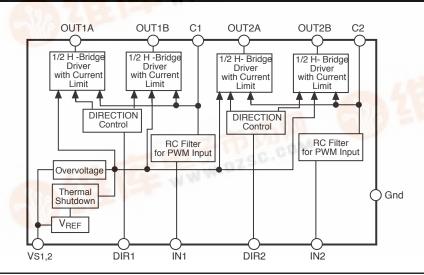


100mA Dual H-Bridge Air-Core Gauge Driver

Description

The CS3750 is a dual H-bridge four quadrant air-core gauge driver. The IC provides all the functions necessary to drive a tachometer or speedometer as part of a microprocessor based multiplexed system. Digital input control eliminates the need for any analog calibration of the gauge.

The controlling microprocessor sends out a PWM signal to each H bridge driver input (IN1, IN2). The PWM signal duty cycle is proportional to the H-bridge output. Output current


(100mA max) direction is controlled by the DIRECTION input. PWM switching noise is minimized at each half bridge by an internal RC filter and external programmable capacitor.

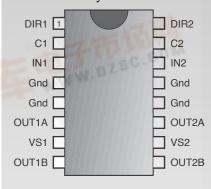
The CS3750 is protected against 50V load dump, over voltage and thermal runaway fault conditions. Any of these faults causes the IC to shut down. Each high side of the output driver is current limited. A short circuit condition in one driver does not affect the others.

Absolute Maximum Ratings

Supply Voltage	7.5V to +16V
Internal Power Dissipation	
Logic Input Voltages	
Junction Temperature Range	40°C to +150°C
Storage Temperature Range	55°C to +165°C
Lead Temperature Soldering	
Wave Solder (through hole styles only)	10 sec. max, 260°C peak
Electrostatic Discharge (Human Body Model)	8kV

Block Diagram

Semiconductor


Features

- 2 Independent NPN H-Bridge Drivers
- No Analog Trim Required
- Used in Multiplexed Systems
- Quiet Gauge Operation
- Programmable Slew Rate Minimizes Switching Noise
- Fault Protection

Over Voltage Thermal Shutdown Short Circuit

Package Options

16 Lead PDIP (internally fused leads)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	τ
Output Stage					
V _{OUT} Saturation Voltage	I _{OUT} =100mA; V _{IN} =0V	-	0.25	0.50	
(Low Side)	I_{OUT} =1mA; V_{IN} =0V		0.01	0.10	•
V _{OUT} Offset Voltage	$V_C=5V$; $I_{OUT}=-30mA$		15	50	1
V _{OUT} Saturation High Side	$V_{IN}=5V;I_{OUT}=-100mA$	VS-2	VS-1.5	VS	7
Low Side	$V_{IN}=0V;I_{OUT}=-1mA$		0.02	0.10	1
V _{OUT} Differential	$V_C=5V$, $I_{OUT}=-100$ mA			100	1
Matching Voltage					
Supply Current	$V_{IN}=V_{DIR}=0;$		23	45	1
Input Stage					
V _{IN} LOW	V_{IN} decreasing; V_{DIR} =0V	0.8	1.9		
HIGH	V _{IN} increasing; V _{DIR} =0V		2.0	3.5	•
Hysteresis	V _{DIR} =0V		100		1
I _{IN} LOW	V _{IN} =0.8V; V _{DIR} =0V		20	100	ļ
HIGH	$V_{IN}=3.5V$		0.4	100.0	ļ
Output Slew Rate with respect to input	V_{IN} =250Hz; R_{LOAD} =150 Ω		0.2	0.8	7
Output Turn on Delay with respect to input	V_{IN} =250Hz; R_{LOAD} =150 Ω , note 1		1.5	6	ļ
Output Turn off Delay with respect to input	V_{IN} =250Hz; R_{LOAD} =150Ω, note 2		2.4	9	
Direction					
V _{DIR} LOW	V _{IN} =5V; V _{DIR} decreasing	0.8	1.9		
HIGH	V _{IN} =5V; V _{DIR} increasing		2.0	3.5	•
Hysteresis	$V_{IN}=5V$		100		1
I _{DIR} LOW	$V_{IN}=0V$; $V_{DIR}=0.8V$		40	100	ļ
HIGH	V_{IN} =0V; V_{DIR} =3.5V		0.4	100	ļ
Output Slew Rate with respect to DIR	V_{IN} =5V; f_{DIR} =250Hz; C=0 μ F	0.2	1.5		1
Output Fall Time with respect to DIR	V_{IN} =0V; V_{DIR} =0V; C=0 μ F		0.2	2.0	ļ
Output Turn on Delay	$V_{IN}=5V$; $R_{LOAD}=150\Omega$				
with respect to DIR	V_{DIR} =250Hz; C=0 μ F, note 1		1	6	ļ
Output Turn off Delay	V_{IN} =5V; R_{LOAD} =150 Ω				
with respect to DIR	V_{DIR} =250Hz; C=0 μ F, note 2		2.5	9	ļ
Protection Functions					
I _{OUT} Current Limit (High Side Only)	V _{IN} =5V	100	225		1
Over Voltage Threshold	V _{IN} =5V	17.0	21.5	26.0	7
Hysteresis			0.5		7
Thermal Shutdown			160		c
Hysteresis			20		(

Note 1: Time required for output signal to rise to 90% of its amplitude after input signal switches.

Note 2: Time required for output signal to decrease to 10% of its amplitude after input signal switches.

_

Package Pin Description			
PACKAGE PIN #	PIN SYMBOL	FUNCTION	
16L PDIP (internally fused lead	ls)		
1	DIR1	CMOS compatible input pin controls direction of current through OUT1	
2	C1	RC filter capacitor for OUT1 connected to Ground	
3	IN1	CMOS compatible input pin controls output OUT1A and 1B	
4,5,12,13	Gnd	Ground connection	
6	OUT1A	One half of H-bridge output stage 1	
7	VS1	Supply voltage	
8	OUT1B	One half of H-bridge output stage 1	
9	OUT2B	One half of H-bridge output stage 2	
10	VS2	Supply voltage	
11	OUT2A	One half of H-bridge output stage 2	
14	IN2	CMOS compatible input pin controls output OUT2A and 2B	
15	C2	RC filter capacitor for OUT2 connected to Ground	
16	DIR2	CMOS compatible input pin controls direction of current through OUT2	

Circuit Description

Output Stage

Each output stage contains 4 power NPN transistors arranged in a traditional H bridge configuration. Current flow through the two outputs (OUTxA, OUTxB) in each H-bridge is controlled by the logic signal DIRx.

PWM input signals from the microprocessor, are filtered on chip and sent to the output stage. The duty cycle of the PWM signal is proportional to output voltage. The RC filter reduces the noise of the PWM input signal by slowing its slew rate: i.e., the output signal is converted from a square wave to an exponential sawtooth waveform. An external capacitor (Cx) controls the slew rate for each H bridge.

Motor Direction Control

When the voltage on the control pin (INx) is low, both halves of the H bridge are off (Table 1). When INx is high, DIR controls the flow of current through the H-bridge. If DIRx=0, current flows from OUTxA out to the coil and back in through OUTxB. If DIRx=1, current flows from OUTxB out to the coil and back in through OUTxA.

Table 1. Logic Control of H-Bridge

In	put	Direction	n Outputs		
Ι	NX	DIRX	OUTxA	OUTxB	
	0	Χ	0	0	
	1	0	1	0	
	1	1	0	1	

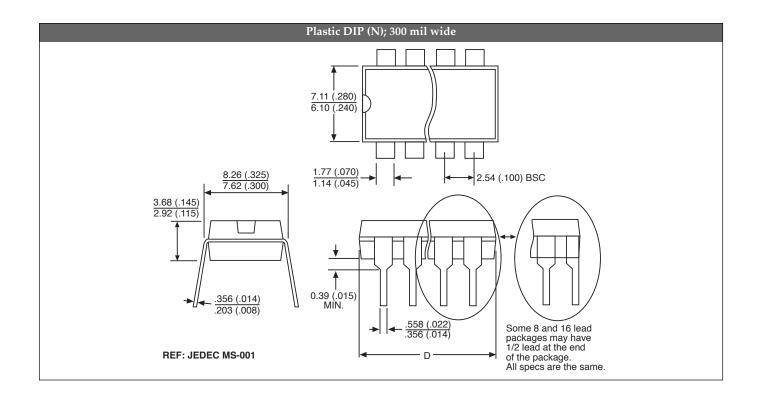
Protection

The high side driver transistor in each H-bridge is current limited as a protection against a short circuit fault condition. If an over voltage or a thermal runaway fault conditions occurs, all outputs shut down.

Application Diagram

V_{BAT} Microprocessor 0 DIR2 DIR C2 CS3750 IN2 Gnd Gnd Gnd Gnd OUT1A OUT2A VS1 VS2 OUT1B OUT2B COIL1 COIL2 Circular * 0.047μF Air Core

Speedometer


Package Specification

PACKAGE DIMENSIONS IN mm (INCHES)

	D			
Lead Count	Metric		English	
	Max	Min	Max	Min
16L PDIP (internally fused leads)	19.69	18.67	.775	.735

Thermal	Data	16L PDIP	
		(internally fused leads)	
$R_{\Theta JC}$	typ	15	°C/W
Roza	tvn		°C/W

PACKAGE THERMAL DATA

Ordering information		
Part Number	Description	
CS3750ENF16	16L PDIP (internally fused leads)	

Ordering Information

Cherry Semiconductor Corporation reserves the right to make changes to the specifications without notice. Please contact Cherry Semiconductor Corporation for the latest available information.