查询CT2565供应商

捷多邦,专业PCB打样工厂,24小时加急出货

 Bus Controller, Remote Terminal and BUS Monitor

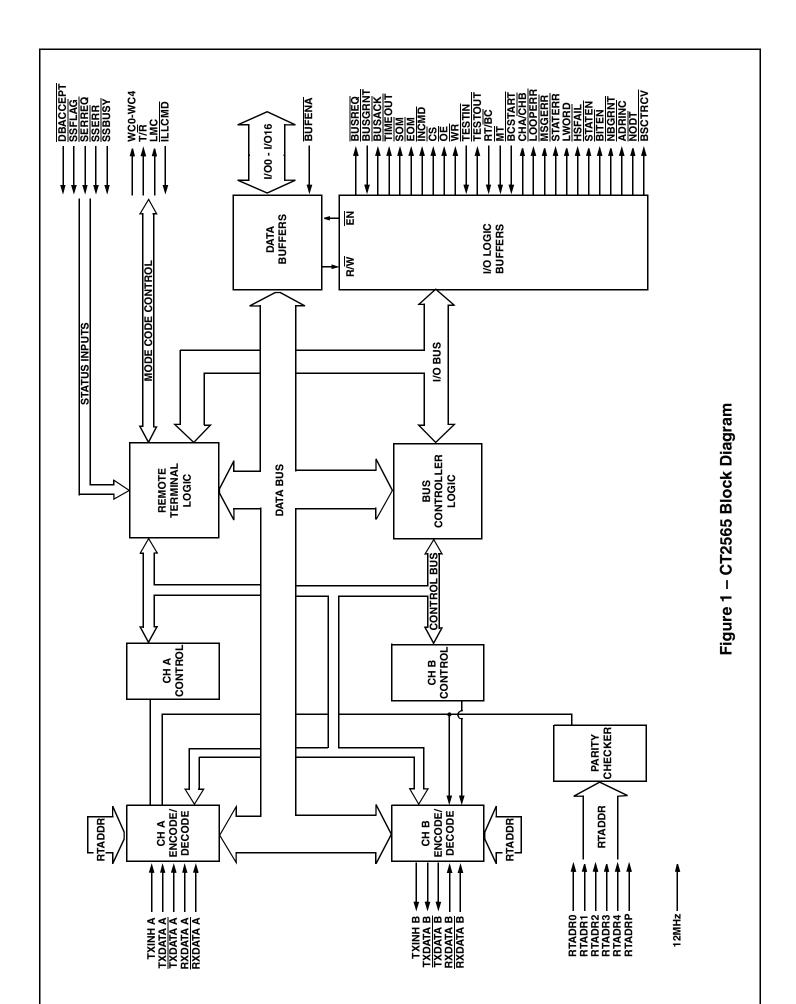
 For MIL-STD-1553B

- Second Source Compatible to the BUS-65600
- RTU implements all dual redundant mode codes
- Selective mode code illegalization available
- 16 bit microprocessor compatibility
- BC checks status word for correct address and set flags
- RTU illegal mode codes externally selectable
- 16 bit µProcessor compatibility
- DMA handshaking for subsystem message transfers
- MIL-PRF-38534 compliant circuits available
- DESC SMD #5962–88585 Pending
- Packaging Hermetic Metal
 - 78 Pin, 2.1" x 1.87" x .25" Plug-In type package
 - 82 Lead, 2.2" x 1.61" x .18" Flat package

CIRCUIT TECHNOLOGY

www.aeroflex.com

General Description


The CT2565 is a dual redundant MIL-STD-1553 Bus Controller (BC), Remote Terminal (RT), and Bus Monitor, (BM) Bus packaged in a 1.9" x 2.1" hermetic hybrid. It provides all the functions required to interface a MIL-STD-1553 dual redundant serial data bus transceiver, (Aeroflex's ACT4487 for example) and a subsystem parallel three-state data bus. Utilizing a custom monolithic IC, the CT2565 provides selectable operation as a Bus Controller, Remote Terminal or a Bus Monitor (BM).

The CT2565 is compatible with most µprocessors. It provides a 16 bit three-state parallel data bus and uses direct memory access (DMA type) handshaking for subsystem transfers. All message transfer timing as well as DMA and control lines are provided internally. Subsystem overhead associated with message transfers is therefore minimized. Interface control lines are common for both BC and RT operation.

The CT2565 features the capability for implementing all dual redundant MIL-STD-1553 mode codes. In addition, any mode code may (optional) be illegalized through the use of an external (200ns access time) PROM. Complete error detection capability is provided, for both BC and RTU operation. Error detection includes: response time-out, inter message gaps, sync, parity, Manchester, word count and bit count. The CT2565 complies with all the requirements of MIL-STD-1553.

The hybrid is screened in accordance with the requirements of MIL-STD-883 and operates over the full military temperature range of -55°C to +125°C.

Aeroflex Circuit Technology – Data Bus Modules For The Future © SCDCT2565 REV B 8/10/99

PARAMETER	VALUE	UNITS
Logic		
V _{IH}	2.0 min	V
V _{IL}	0.8 max	V
V _{OH}	3.7 min	V
V _{OL}	0.4 max	V
I _{IH}	±100 max	μA
l _{IL}	-0.4 max	mA
I _{OL} *	±1.2 max	mA
I _{ОН} *	±0.4 max	mA
C_{IN} (f = 1MHz)	20 max	pF
C _{OUT} (f = 1MHz)	20 max	pF
Power Supply		
+5VDC		•
Tolerances	$\pm 10 \max$	%
Supply Current Internal Decoupling	50 typ (70 max) 1.5 typ	mΑ μF
	1.5 typ	μι
Temperature Range Operating (Case)	–55 to +125	°C
Storage	-65 to +125	℃ ℃
5	-03 10 +130	0
Physical Characteristics		
	1.9 x 2.10 x 0.25	in
78 pin DDIP	$(48.30 \times 53.34 \times 6.35)$	in (mm)
82 pin flatpack	1.6 x 2.19 x 0.15	ìn
	(40.64 x 55.63 x 3.81)	(mm)
Weight	1.7 (48)	oz (g)

* I_{OL} and I_{OH} parameters are indicated for all logic outputs except Data Bus (DB0 – DB15) which are ±5mA for both parameters.

Table 1 – CT2565 Specifications

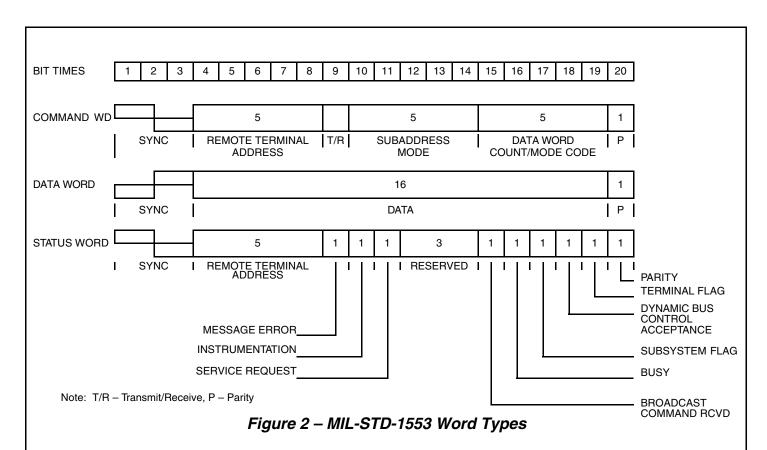
GENERAL

The CT2565 uses a custom CMOS ASIC for protocol logic and I/O buffering to provide low power dissipation in its small package.

The CT2565 performs a continuous on-line Built-In-Test (BIT); in this test the last transmitted word of each message transfer is wrapped around through the active receiver channel and verified against the captured encoded word. A user-defined loop test under subsystem control can also be implemented. Numerous error flags are provided to the subsystem including message error, status error, response time out and loop test error.

An external 12 MHz, TTL clock connected to Pin 39 is required.

Where appropriate, references to signal names and their associated pin numbers for the 78 pin


DDIP package are made throughout this document. For flatpack model pin numbers, refer to Table 10.

BC/RTU/MT Initialization

The CT2565 provides BC, RTU, and MT operating modes. The operating mode if dynamically selectable through two static control inputs as listed in Table 2. It is recommended that a master RESET signal be issued (80ns min) prior to mode selection to clear the internal registers.

MIL-STD-1553 Word Types

Figure 2 illustrates the three MIL-STD-1553 word types: Command, Data, and Status.

MODE	RT/BC (PIN 1)	MT (PIN 2)
BC	0	1
RT	1	1
МТ	0	0

Table 2 – Operating Modes

DMA - Type Handshake

All BC and RT word transfers are preceded by a request-grant-acknowledge format DMA handshake procedure. Timing information is provided in BC, RTU and MT sections.

In MT mode, the 1553 transmission is transferred along with an identification Word using a single DMA handshake containing two memory-write operations. The DMA format requires that the subsystem provide a bus grant (BUSGRNT pin 45) low within a timeout period. Note that BUSGRNT should be set to logic "1" before another bus request (BUSREQ) is issued.

Memory Read/Write

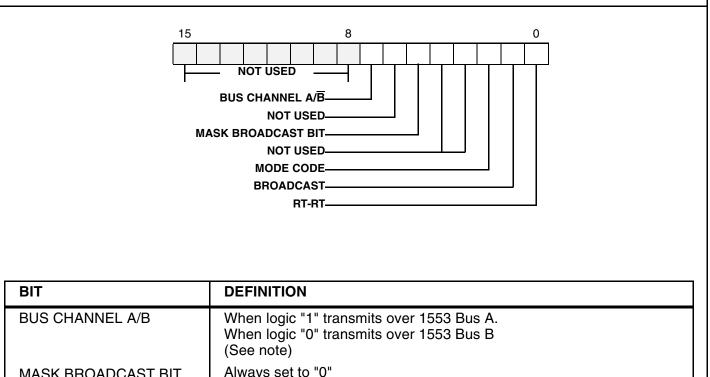
With the single exception of an RT command word transfer, all subsystem transfers take the form of a static memory read or write. A low pulse on both the chip select (\overline{CS}) and output enable (\overline{OE}) or a low pulse on \overline{CS} and write enable (\overline{WE}) (pins 17, 18 and 44 respectively) indicates data is valid on the parallel data bus for the duration of the pulse. The rising edge of \overline{CS} triggers an address increment (ADRINC pin) low output pulse used to increment the subsystem memory address for successive transfers.

BC OPERATION

In the BC mode, the CT2565 initiates all MIL-STD-1553 data and control message transfers. Figure 3 details specific message transfer flow and Table 3 lists subsystem memory allocation. The subsystem, or host processor, must provide a CT2565 protocol Control Word (See Figure 4) and MIL-STD-1553 command and data words. The CT2565 will transfer the RTU status response and provide message transfer validation during an active transfer. All parallel word transfers occur in the form of a DMA (request-grant-acknowledge) handshake with memory read or operation as shown in Figures 5 and 6.

Command Transfer

In the BC mode pulse BCSTART (pin 41) low. Following the pulse, the CT2565 will initiate a DMA handshake and memory read for; the control, word, command word(s) and up to 32 data words. No handshake timeout is enforced in the BC mode (CT2565) remains idle during BUSREQ to BUSGRNT), however 1553 protocol must be maintained.


Note that commands are named from the BC's point-of-view (for example, a TRANSMIT CMD indicates the addressed RTU must transmit data).

RECEIVE	TRANSMIT
Control Word	Control Word
Receive Command	Transmit Command
Data 1	Looped Command Word
•	RTU Status
•	Data 1
Last Data	•
Looped Data Word	•
RTU Status	Last Data

Table 3 – BC Memory Allocation


Loop Test

Upon receipt from the subsystem, the last word to be transmitted within a given message transfer (command or Data word) is stored in a CT2565 internal register. As this word is transmitted to the 1553 bus, it is looped back through the active receiver channel for auto-BC, Short Loop verification. A LOOPERR (.5us typ) low pulse indicates a mismatch between the stored and looped word. The CT2565 also initiates a handshake with a memory write to the subsystem for user-defined, "long loop" (subsystem, CT2565, subsystem) verification. Note that both short and long loop testing are initiated for all transfers (on the last word transmitted to 1553). Subsystems response to use Long Loop Test is to compare the loaded word to what was looped back into memory.

MASK BROADCAST BIT	Always set to "0"
MODE CODE	Command Word count field signifies mode code type
BROADCAST	Multiple RTU's addressed, no status word expected
RT-RT	When set, RTU(b) transmits, RTU(a) receives. Both RTU Status Words are validated and sent to subsystem.

Note: Messages-transmission (routing) status pin (pin 16, Chan A/B) becomes active after loading the control word and command word respectively. The signal is cleared by RESET or EOM low.

Figure 3 – BC Message Transfer Flow

TRANSFER/CONDITION	DESCRIPTION	ERROR SIGNAL	PIN
CONTROL/COMMAND WORD 1 Handshake Failure	Memory read by BC subsystem. No response to Bus Request within timeout period.	BC waits for Grant (no 1553 timing error)	-
LOOPED WORD Short Loop Failure Long Loop Failure	Looped back through receiver. Received Word ≠ last xmitted word. DMA/Write looped word to subsystem.	LOOPERR User Defined	46 -
RT-RT	Status-RT1, data, status-RT2 response to follow receive, transmit, commands.	(See definitions in STATUS/DATA WORD below)	-
STATUS WORD No Status Received within 15.5µS	NODT timeout	TIMEOUT EOM	4 57
RT Address Mismatch	Command RTU Address ≠ Status Word RTU Address	STATERR	68
Error Flag(s) Set	Status Word Response from RT: Error Condition	STATERR	68
Broadcast Received bit Set	Response to Transmit Status Word mode command may allow this, all others ERROR.	Broadcast Mask not set <u>(See BC C</u> ontrol Word) STATERR	68
DATA WORD			
Handshake Failure Transmit Command Receive Command	No subsystem response to Bus Request. Data lost: Word Count fails. 1553 transmission gap.	<u>BC waits f</u> or Grant. MSGERR <u>Status Wo</u> rd response:	30
		STATERR	68
Data Received from RTU Less than word count Greater than word count	Transmit Command (RTU response) More data received than requested.	MSGERR and EOM	4
Data after Status Set (all extra words)	Transmit Command: data words received after status to subsystem.	DMA/memory write (for each)	-
FORMAT ERROR	_	MSGERR	30

Notes:

(1) LOOPERR is a .5µS pulse which occurs near DMA handshake for loop back word.

 (1) <u>EVENENTIAL</u> a 40/160nS pulse which occurs 19.5µS ±0.5µS after the mid-bit parity of the last word onto the bus.
 (3) <u>STATER</u> is a 120/166nS pulse which occurs during the status word DMA handshake.
 (4) MSGRR is a 40/160nS pulse which occurs approximately 100nS before INCMD goes high. It is triggered by NODT going inactive (i.e., low word count).

Table 4 – BC Error Handling

RTU Response

The addressed RTU(s) must respond (to non-broadcast commands) within a timeout period as shown in Figures 7, 8, and 9. Figures 10 and 11 illustrate the BC Mode Code Timing. Status and data words received from the 1553 port are transferred to the subsystem via a handshake and memory write operation for each (See Message Length Checking).

BC Status/Error Handling

Message transfer errors are indicated using the TIMEOUT, MSGERR, LOOPERR and STATERR BC status outputs (pins 4, 30, 46 and 68 Additional error detection respectively). methods include user evaluation of status, data and (long) loop words and/or use of the 1553B dual redundant mode codes. Note that certain error conditions not reflected in the current Status Word (SW) can occur; Broadcast CMD RT-status and post RT status response may be

accessed via the Transmit Status Word mode command.

Transmit Bit Word. Additional status informa tion is generated by an RTU (CT2565 for each transfer in the form of a BIT word). This word may be accessed by the BC using the TRANSMIT B-I-T WORD mode command. See RTU Error Handling and Mode Code sections).

Message Length Checking. The BC stores the command word, word-count field in an internal register. By decrementing this register following each data word transfer (See BC Memory Read/Write Timing), the BC can detect an incorrect message length.

For a description of the possible BC error, indicators occurring during each stage of message transfer read from left to right in Table 4. For a description of the possible causes of errors within a transfer, read from right to left.

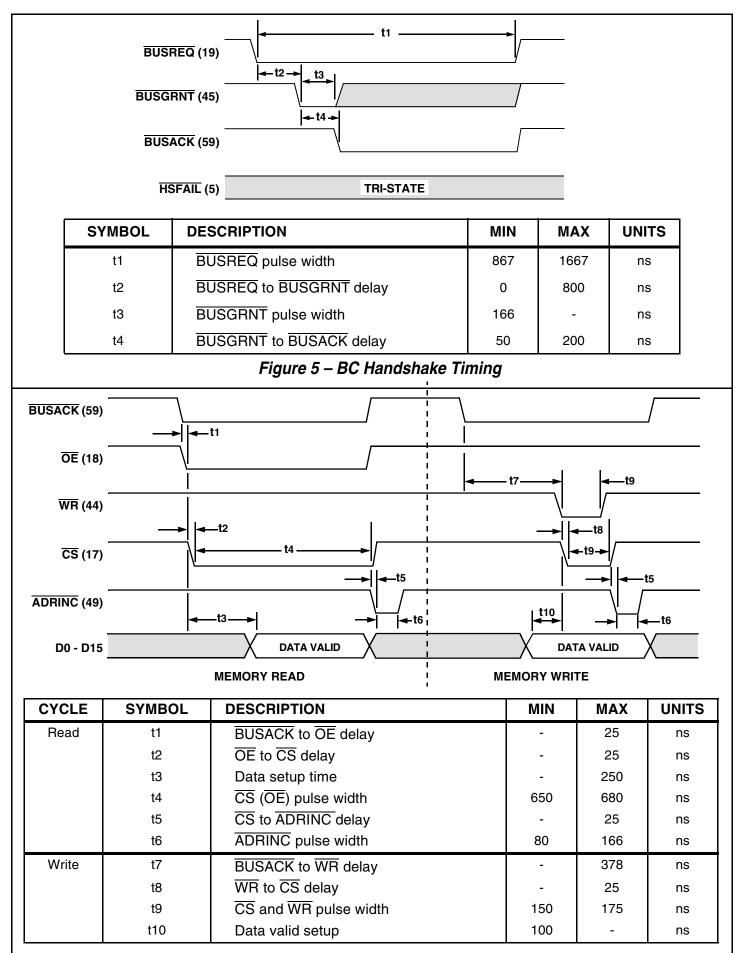
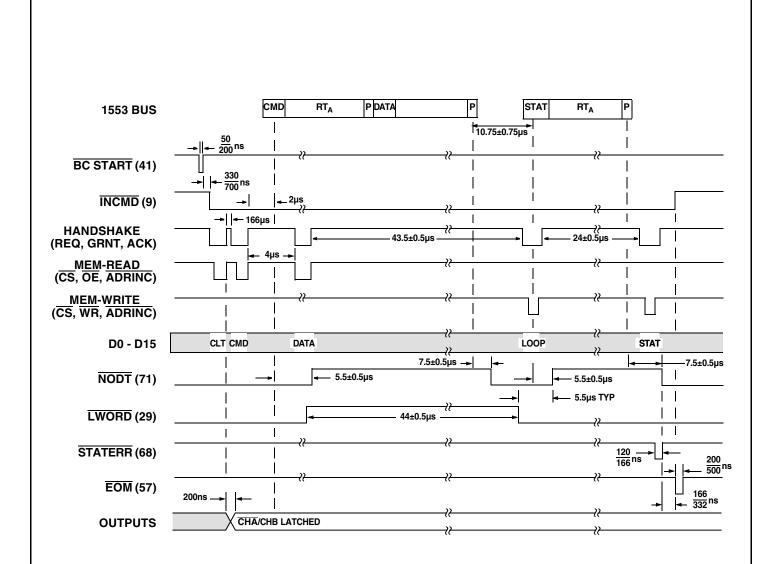
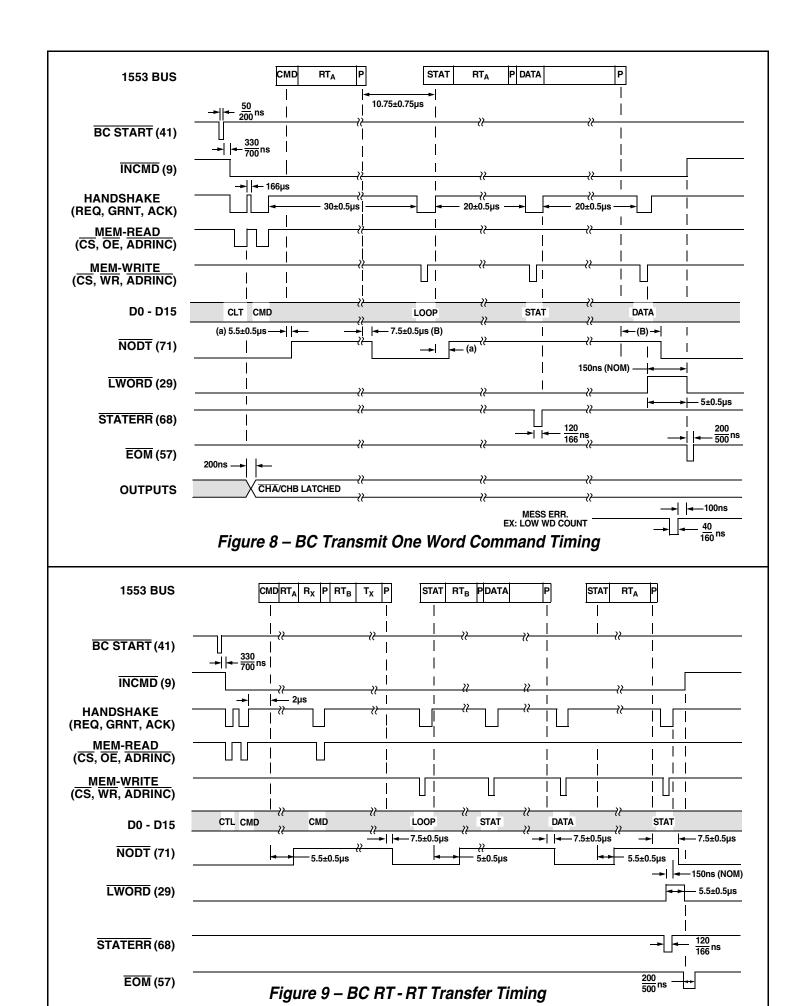
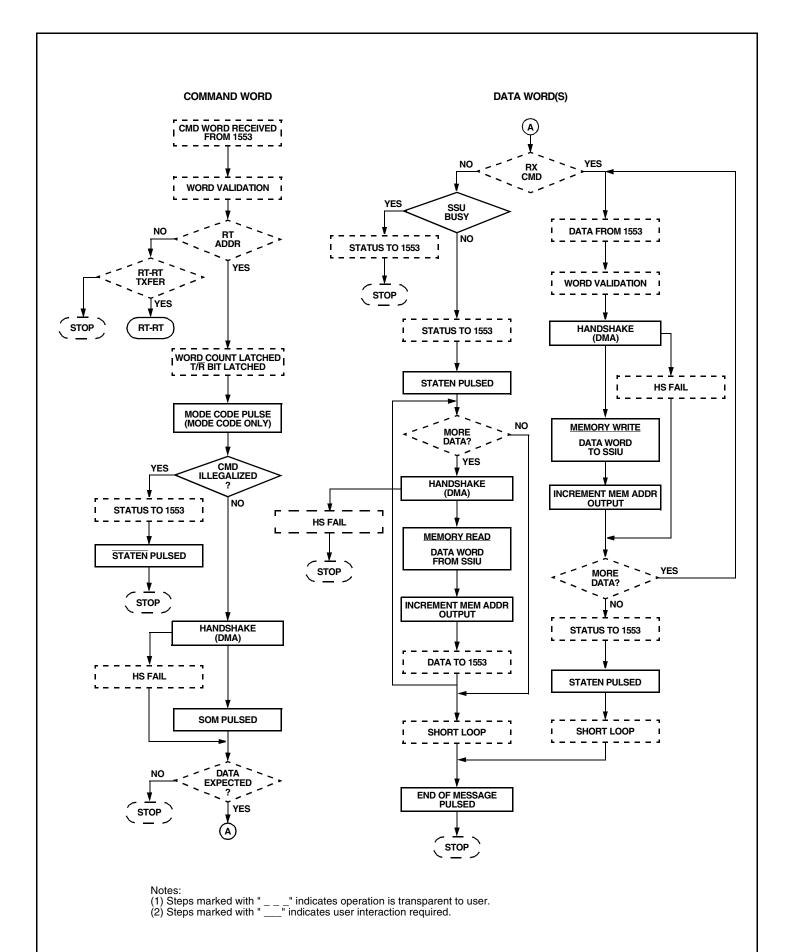




Figure 6 – BC Read/Write Timing

Notes for Figures 7-9 T/R and HSFAIL are static at logic "1" in BC mode. All timing is typical unless otherwise noted.

Figure 7 – BC Receive One Word Command Timing

1553 BUS	CMD RT _A P STAT RT _A P DATA LCMD
INCMD (9)	≺ 70/80μs►
BUSREQ (19)	
ADRINC (49)	€0/166ns
D0 - D15	CTL CMD LOOP STAT LCMD
LWORD (29)	5.0±0.5µs
EOM (57)	400/500ns →
1553 BUS	CMD RT _A P STAT RT _A P
	50/80µsec ───────────
INCMD (9) BUSREQ (19)	
ADRINC (49)	→ ≪80/166ns
D0 - D15	
	40/60µsec
LWORD (29)	
LWORD (29) EOM (57)	400/500ns


Each RTU is assigned a unique address on the 1553 bus. It processes commands issued by the BC to its address or through Broadcast commands.

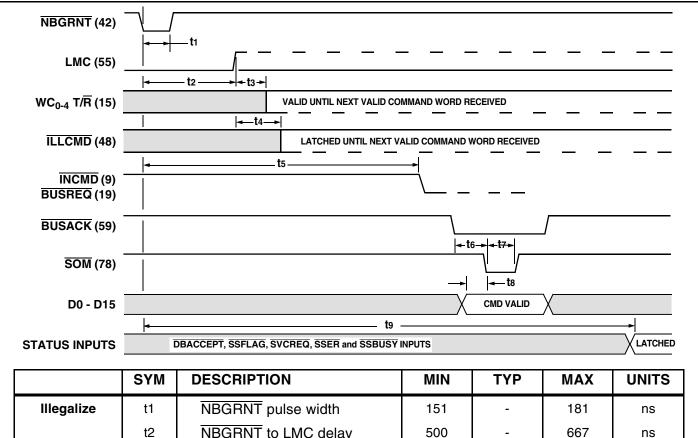
Upon receipt of a valid command in the RTU mode, the CT2565 will attempt to (1) transfer 1553 data received to the subsystem, (2) read data from the subsystem for transmission on the 1553 bus, (3) transmit status information to 1553, or (4) set status conditions. All data block transfers are accompanied by a 1553 Status Word. Figure 12 details a RTU single message transfer.

RTU Address pins 33-34 and 72-74 and Address Parity pin (odd parity) should be programmed to a unique RTU (1553) address. These inputs have internal pull-ups and will default a high state if left unconnected. The CT2565 will not respond if odd parity is compromised (See Error Handling).

RTU Initialization

Initialize the CT2565 as an RTU per Table 2. Upon receipt of valid command word from the serial bus (RTU addr<u>essed or</u> broadcast CMD), the CT2565 will pulse NBGRNT (New Bus Grant) pin 42 low.

Figure 12 – RTU Single Message Transfer Flow Diagram


Mode Code Illegalization (Optional)

The word count and TX/RX pins will be latched 800ns (typ) after the falling edge of NBGRNT (See Figure 13, RTU Command Word Handling). Table 5 lists the CT2565 pins associated with mode code illegalization. If the current command is a mode code, LMC (pin 55) will go high. Mode codes can be illegalized, using an external PROM (<200ns access time recommended), by setting ILLCMD low after the NBGRNT flag. This will set the message error (status word) and illegal Mode Code (BIT word) bits followed by transmission of the status word. Using the method, mode commands can be "auto-screened" without interrupting subsystem operation. For a complete list of mode codes, refer to Table 8.

Table 5 – Mode Code Illegalization

PIN #	SYMBOL	DESCRIPTION	
51	WC0	Word Count LSB	
12	WC1	Word Count 1	
52	WC2	Word Count 2	
13	WC3	Word Count 3	
53	WC4	Word Count MSB	
15	T/R	TX/ RX	

Note: A word count field of all 0's indicates 32 data words; all 1's = 31 words.

	t2	NBGRNT to LMC delay	500	-	667	ns
	t3	LMC to WC-T/R latch	-	200	-	ns
	t4	LMC to ILLCMD latch	-	-	333	ns
Legal	t5	NBGRNT to INCMD delay	-	1.0	1.5	μs
	t6	BUSACK to SOM delay	-	166	-	ns
	t7	SOM pulse width	-	166	-	ns
	t8	CMD VALID setup	60	-	100	ns
Status Inputs	t9	NBGRNT low to status latch	-	-	3	μs
Note: Memory read/write signals CS, OE, and ADRINC remain static at logic "1".						

Figure 13 – RTU Command Word Handling/Status Inputs

RTU Commands

A command word transfer will be <u>initiated</u> by the CT2565 after the rising edge of NBGRNT (See Figure 14). In order to allow the command word to be stored in user-defined memory space (separate from data), no memory write operation (CS, WR, ADRINC outputs) will be initiated following the usual DMA-type handshake; a Start Of Message (pin 78: SOM low) pulse indicates that the CMD word is currently valid on the data bus. Note that commands are named from the BC point-of-view (i.e., a TRANSMIT CMD dictates that the addressed RTU must transmit data).

Transmit CMD (RT-BC)

If the subsystem is available (pin 47: SSBUSY high): following transmission of the status word, the CT2565 will initiate a handshake/memory-read respectively for the total number of (data) words defined by the Command Word-word count field. Figure 15 shows the RTU Read/Write Timing. Note that possible data word transfer and short-loop test errors will be reflected in the following status word/bit word. A low on the SSBUSY input will set the corresponding status word flag, and no data transfer will be requested (BUSREQ low) following transmission of the status word.

Receive CMD (BC-RT). A DMA handshake will be initiated for each word received over the 1553 data bus (See Figure 16). If successful, the respective handshake will be followed by a corresponding memory write. Transfer errors such as handshake timeout or SS BUSY will not terminate transfer attempts for the remaining data words, error flagging or status word transmission. transfer will appear to both RTU subsystems as a standard transmit or receive command except: (1) transmission of the data block will not be continuous with that of the receive CMD, and, (2) upon detection of a command-sync field following the receive CMD, RTU(a) will recognize an RT-RT transfer and store the transmit CMD-address field for comparison with the address field of the following (RTU(b) status) word (See Figures 17 and 18). If a mismatch is detected, RTU(a) will issue a message error. The transmitting RTU will respond as in an RT-BC Transmit CMD.

RTU Status/Error Handling

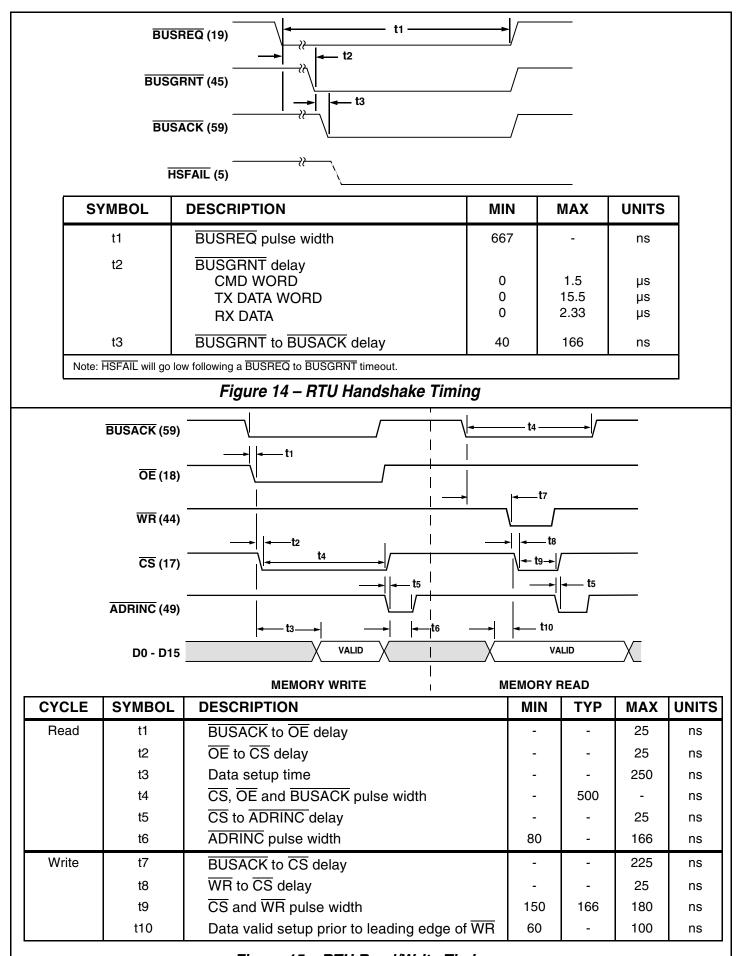

Message transfer errors are indicated using the TIMEOUT, HSFAIL, MSGERR and LOOPERR RTU-status outputs (pins 4, 5, 30 and 46 respectively). Additional error detection mechanisms available include status input manipulation (below) and evaluation of the status and BIT words (See BIT Word).

Table 6 describes error handling mechanisms related to each stage in a message transfer (reading left to right) as well as noting errors associated with a specific CT2565 status output (reading right to left).

Short Loop Test. The last word to be transmitted in a given message transfer (Status word, BIT word or Data word) is stored in a CT2565 internal register. As this word is transmitted to the 1553 bus, it is "looped back" through the active receiver channel for auto-RTU, "SHORTLOOP" verification. A LOOPERR low pulse indicates a mismatch between the stored and looped words. Note that short loop testing is initiated for all RTU transfers except a Broadcast transfer.

RTU(b)-RTU(a) (Transmit/Receive). An RT-RT

TRANSFER/CONDITION	DESCRIPTION	ERROR SIGNAL	PIN
COMMAND WORD Invalid Word Format Invalid Command (format error)	Sync, bit count invalid. Operation disagreement (e.g. Broadcast and Transmit bits set)	<u>None;</u> input ignored MSGERR (also; SW bit)	- 30
Handshake Failure	BUSREQ to BUSGRNT timeout	HSFAIL, suppress SOM, continue	5 78
Illegal Mode Command	Subsystem set ILLCMD (pin 48).	SW message error bit set	
RT-RT Transfer Response Timeout Address mismatch	(Transmit) Command to Status Word time. Transmit Command Address ≠ Status Word	TIMEOUT (transmitting RT) (also; MSGERR bit) MSGERR (Receiving RT)	4 30
	address.	(also; MSGERR bit)	
DATA WORD Handshake Failure Transmit Command Receive Command Number Transmitted ⁽²⁾	BUSREQ to BUSGRNT timeout (Continue) (Message terminated) Low data word-count received. High data word count	HSFAIL ⁽¹⁾ <u>Continue message</u> transfer INCMD high, EOM <u>MSGERR</u> ⁽³⁾ (SW bit) MSGERR after validation (no transfer) SW and BIT- Word also set.	5 9,57 30 30
LOOP WORD Short Loop Long Loop	Looped back through receiver. Received word ≠ to last xmitted 1553 word. (BC only)	LOOPER (also sets Ter- Flag bit).	46
Notes: (1) The HSFAIL low output is reset (high) a	at the start of the next message transfer (NBGRNT low). It pins (SW) to report incorrect word count type errors.		

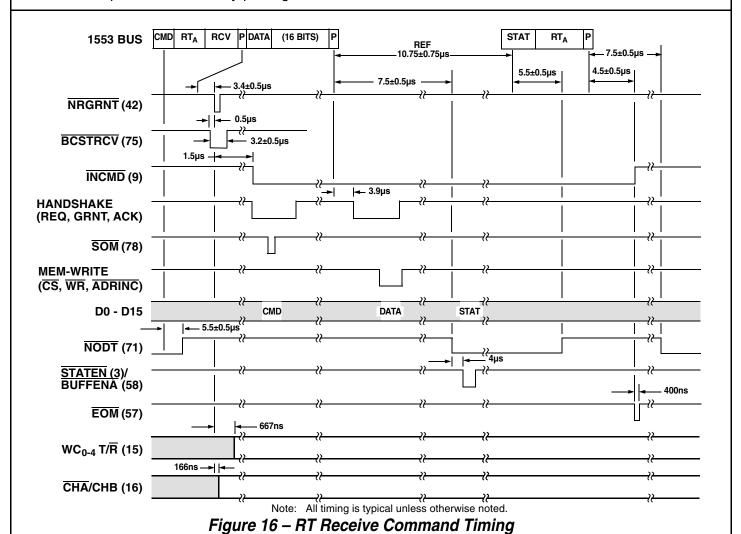
Figure 15 – RTU Read/Write Timing

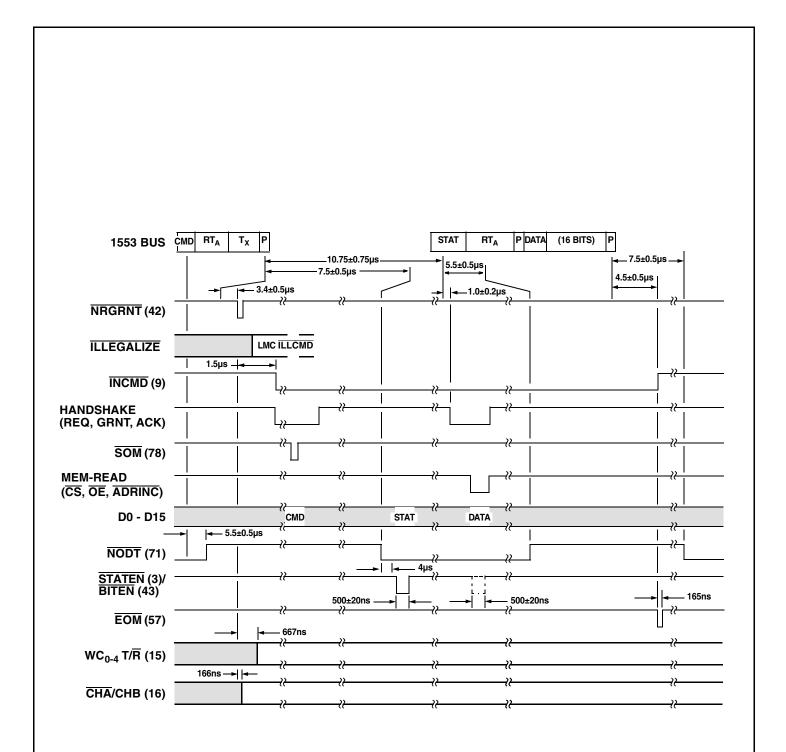
Use of Status Word

The status word may be captured by the subsystem as it is transmitted to the 1553 port by pulsing BUFENA (pin 58) low during STATEN (pin 3: 520ns low pulse). Data becomes valid approximately 50ns after the falling edge of BUFENA. This corresponds with all non-broadcast message transfers and the TRANSMIT STATUS WORD mode command. Note that the status word may be transmitted prior to an error condition (See Transmit CMD). These conditions will be indicated in the "next" status word and may be monitored if the BC requests the SW before it is altered (See Mode Commands).

Subsystem Control

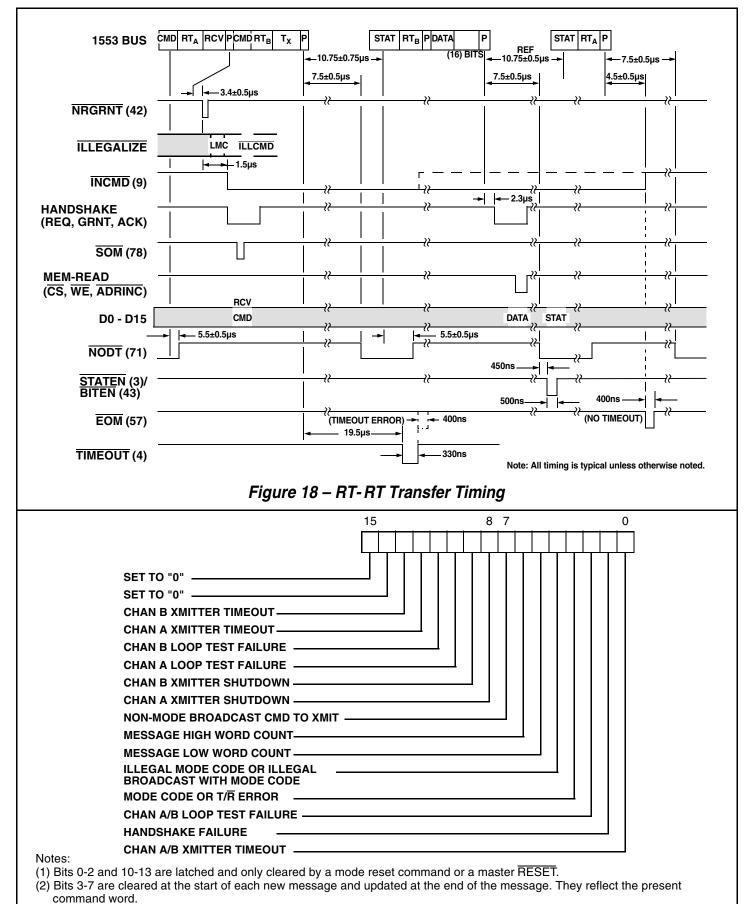
The CT2565 allows the subsystem total control over the status word flags using the inputs indicated in Table 7.


BIT Word


The BIT Word (Built-In-Test) becomes available in response to a TRANSMIT BIT WORD mode command and provides additional status information (See Figure 19) to that provided by the status word. The subsystem may capture the BIT word on the parallel data bus by pulsing BUFENA

(pin 58) low during BITEN (pin 43: approximately 520ns low pulse). Data Becomes valid approximately 50ns after the falling edge of BUFENA. Like the status word, the BIT word cannot be altered by the subsystem.

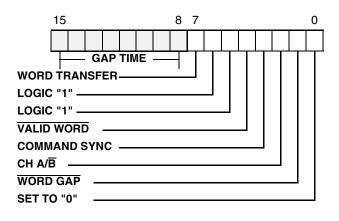
PIN #	SYMBOL	DESCRIPTION
6	DBACCEPT	RT accepts BC operation responsibility (See Table 2).
7	SSFLAG	Transmitted data may be invalid sets SSFLAG bit.
8	SVCREQ	Service Request; see Transmit Vector mode command.
10	SSER	RTU fault exists: sets TERMINAL FLAG bit.
47	SSBUSY	Subsystem cannot service 1553 request at this time.
48	ILLCMD	Mode command subsystem illegalization: Sets MSGERR bit, doesn't suppress status word.


Table 7 – Subsystem Control of RT-Status

Notes: (1) All timing is typical unless otherwise noted. (2) BITEN only occurs when XMIT BIT WD mode code command is received (Handshake and read/write signals are not generated in this case).

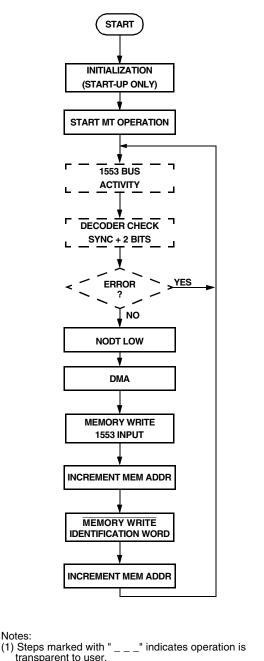
Figure 17 – RT Transmit Command Timing

(3) Bits 8-9 are set by the mode command for Transmitter Shutdown and are cleared by the mode command for Override Transmitter Shutdown, Reset RT or a master RESET.


MT Operation

In the MT mode, the CT2565 captures all valid transmissions on both channels of the 1553 bus, allowing the user to monitor bus activity. Each word is transferred to the subsystem along with an identification for interpretation of the 1553 data stream.

MT Initialization


Initialize the CT2565 for MT operation per Table 2. The CT2565 will remain in an idle state until BCSTART (pin 41) is pulsed low. Figure 21 illustrates MT operation.

Valid words received by the CT2565 are transferred to the subsystem along with an identification Word by a single DMA handshake with two memory-write operations shown in Figure 22, MT Transfer Timing. Since the decoder will reject words based on sync field errors and/or errors in the first 2 non-sync bits, these words will not be processed further (i.e., the subsystem will receive no indication of the receipt of this word).

NAME	Definition
GAP TIME	NODT low time. 2MHz Clock allows 500ns increments to 128µs (remains static at FF on overflow).
WORD TRANSFER	Logic "1" indicates successful transfer to subsystem.
WORD TRANSFERRED	Indicates successful transfer (See bit 7)
VALID WORD	Reset (1) indicates Manchester error, Parity error, Low Bit Count and/or Status sync field.
COMMAND SYNC	Logic "1" indicates Command or Status sync field. Logic "0" indicates data sync.
CHAN A/B	Logic "1" if word received on 1553 bus Channel B.
WORD GAP	Set (0) if current word was received at least 2µs after receipt of previous word (parity to mid-sync).

Note: Subsystem should clear entire memory prior to start of MT operation.

(2) Steps marked with " ____ " indicates user interaction required.

Figure 21 – MT Operation Flow Chart

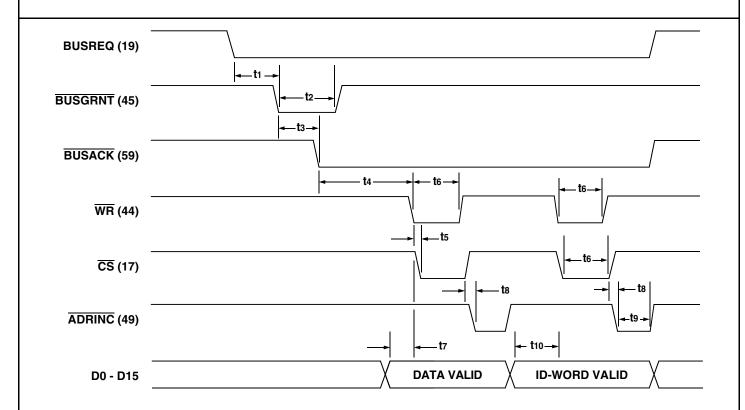
Notes:

Figure 20 – Identification Word

Simultaneous Transmission

Transmissions appearing simultaneously on alternate 1553-bus channels will be captured by CT2565 sequentially providing that each BUSREQ is answered by the subsystem with a BUSGRNT within the handshake timeout period.

RESET Signal


Pulsing RESET low will suspend MT operation by (1) INCMD goes high (EOM goes low on the rising edge) and (2) the CT2565 enters an idle state. MT operation may be restored by pulsing BCSTART low (above) or another mode of operation may be selected (See Table 2).

Handshake Failure

Note that a handshake failure will abort the current transfer. Monitoring will resume upon receipt of a valid word on the 1553 bus.

MODE CODES

Nine of the 13 available, dual redundant mode codes are handled by the CT2565 without user intervention. Of the four remaining codes, Dynamic Bus Control and Synchronize (no data) require subsystem notification. The remaining two mode codes, Transmit Vector Word and Synchronize (with data) involve data transfer with the subsystem. Mode command illegalization and handling are detailed in the RTU Operation section and listed in Table 8.

CYCLE	SYM	DESCRIPTION	MIN	ΤΥΡ	MAX	UNITS
Handshake	t1	BUSREQ to BUSGRNT delay	0	-	800	ns
	t2	BUSGRNT pulse width	166	-	-	ns
	t3	BUSGRNT to BUSACK delay	?	-	?	ns
Write Only	t4	BUSACK to WR delay	320	330	370	ns
	t5	WR to CS time	-	-	25	ns
	t6	\overline{WR} and \overline{CS} pulse width	150	166	175	ns
	t7	DATA VALID setup	-	-	50	ns
	t8	CS to ADRINC delay	-	-	25	ns
	t9	ARINC pulse width	80	-	166	ns
	t10	ID WORD VALID setup	-	-	100	ns

Figure 22 – MT Transfer Timing

DYNAMIC BUS CONTROL (00000) MESSAGE SEQUENCE = DBC * STATUS The CT2565 responds with status. If the subsystem wants control of the bus, it must set DBACC within 2.5us after NBGRT. ERROR CONDITIONS 1. Invalid Command. No response, command ignored. 2. Command Followed by Data Word. No status response. Bits set: message error (SW), High word Count (BIT Word). 3. T/R bit Set to Zero. No status response. Bits set: message error, (SW), T/R Error (Bit Word). 4. Zero T/R bit and Broadcast Address. No status response. Bits set: message error, broadcast received (SW), Illegal Mode Code, T/R Error (BIT Word). 5. Broadcast Address. No status response. Bits set: message error, broadcast received (SW), Illegal Mode Code (BIT Word). 5. Broadcast Address. No status response. Bits set: message error, broadcast received (SW), Illegal Mode Code (BIT Word). SYNCHRONIZE WITHOUT DATA WORD (00001) MESSAGE SEQUENCE = SYNC * STATUS The CT2565 responds with status. If sent as a broadcast, the broadcast receive bit will be set and status response suppressed. ERROR CONDITIONS

- 1. Invalid Command. No response, command ignored.
- 2. Command Followed by Data Word. No status response. Bits set: message error (SW), High Word Count (BIT Word).
- 3. T/R bit Set to Zero. No status response. Bits set: message error (SW), T/R Error (BIT Word).
- 4. Zero T/R bit and Broadcast Address. No status response. Bits set: message error, broadcast received (SW), Illegal Mode Code, T/R Error (BIT Word).

TRANSMIT STATUS WORD (00010)

MESSAGE SEQUENCE = TRANSMIT STATUS * STATUS

The status and BIT word registers are not altered by this command and contain the resulting status from the previous command.

ERROR CONDITIONS

- 1. Invalid Command. No response, command ignored.
- 2. Command Followed by Data Word. No status response. Bits set: message error (SW), High Word Count (BIT Word).
- 3. T/R bit Set to Zero. No status response. Bits set: message error (SW), T/R Error (BIT Word).
- 4. Zero T/R bit and Broadcast Address. No status response. Bits set: message error, broadcast received (SW), Illegal Mode Code, T/R Error (BIT Word).
- 5. Broadcast Address. No status response. Bits set: message error, broadcast received (S/W), Illegal Mode code, T/R Error (BIT Word).

INITIATE SELF-TEST (00011)

MESSAGE SEQUENCE = SELF TEST * STATUS

The CT2565 responds with a status word. If the command was broadcast, the broadcast received bit is set and status transmission suppressed. Short-loop test is initiated on the status word transmitted. If the test fails, an RT fail flag is generated.

ERROR CONDITIONS

- 1. Invalid Command. No response, command ignored.
- 2. Command Followed by Data Word. No status response. Bits set: message error (SW), High Word Count (BIT Word).
- 3. T/R bit Set to Zero. No status response. Bits set: message error (SW), T/R Error (BIT Word).
- 4. Zero T/R bit and Broadcast Address. No status response. Bits set: message error, broadcast received (SW), T/R Error (BIT Word).
- 5. Faulty Test. Bits set: terminal flag (SW), A/B Loop Test Fail, Current 1553 Bus (A or B) Loop Test Fail (BIT Word).

TRANSMITTER SHUTDOWN (00100)

MESSAGE SEQUENCE - SHUTDOWN * STATUS

This command is only used with dual redundant bus systems. The CT2565 responds

with status. At the end of the status transmission, the CT2565 inhibits any further transmission from the dual redundant channel. Once shutdown, the transmitter can only be re-activated by Override Transmitter Shutdown or RESET RT commands.

ERROR CONDITIONS

- 1. Invalid Command. No response, command ignored.
- 2. Command Followed by Data Word. No status response. Bits set: message error (SW), High Word Count (BIT Word).
- 3. T/R bit Set to Zero. No status response. Bits set: message error (SW), T/R Error BIT Word).
- 4. Zero T/R bit and Broadcast Address. No status response. Bits set: message error, broadcast received (SW), Illegal Mode Code, T/R Error (BIT Word).

OVERRIDE TRANSMITTER SHUTDOWN (00101)

MESSAGE SEQUENCE - OVERRIDE SHUTDOWN - STATUS

This command is only used with dual redundant bus systems. The CT2565 responds with status. At the end of the status transmission, the CT2565 re-enables the transmitter of the redundant bus. If the command was broadcast, the broadcast received bit is set and status transmission is suppressed.

ERROR CONDITIONS

- 1. Invalid Command. No response, command ignored.
- 2. Command Followed by Data Word. No status response. Bits set: message error (SW), High Word Count (BIT Word).
- 3. T/R bit Set to Zero. No status response. Bits set: message error (SW), T/R Error (BIT Word).
- 4. Zero T/R bit and Broadcast Address. No status response. Bits set: message error, broadcast received (SW), Illegal Mode Code, T/R Error (BIT Word).

INHIBIT TERMINAL FLAG BIT (00110)

MESSAGE SEQUENCE - INHIBIT TERMINAL FLAG * STATUS

The CT2565 responds with status and inhibits further internal or external setting of the terminal flag bit in the status register. Once the terminal flag has been inhibited, it can only be reactivated by an Override Inhibit Terminal Flag or Reset RT command. If the command was broadcast, the broadcast received bit is set and status transmission is suppressed.

ERROR CONDITIONS

- 1. Invalid Command. No response, command ignored.
- 2. Command Followed by Data Word. No status response. Bits set: message error (SW), High Word Count (BIT Word).
- 3. T/R bit Set to Zero. No status response. Bits set: message error (SW), T/R Error (BIT Word).
- 4. Zero T/R bit and Broadcast Address. No status response. Bits set: message error, broadcast received (SW), T/R Error (BIT Word).

OVERRIDE INHIBIT TERMINAL FLAG BIT (00111)

MESSAGE SEQUENCE - OVERRIDE INHIBIT TERMINAL FLAG * STATUS

The RTU responds with status and reactivates the terminal flag bit in the status register. If the command was broadcast, the broadcast received bit is set and status transmission is suppressed.

ERROR CONDITIONS

- 1. Invalid Command. No response, command ignored.
- 2. Command Followed by Data Word. No status response. Bits set: message error (SW), High Word Count (BIT Word).
- 3. T/R bit Set to Zero. No status response. Bits set: message error (SW), T/R Error (BIT Word).
- 4. Zero T/R bit and Broadcast Address. No status response. Bits set: message error, broadcast received (SW), T/R Error (BIT Word).

RESET REMOTE TERMINAL (01000)

MESSAGE SEQUENCE - RESET REMOTE TERMINAL * STATUS

The CT2565 responds with status and internally resets. Transmitter shutdown, mode commands, and inhibit terminal flag commands will be reset. If the command was broadcast, the broadcast received bit is set and the status word is suppressed.

ERROR CONDITIONS

- 1. Invalid Command. No response, command ignored.
- 2. Command Followed by Data Word. No status response. Bits set: message error (SW), High Word Count (BIT Word).
- 3. T/R bit Set to Zero. No status response. Bits set: message error (SW), T/R Error (BIT Word).
- 4. Zero T/R bit and Broadcast Address. No status response. Bits set: message error, broadcast received (SW), T/R Error (BIT Word).

RESERVED MODE CODES (01001-01111)

MESSAGE SEQUENCE = RESERVED MODE CODES * STATUS

The CT2565 responds with status. If the command is illegalized through an optional PROM, the message error bit is set and only the status word is transmitted.

ERROR CONDITIONS

- 1. Invalid Command. No response, command ignored.
- 2. Command Followed by Data Word. No status response. Bits set: message error (SW), High Word Count (BIT Word).
- 3. T/R bit Set to Zero. No status response. Bits set: message error (SW), Illegal Mode Code (BIT Word).
- 4. Zero T/R bit and Broadcast Address. No status response. Bits set: message error, broadcast received (SW), Illegal Mode Code (BIT Word).

TRANSMIT VECTOR WORD (10000)

MESSAGE SEQUENCE - TRANSMIT VECTOR WORD * STATUS VECTOR WORD

The CT2565 transmits a status word followed by a vector word. The contents of the vector word (from the subsystem) are enabled onto DBO-DB15 with BUSREQ after the command transfer (same as data word in a normal transmit command).

ERROR CONDITIONS

- 1. Invalid Command. No response, command ignored.
- 2. Command Followed by Data Word. No status response. Bits set: message error (SW) High Word Count (BIT Word).
- 3. T/R bit Set to Zero. No status response. Bits set: message error (SW), T/R Error, Low Word Count (BIT Word).
- 4. Zero T/R bit and Broadcast Address. No status response. Bits set: message error, broadcast received (SW), Illegal Mode Code, T/R Error, Low Word Count (BIT Word).
- 5. Broadcast Address. No status response. Bits set: message error, broadcast received (SW), Illegal Mode code, (BIT Word).

SYNCHRONIZE WITH DATA WORD (10001)

MESSAGE SEQUENCE - SYNCHRONIZE DATA WORD * STATUS

The data word received following the command word is transferred to the subsystem. The status register is then enabled and its contents transferred onto the data bus and transmitted. If the command was broadcast, the broadcast received bit is set and status transmission is suppressed.

ERROR CONDITIONS

- 1. Invalid Command. No response, command ignored.
- 2. Command Not Followed by Data Word. No status response. Bits set: message error (SW), Low Word Count (BIT Word).
- 3. Command followed by too many Data Words. No status response. Bits set: message error (SW), High Word Count (BIT word).
- 4. Command T/R bit Set to One. No status response. Bits set: message error (SW), T/R Error, High Word Count (BIT Word).
- 5. Command, T/R bit Set to One and Broadcast Address. No status response. Bits set: message error, broadcast received (SW), High Word Count, T/R Error (BIT Word).

TRANSMIT LAST COMMAND (10010)

MESSAGE SEQUENCE = TRANSMIT LAST COMMAND * STATUS LAST COMMAND

The status and BIT word registers are not altered by this command. The SW contains the status from the previous command. The data word transmitted contains the previous valid command (providing it was not another TRANSMIT LAST COMMAND).

ERROR CONDITIONS

- 1. Invalid Command. No response, command ignored.
- 2. Command Followed by Data Word. No status response. Bits set: message error (SW).
- 3. T/R bit Set to Zero. No status response. Bits set: message error (SW), T/R Error, Low Word Count (BIT Word).
- 4. Zero T/R bit and Broadcast Address. No status response. Bits set: message error, (SW), Illegal Mode Code T/R Error (BIT Word).
- 5. Broadcast Address. No status response. Bits set: message error, broadcast received (SW), Illegal Mode Code (BIT Word).

TRANSMIT BIT WORD (10011)

MESSAGE SEQUENCE - TRANSMIT BIT WORD * STATUS BIT WORD

The CT2565 transmits a status word followed by the BIT word . When activated, BITEN allows the subsystem to latch the BIT word on the parallel data bus. The BIT word is not altered by this command; however, the next SW will reflect errors in this transmission.

ERROR CONDITIONS

- 1. Invalid Command. No response, command ignored.
- 2. Command Followed by Data Word. No status response. Bits set: message error (SW).
- 3. T/R bit Set to Zero. No status response. Bits set: message error (SW), T/R Error, Low Word Count (BIT Word).
- 4. Zero T/R bit and Broadcast Address. No status response. Bits set: message error, broadcast received (SW), Illegal Mode Code, T/R Error, Low Word Count (BIT Word).
- 5. Broadcast Address. No status response. Bits set: message error, broadcast received (SW), Illegal Mode code, (BIT Word).

SELECTED TRANSMITTER SHUTDOWN (10100)

MESSAGE SEQUENCE - TRANSMITTER SHUTDOWN DATA * STATUS

The data word received is transferred to the subsystem and status is transmitted. If the

command was broadcast, the broadcast received bit is set and status transmission suppressed. Intended for use with RTs with more than one dual redundant channel.

ERROR CONDITIONS

- 1. Invalid Command. No response, command ignored.
- Command Not Followed by Data Word. No status response. Bits set: message error (SW), High Word Count, Illegal Mode Code (BIT Word).
- 3. Command Followed by too many Data Words. No status response. Bits set: message error (SW), Low Word Count, Illegal Mode Code (BIT Word).
- 4. Command T/R bit Set to One. No status response. Bits set: message error (SW), Illegal Mode Code, High word count (BIT Word).
- 5. Command T/R bit Set to One and Broadcast Address. No status response. Bits set: message error, broadcast received (SW), Illegal Mode Code, High Word Count (BIT Word).

OVERRIDE SELECTED TRANSMITTER SHUTDOWN (10101)

MESSAGE SEQUENCE - TRANSMITTER SHUTDOWN DATA * STATUS

The data word received after the command word is transferred to the subsystem. If the command was broadcast, the broadcast received bit is set and status transmission suppressed.

ERROR CONDITIONS

- 1. Invalid Command. No response, command ignored.
- 2. Command Not Followed by Data Word. No status response. Bits set: message error (SW), Low Word Count, Illegal Mode Code (BIT Word).
- 3. Command Followed by too many Data Words. No status response. Bits set: message error (SW), High Word Count, Illegal Mode Code (BIT Word).
- 4. Command T/R bit Set to One. No status response. Bits set: message error (SW), Illegal Mode Code, High Word Count (Bit Word).
- Command T/R bit Set to One and Broadcast Address. No status response. Bits set: message error, broadcast received (SW), Illegal Mode Code, High Word Count, T/R (BIT Word).

RESERVED MODE CODES

MESSAGE SEQUENCE = RESERVED MODE CODE (T/R = 1) * STATUS RESERVED MODE CODE (T/R = 0) * STATUS

The CT2565 responds with status. If the command was broadcast, the broadcast received bit is set and status transmission suppressed. **ERROR CONDITIONS (T/R = 1)**

1. Invalid Command. No response, command ignored.

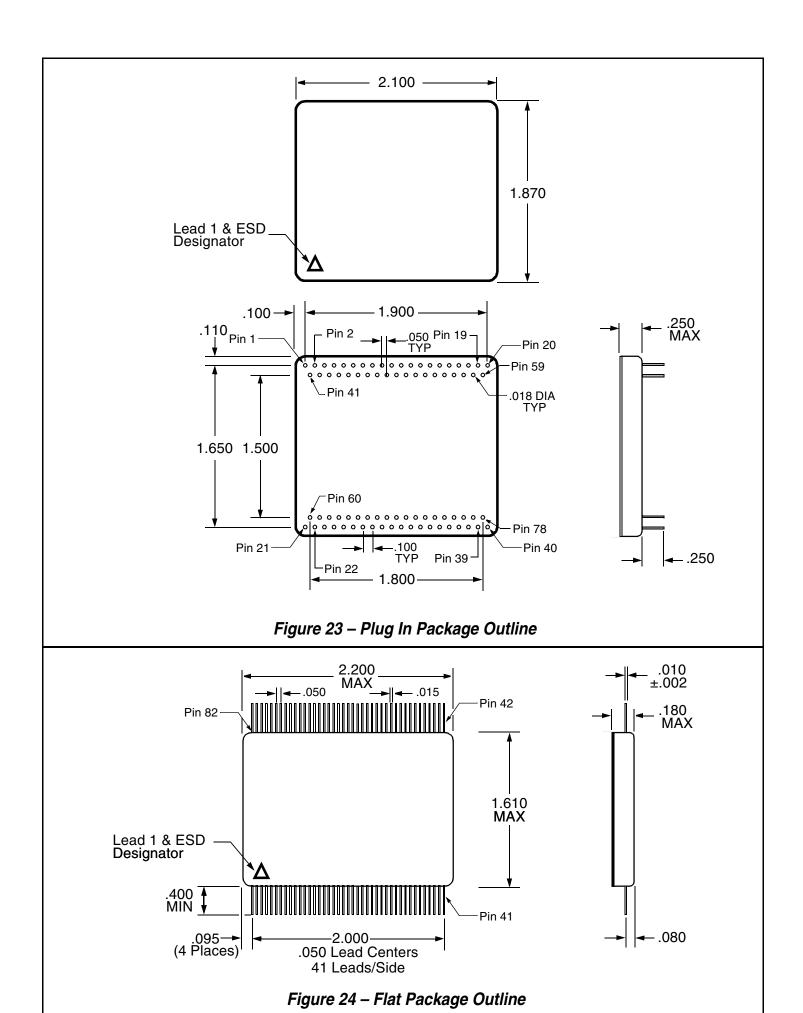
2. Command Followed by Data Word. No status response. Bits set: message error (SW), High Word Count, Illegal Mode Code (BIT Word).

ERROR CONDITIONS (T/R = 0)

- 1. Invalid Command. No response, command ignored.
- 2. Command not Followed by Contiguous Data Word. No status response. Bits set: message error (SW), High word Count, Illegal Mode Code (BIT Word).
- 3. Command Followed by too many Data Words. No status response. Bits set: message error (SW), High Word Count, Illegal Mode Code (BIT Word).

Pin #	Symbol	Description				
1	RT/BC	Mode Select input - logic "1" for RT mode, logic "0" for BC mode.				
2	MT	Monitor mode enable. When unit is operating as a BC, a logic "0" will select monitor mode.				
3	STATEN	Output signal in RT mode that indicates status word is being transferred on the internal bus.				
4	TIMEOUT	Indicates No Response Timeout has occured during BC and RTU (RT to RT transfer).				
5	HSFAIL	Dutput in RT mode indicating the DMA transfer did not occur in time to allow proper peration on the 1553 bus.				
6	DBACCEPT	Input signal used to set DBACCEPT bit in status register for response to a valid mode command on the 1553 bus.				
7	SSFLAG	Input which controls the SSFLAG bit in the status register.				
8	SVCREQ	Input which controls the service request bit in the status word.				
9	INCMD	Output signal indicating the RT is currently in a message transfer sequence.				
10	SSER	Input which controls the subsystem error bit in the status register.				
11	TESTOUT	Factory test point. Do not connect.				
12	WC1	WC bit 1 - latched output of command word.				
13	WC3	WC bit 3 - latched output of command word.				
14	TXINH B	Transmitter inhibit output for channel B.				
15	T/R	Output indicating T/\overline{R} bit of current command word in RT mode.				
16	CHA/CHB	Output indicating current selected channel ($0 = Channel A$).				
17	CS	Chip Select output for subsystem memory control.				
18	ŌĒ	Output Enable output for subsystem memory control.				
19	BUSREQ	Output signal used to initiate transfer to/from subsystem.				
20	+5V	+5 Volt DC input.				
21	DB0	Least significant bit - 16 bit parallel data bus.				
22	DB2	Bit 2 of data bus.				
23	DB4	Bit 4 of data bus.				
24	DB6	Bit 6 of data bus.				
25	DB8	Bit 8 of data bus.				
26	DB10	Bit 10 of data bus.				
27	DB12	Bit 12 of data bus.				
28	DB14	Bit 14 of data bus.				
29	LWORD	Last word output during BC mode indicates last data word of the current message transfer has been transferred on the parallel bus.				

Pin #	Symbol	Description				
30	MSGERR	Output signal which indicates an error occurred during the current message sequence.				
31	TXDATA A	Bipolar serial data output to positive input of bus transceiver.				
32	RXDATA A	Bipolar serial input from negative output of bus transceiver.				
33	RTADP	Parity bit input for RT address.				
34	RTAD1	Bit 1 of RT address input.				
35	RTAD3	Bit 3 of RT address input.				
36	RESET	System reset input - resets all inputs in module.				
37	TXDATA B	Bipolar serial data output to negative input bus transceiver.				
38	RXDATA B	Bipolar serial data input from positive output of bus transceiver.				
39	12MHz	12MHz TTL clock input.				
40	GROUND	Signal ground.				
41	BCSTART	Cycle enable input Logic "0" initiates bus controller message transfer operation.				
42	NBGRNT	New bus grant output from RT indicates beginning of message transfer sequence.				
43	BITEN	Built in Test enable output indicates RT is transferring BIT word on internal 16 bit bus.				
44	WR	Write enable output for control of subsystem memory.				
45	BUSGRNT	Bus request input in response to DTREQ. Allows BC/RT to transfer data to subsystem.				
46	LOOPERR	Loop error output. Logic "0" indicates failure of loop back transmitted data.				
47	SSBUSY	Subsystem busy input for RT status word.				
48	ILLCMD	Illegal command input to RT, used to block RT response to an illegal command.				
49	ADRINC	Increment output pulse. Goes LOW at the completion of each word transfer to/from subsystem. Can increment external address counter.				
50	CHASSIS	Frame ground electricity isolated from signal ground				
51	WC0	LSB of current command word count field.				
52	WC2	Bit 2 of word count field.				
53	WC4	Bit 4 of word count field.				
54	TXINH A	Transmitter inhibit output signal for Channel A.				
55	LMC	Latched Mode Command. Logic "1" indicates current word command is a mode code word, WC0-WC4.				
56	TESTIN	Factory test point. Do not connect.				
57	EOM	End of message output. Logic "0" occurs when BC/RT message is completed.				
58	BUFENA	Buffer enable input, may be driven LOW by STATEN or BITEN if subsystem must read bit or Status words. Enables internal 16 bit bus onto subsystem bus.				


Table 9A – Pin Function Table (78 Pin DDIP) (continued)						
Pin #	Symbol	Description				
59	BUSACK	Bus acknowledge output. LOW during DMA Handshake, in response to BUSGRNT.				
60	DB1	Bit 1 of 16 bit parallel bus.				
61	DB3	Bit 3 of 16 bit parallel bus.				
62	DB5	Bit 5 of 16 bit parallel bus.				
63	DB7	Bit 7 of 16 bit parallel bus.				
64	DB9	Bit 9 of 16 bit parallel bus.				
65	DB11	Bit 11 of 16 bit parallel bus.				
66	DB13	Bit 13 of 16 bit parallel bus.				
67	DB15	Bit 15 of 16 bit parallel bus.				
68	STATERR	BC output indicates one or more bits set or address mismatch in a received status word.				
69	TXDATA A	Bipolar serial data output to negative input of bus transceiver.				
70	rxdata a	Bipolar serial data input from positive output of bus transceiver.				
71	NODT	No data input. Logic "0" indicates the 1553 bus is idle; HIGH means device front end is active.				
72	RTAD0	LSB of 5 bit RT address.				
73	RTAD2	Bit 2 of RT address.				
74	RTAD4	Bit 4 of RT address.				
75	BCSTRCV	Broadcast receive. Logic "0" means the current command was a broadcast command.				
76	TXDATA B	Bipolar serial output to positive input of bus transceiver.				
77	RXDATA B	Bipolar serial input from negative output of bus transceiver.				
78	SOM	Start of message output indicates beginning of RT/BC message transfer sequence.				

				Pin #	Function	Pin #	Function
				1	RT/BC	40	GND
				2	MT	41	BCSTART
				3	STATEN	42	NBGRNT
RT/BC		DBO	21	4	TIMEOUT	43	BITEN
BCSTART	CT2565	DB1	60	5	HSFAIL	44	WR
MT NBGRNT		DB2	<u>22</u> 61	6	DBACCEPT	45	BUSGRNT
STATEN	MIL-STD-1553	DB3 DB4	23	7	SSFLAG	46	LOOPERR
BITEN	BUS Controller,	DB5	62	8	SVCREQ	47	SSBUSY
TIMEOUT	Remote Terminal and	DB6	24	9		48	ILLCMD
WR	BUS MONITOR	DB7	<u>63</u>	10	SSER	49	ADRINC
HSFAIL BUSGRNT		DB8 DB9	<u>25</u> 64	11	TESTOUT	50	CASE GND
DBACCEPT		DB9 DB10	26	12	WC1	51	WC0
LOOPERR		DB11	65	13	WC3	52	WC0 WC2
SSFLAG		DB12	27	14	TXINH B	53	WC2 WC4
SSBUSY		DB13	<u>66</u> 28	15	T/R	54	TXINH A
SVCREQ		DB14 DB15 (MSB)	67	16	CHB/CHA	55	
INCMD		LWORD	29	17			TESTIN
ADRINC		STATERR	68			56	
SSER		MSGERR	30	18	-	57	EOM
CASE GND		TXDATA A TXDATA A	<u>69</u> 31	19	BUSREQ	58	BUFENA
WC0		RXDATA A	70	20	+ 5 Volt	59	BUSACK
WC1		RXDATA A	32	21	DB0 (LSB)	60	DB1
WC2		NODT	71	22	DB2	61	DB3
WC3		RTADP	33	23	DB4	62	DB5
WC4 TXINH B		RTAD0 RTAD1	<u>72</u> 34	24	DB6	63	DB7
TXINH A		RTAD2	73	25	DB8	64	DB9
T/R		RTAD3	35	26	DB10	65	DB11
		RTAD4	74	27	DB12	66	DB13
CHB/CHA TESTIN		RESET BCSTRCV	<u>36</u> 75	28	DB14	67	DB15 (MSB
		TXDATA B	37	29	LWORD	68	STATERR
EOM		TXDATA B	76	30	MSGERR	69	TXDATA A
OE		RXDATA B	38	31	TXDATA A	70	RXDATA A
BUFENA		RXDATA B	<u>77</u> 39	32	RXDATA A	71	NODT
BUSREQ BUSACK		12MHz SOM	<u> </u>	33	RTADP	72	RTAD0
+5 Volt		GND	40	34	RTAD1	73	RTAD2
)	_	35	RTAD3	74	RTAD4
				36	RESET	75	BCSTRCV
				37	TXDATA B	76	TXDATA B
				38	RXDATA B	77	RXDATA B
				39	12MHz	78	SOM

DDIP Pin Connection Diagram, CT2565 and Pinout

				(FP)			
				Pin #	Function	Pin #	Function
				1	N/C	42	N/C
				2	RT/BC	43	GROUND
				3	BCSTART	44	SOM
			82	4	MT	45	12MHz
2 RT/BC 3 BCSTART	CT2565FP	DB0 (LSB) DB1	<u>81</u> 80	5	NBGRNT	46	RXDATA B
		DB2	79	6	STATEN	47	RXDATA B
5 NBGRNT	MIL-STD-1553	DB3	78	7	BITEN	48	TXDATA B
<u>STATEN</u>	BUS Controller,	DB4	77	8	TIMEOUT	49	TXDATA B
7 BITEN 3 TIMEOUT	Remote Terminal and	DB5 DB6	<u>76</u> 75	9	WR	50	BCSTRCV
3 TIMEOUT	BUS MONITOR	DB0 DB7	75	10	HSFAIL	51	RESET
HSFAIL		DB8	73	11	BUSGRNT	52	RTAD4
BUSGRNT		DB9	72	12	DBACCEPT	53	RTAD3
2 DBACCEPT		DB10	71	13	LOOPERR	54	RTAD2
B LOOPERR SSFLAG		DB11 DB12	<u>70</u> 69	14	SSFLAG	55	RTAD1
5 SSBUSY		DB12	68	15	SSBUSY	56	RTAD0
SVCREQ		DB14	67	16	SVCREQ	57	RTADP
		DB15 (MSB)	66	17	ILLCMD	58	NODT
3 INCMD ADRINC		LWORD STATERR	<u>65</u> 64	18		59	RXDATA A
) SSER		MSGERR	63	19	ADRINC	60	RXDATA A
CASE GND		TXDATA A	62	20	SSER	61	TXDATA A
2 TESTOUT		TXDATA A	61	21	CASE GND	62	
3 WC0 4 WC1		RXDATA A RXDATA A	<u>60</u> 59	22	TESTOUT	63	MSGERR
5 WC2		NODT	58	23	WC0	64	STATERR
WC3		RTADP	57	24	WC1	65	LWORD
7 WC4		RTAD0	56	25	WC1 WC2	66	DB15 (MSB)
3 TXINH B 7 TXINH A		RTAD1 RTAD2	<u>55</u> 54	26	WC2	67	DB13 (MOD)
$T_{\overline{R}}$		RTAD2	53	27	WC2 WC4	68	DB13
		RTAD4	52	28	TXINH B	69	DB10 DB12
		RESET	<u>51</u>	20	TXINH A	70	DB12
3 TESTIN 4 CS		BCSTRCV TXDATA B	<u>50</u> 49	30	T/R	70	DB10
<u>1 CS</u> 5 EOM		TXDATA B	<u>49</u> 48	30	LMC	72	DB10 DB9
<u>DE</u>		RXDATA B	47	32		72	DB9 DB8
BUFENA		RXDATA B	46	33	TESTIN	73	DB8 DB7
BUSREQ		12MHz SOM	45	34		74	DB7 DB6
BUSACK +5V		GROUND	<u>44</u> 43	35	EOM	76	DB5
N/C		N/C	42	35			DB5 DB4
<u> </u>)				77	
				37	BUFENA	78	DB3
				38	BUSREQ	79	DB2
				39	BUSACK	80	DB1
				40	+5V	81	DB0 (LSB)

Flat Package Pin Connection Diagram, CT2566 and Pinout

CIRCUIT TECHNOLOGY -			

Ordering Information

Model Number	Screening	DESC SMD #	Package		
CT2565	Military Temperature, -55°C to +125°C,	-	Plug in		
CT2565-FP	Screened to the individual test methods of MIL-STD-883	-	Flat Package		
CT2565-001-1	Per SMD	5962-8858501XA	Plug in		
CT2565-001-2		5962-8858501XC	Plug in		
CT2565-201-1		5962-8858501 YA	Flat Package		
CT2565-201-2		5962-8858501YC	Flat Package		

Specifications subject to change without notice

Aeroflex Circuit Technology	Telephone: (516) 694-6700		
35 South Service Road	FAX: (516) 694-6715		
Plainview New York 11803	Toll Free Inquiries: (800) THE-1553		
www.aeroflex.com/act1.htm	E-Mail: sales-act@aeroflex.com		