Voltage Transducer CV 4-4000

For the electronic measurement of voltages : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data						
V _{PN}	Primary nominal r.m.s. voltage	2828	V			
V _P	Primary voltage, measuring range	0 ± 4000	V			
	Secondary analog voltage @ $V_{P_{max}}$	10	V			
V _s K _N	Conversion ratio	4000 V / 10 V				
R	Load resistance	з 2	kΩ			
C	Capacitive loading	£ 5	nF			
v _c	Supply voltage (± 5 %)	± 15	V			
І _с	Current consumption	$35 + V_{s} / R_{1}$	mΑ			
Ŭ _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn	9	kV			

Accuracy - Dynamic performance data

			Тур	Max	
X _G	Overall accuracy @ $V_{_{P max}}$	T _A = 25°C		± 1	% %
		- 25°C + 70°C		± 2	%
V o	Offset voltage @ $\mathbf{V}_{P} = 0$	T _A = 25°C		± 30 ± 60	m V m V
-		- 25°C + 70°C		± 60	mν
t,	Response time $^{1)}$ @ 90 % of $\mathbf{V}_{_{\mathrm{PN}}}$		≅ 25		μs
f	Frequency bandwidth (- 3 dB) @ !	50 % of V _{PN}	DC '	11	kHz

General data

T	Ambient operating temperature	- 25 + 70	°C
T _s	Ambient storage temperature	- 40 + 85	°C
P	Total primary power loss	2.86	W
\mathbf{R}_{1}	Primary resistance	2.8	MΩ
m	Mass	600	g
	Standards ²⁾³⁾	EN 50155	
		EN 50178	

Features

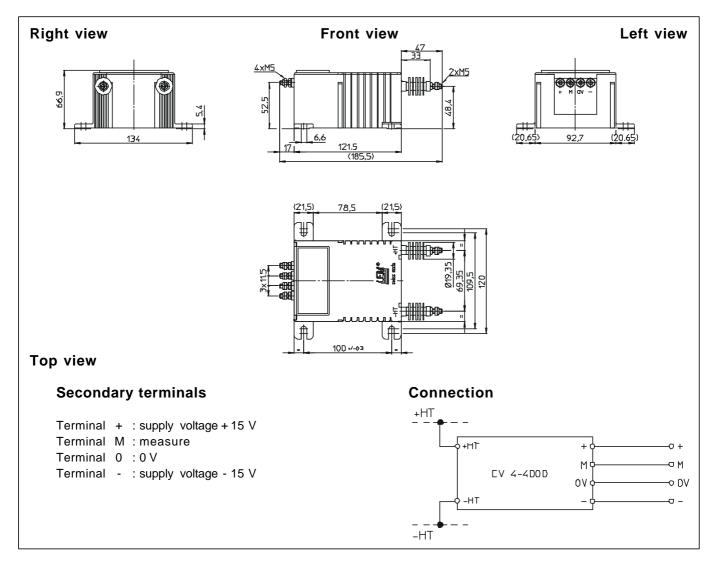
- Closed loop (compensated) voltage transducer
- Insulated plastic case recognized according to UL 94-V0

 $V_{_{\rm PN}} = 2828 \ V$

• Patent pending.

Advantages

- Very good linearity
- Low thermal drift
- Low response time
- High bandwidth.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications
- Railway overhead line voltage measurement.

Notes : 1) With a dv/dt of 1000 V/µs

- ²⁾ Specifications according to IEC 1000-4-3 are not guaranteed around 100 MHz. Sensitivity to induced radiation on connecting cable.
- ³⁾ A list of corresponding tests is available.

Dimensions CV 4-4000 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary
- Fastening torque

 \pm 0.5 mm 4 slots \varnothing 6.6 mm M5 threaded studs M5 threaded studs 2.2 Nm or 1.62 Lb. -Ft.

Remarks

- $\bullet~V_{_{\rm S}}$ is positive when $V_{_{\rm P}}$ is applied on terminal +HT.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.