

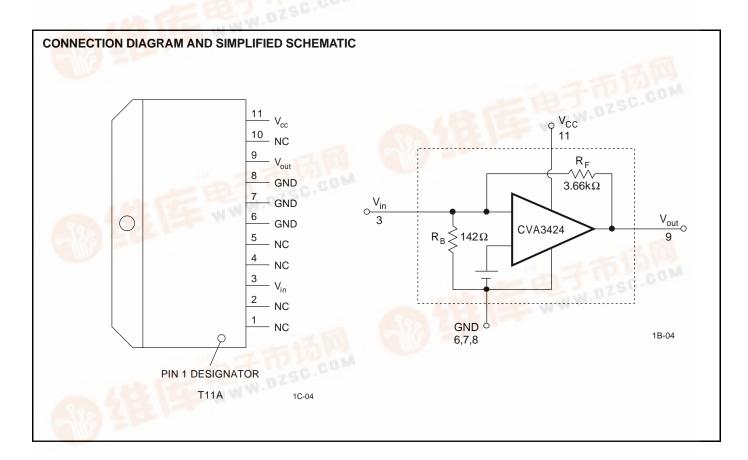
185MHz CRT Driver

CVA3424A / CVA3424

FEATURES

Bandwidth	. 185MHz
Rise/Fall Time	2.5ns
• Swing	
Supply Voltage	80V

APPLICATIONS


 CRT Driver for 2000 x 1600, 1600 x 1280 and 1280 x 1024 Monitors

DESCRIPTION

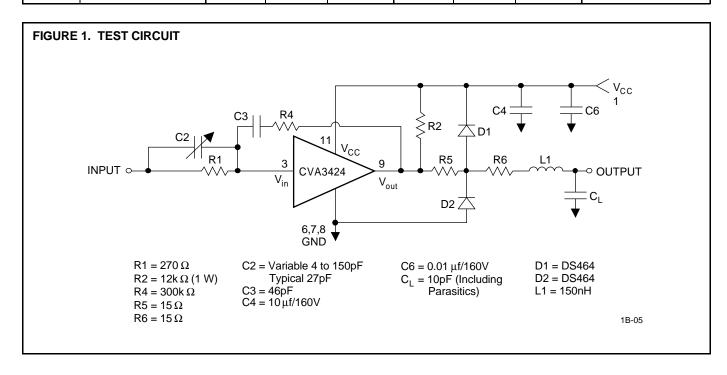
The CVA3424 Family is a video driver amplifier designed specially to drive high resolution color monitors. With rise and fall time of under 2.5ns and 185MHz bandwidth, this device will provide excellent drive capability for the 2000 x 1600, 1600×1280 and 1280×1024 monitors.

ORDERING INFORMATION

Part	Package	Temperature
CVA3424AT	TO-220	-20°C to +90°C
CVA3424T	TO-220	-20°C to +90°C

CVA3424A / CVA3424

ABSOLUTE MAXIMUM RATINGS


Supply Voltage	85V	Operating Temperature	-20°C to +90°C
Storage Temperature	-25°C to +100°C	Lead Temperature	+300°C

DC ELECTRICAL CHARACTERISTICS $V_S = 80V$, $C_L = 10pF$, $V_{out} = 40V_{p-p}$. See Figure 1. $T_A = +125^{\circ}C$ unless otherwise noted.

SYMBOL	CHARACTERISTICS	MIN	TYP	MAX	UNITS
Icc	Supply Current		45	55	mA
V _{inDC}	lput DC Level	1.4	1.6	1.8	V
V _{outDC}	Output DC Level	34	40	46	V
Av	Voltage Gain	11	13	15	V
	Gain Matching		0.2		dB

AC ELECTRICAL CHARACTERISTICS $V_S = 80V$, $C_L = 10pF$, $V_{out} = 40V_{p-p}$. See Figure 1. $T_A = +125^{\circ}C$ unless otherwise noted.

SYMBOL	CHARACTERISTICS	CVA3424A		CVA3424			UNITS	
		MIN	TYP	MAX	MIN	TYP	MAX	ONTO
t _r	Rise Time		2.2	2.9		2.5	3.5	ns
t _f	Fall Time		2.5	2.9		2.7	3.5	ns
BW	Bandwidth		185			150		MHz
Le	Linearity		5			5		%
OS / US	Overshoot / Undershoot		8			8		%

APPLICATIONS INFORMATION

Basic Circuit Configuration

The CVA3424 is a transimpedance amplifier with two stage feedback amplifier configurations. Any change in input current will be reflected as change in output voltage swing. A resistor in series with the input will change the CVA3424 into a voltage amplifier. The output is an emitter follower. Because of the complementary circuitry employed, there is no need for load or pull up resistor.

An internally bypassed capacitor is included inside the package, however, for low frequencies an electrolytic capacitor is recommended.

CVA3424 has an internal feedback resistor of 3.66K Ω . In the absence of any input signal, the V_{out} DC is set by

$$V_{out}(DC) = (1 + \frac{R_F}{R_B}) V_{in}(DC)$$

If an input signal is applied, the gain is set by

$$V_{out} = (\frac{R_F}{R_x}) V_{in}$$

Input and Transfer Characteristics

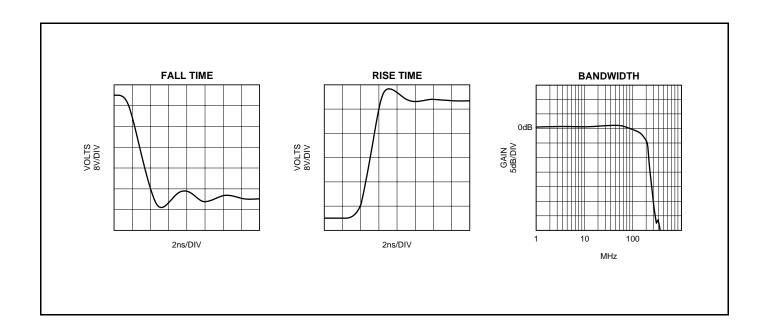
An input current swing of ± 4.5 mA causes the output to change by ± 25 V.

A resistor of 270Ω in series with the input will give a voltage gain of -13.

Input pins are internal dc feedback nodes and thus have low impedances. These pins must be fed from a series RC network for high frequency emphasis.

Output Characteristics

The CVA3424 is intended to be used as the final stage of very fast video circuits. The nominal load capacitance is 10pF. Other values can be accommodated since the output stage is an emitter follower and is fairly insensitive to load capacitance. However, a wire connection of some length is unavoidable, that causes objectionable ringing due to a resonant circuit. To avoid this a damping resistor must be used in series with the lead inductance. Also a resistor is necessary to protect the amplifier against arching. A resistor of $30\text{-}50\Omega$ will provide protection but will slow down the response. The lead inductance may be artificially increased by a tenth of a microHenry to obtain desired peak. Any change in inductance will require readjustment of damping resistor, as stated by equation (1).


$$R^* = \sqrt{\frac{L}{C}} \quad (1)$$

The output of CVA3424 is not short circuit proof. Any resistance to V+ or Ground should be $>600\Omega$.

Thermal Characteristics

When low frequency square waves are amplified, some droop will occur due to a large change in thermal dissipation in the input transistors. To overcome this an R-C series feedback network is suggested with $300 \mathrm{k}\Omega$ and $46 \mathrm{pF}$ values. Under normal operating conditions the CVA3424 will dissipate up to 6W. The maximum allowed case temperature is $+90^{\circ}\mathrm{C}$. To calculate maximum heatsink thermal resistance use equation (2).

Rth =
$$\frac{(90 - 50^{\circ})}{6W}$$
 = 6.7°C/W

