Coes	Output Capacitance	—	330	—	pF	V _{CC} = 30V See Fig. 7
C _{res}	Reverse Transfer Capacitance		41	—		f = 1.0MHz
t _{rr}	Diode Reverse Recovery Time		50	75	ns	$T_J = 25^{\circ}C$ See Fig.
		—	105	160		$T_{\rm J} = 125^{\circ}{\rm C}$ 14 $I_{\rm F} = 25{\rm A}$
I _{rr}	Diode Peak Reverse Recovery Current	-	4.5	10	А	$T_J = 25^{\circ}C$ See Fig.
		—	8.0	15		T _J = 125°C 15 V _R = 200V
Q _{rr}	Diode Reverse Recovery Charge	-	112	375	nC	$T_J = 25^{\circ}C$ See Fig.
		_	420	1200		T _J = 125°C 16 di/dt = 200A/µs
di _{(rec)M} /dt	Diode Peak Rate of Fall of Recovery	_	250	_	A/µs	$T_J = 25^{\circ}C$ See Fig.
	During t _b	_	160	_		$T_{J} = 125^{\circ}C$ 17

Notes:

 Repetitive rating; V _{GE}=20V, pulse width limited by max. junction temperature.
 (See fig. 20) $@~V_{CC}{=}80\%(V_{CES}),~V_{GE}{=}20V,~L{=}10\mu H,~R_{G}{=}~5.0\,\Omega,~($ See fig. 19)

④ Pulse width 5.0µs, single shot.

3 Pulse width \leq 80µs; duty factor \leq 0.1%.

Fig. 1 - RMS Current and Output Power, Synthesized Sine Wave

I R

I CR

Case Temperature

Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case

IØR

CPU165MU

Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

I\$R

I CR

CPU165MU

Fig. 14 - Typical Reverse Recovery vs. dif/dt

Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining ${\sf E}_{off}, \; t_{d(off)}, \; t_{f}$

Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining E_{on} , $t_{d(on)}$, t_r

Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining E_{rec}, t_{rr}, Q_{rr}, I_{rr}

Refer to Section D for the following: Appendix D: Section D - page D-6

- Fig. 18e Macro Waveforms for Test Circuit of Fig. 18a
- Fig. 19 Clamped Inductive Load Test Circuit
- Fig. 20 Pulsed Collector Current Test Circuit

Package Outline 4 - IMS-1 Package (10 pins) Section D - page D-13