

FAIRCHILD

SEMICONDUCTOR

July 1999 Revised July 1999

74VCX32 Low Voltage Quad 2-Input OR Gate with 3.6V Tolerant Inputs and Outputs

General Description

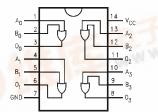
The VCX32 contains four 2-input OR gates. This product is designed for low voltage (1.65V to 3.6V) V_{CC} applications with I/O compatibility up to 3.6V.

The VCX32 is fabricated with an advanced CMOS technology to achieve high-speed operation while maintaining low CMOS power dissipation.

Features


- 1.65V-3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs
- t_{PD}
 - 2.8 ns max for 3.0V to 3.6V V_{CC} 3.7 ns max for 2.3V to 2.7V V_{CC}
- 7.4 ns max for 1.65V to 1.95V V_{CC}
- Power-off high impedance inputs and outputs
- Static Drive (I_{OH}/I_{OL})
 - ±24 mA @ 3.0V V_{CC}
 - ± 18 mA @ 2.3V $\rm V_{CC}$
 - $\pm 6~\text{mA}$ @ 1.65V V_{CC}
- Uses patented Quiet Series[™] noise/EMI reduction circuitry
- Latchup performance exceeds 300 mA
- ESD performance: Human body model > 2000V Machine model > 250V

Ordering Code:


Order Number	Package Number	Package Description		
74VCX32M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow		
74VCX32MTC MTC14 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide				
Devices also available	in Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.		

ds500162

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description
A _n , B _n	Inputs
On	Outputs

Quiet Series[™] is a trademark of Fairchild Semiconductor Corporation.

zsc.com

74VCX32

Supply Voltage (V_{CC})

Absolute Maximum Ratings(Note 1)

-0.5V to +4.6V

Recommended Operating Conditions (Note 3)

DC Input Voltage (V)	-0.5V to 4.6V
DC Output Voltage (V _O)	
HIGH or LOW State (Note 2)	-0.5V to V _{CC} + 0.5V
$V_{CC} = 0V$	-0.5V to +4.6V
DC Input Diode Current (IIK)	
V ₁ < 0V	–50 mA
DC Output Diode Current (I _{OK})	
V _O < 0V	–50 mA
$V_{O} > V_{CC}$	+50 mA
DC Output Source/Sink Current	±50 mA
(I _{OH} /I _{OL})	
DC V_{CC} or Ground Current per	±100 mA
Supply Pin (I _{CC} or Ground)	
Storage Temperature (T _{STG})	-65°C to +150°C

Power Supply	
Operating	1.65V to 3.6V
Data Retention Only	1.2V to 3.6V
Input Voltage	-0.3V to 3.6V
Output Voltage (V _O)	
HIGH or LOW State	0V to V_{CC}
Output Current in I _{OH} /I _{OL}	
$V_{CC} = 3.0V$ to 3.6V	±24 mA
$V_{CC} = 2.3V$ to 2.7V	±18 mA
$V_{CC} = 1.65V$ to 2.3V	±6 mA
Free Air Operating Temperature (T _A)	$-40^\circ C$ to $+85^\circ C$
Minimum Input Edge Rate ($\Delta t/\Delta V$)	
$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10 ns/V
Note 4. The "Absolute Maximum Datings" are then	

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: \mathbf{I}_{O} Absolute Maximum Rating must be observed.

Note 3: Floating or unused inputs must be held HIGH or LOW.

DC Electrical Characteristics (2.7V $< V_{CC} \leq 3.6V)$

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		2.7–3.6	2.0		V
VIL	LOW Level Input Voltage		2.7–3.6		0.8	V
V _{он}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.7–3.6	V _{CC} - 0.2		
		$I_{OH} = -12 \text{ mA}$	2.7	2.2		v
		$I_{OH} = -18 \text{ mA}$	3.0	2.4		v
		$I_{OH} = -24 \text{ mA}$	3.0	2.2		
/ _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.7–3.6		0.2	
		$I_{OL} = 12 \text{ mA}$	2.7		0.4	v
		I _{OL} = 18 mA	3.0		0.4	v
		$I_{OL} = 24 \text{ mA}$	3.0		0.55	
I	Input Leakage Current	$0 \le V_I \le 3.6V$	2.7–3.6		±5.0	μA
OFF	Power Off Leakage Current	$0 \le (V_1, V_0) \le 3.6V$	0		10	μΑ
сс	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.7–3.6		20	μA
		$V_{CC} \leq V_I \leq 3.6 V$	2.7–3.6		±20	μΑ
۵l _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7–3.6		750	μΑ

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		2.3–2.7	1.6		V
V _{IL}	LOW Level Input Voltage		2.3–2.7		0.7	V
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -100 \ \mu A$	2.3–2.7	V _{CC} - 0.2		
		$I_{OH} = -6 \text{ mA}$	2.3	2.0		v
		$I_{OH} = -12 \text{ mA}$	2.3	1.8		v
		I _{OH} = -18 mA	2.3	1.7		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3–2.7		0.2	
		I _{OL} = 12 mA	2.3		0.4	V
		I _{OL} = 18 mA	2.3		0.6	
l _l	Input Leakage Current	$0 \le V_I \le 3.6V$	2.3–2.7		±5.0	μΑ
I _{OFF}	Power Off Leakage Current	$0 \leq (V_I, V_O) \leq 3.6V$	0		10	μA
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3–2.7		20	
		$V_{CC} \leq V_1 3.6 V$	2.3-2.7		±20	μA

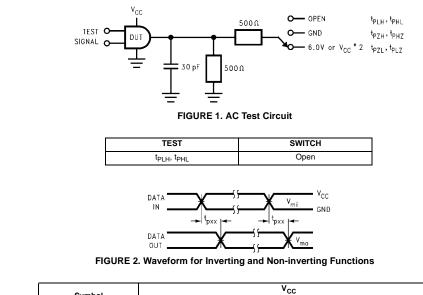
DC Electrical Characteristics (1.65V \leq V_{CC} < 2.3V)

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		1.65–2.3	0.65 x V _{CC}		V
V _{IL}	LOW Level Input Voltage		1.65–2.3		0.35 x V _{CC}	V
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	1.65–2.3	V _{CC} - 0.2		V
		$I_{OH} = -6 \text{ mA}$	1.65	1.25		v
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65–2.3		0.2	V
		I _{OL} = 6 mA	1.65		0.3	v
l _l	Input Leakage Current	$0 \le V_I \le 3.6V$	1.65–2.3		±5.0	μA
I _{OFF}	Power Off Leakage Current	$0 \leq (V_I, V_O) \leq 3.6V$	0		10	μA
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	1.65–2.3		20	
		$V_{CC} \le V_I \le 3.6V$	1.65-2.3		±20	μA

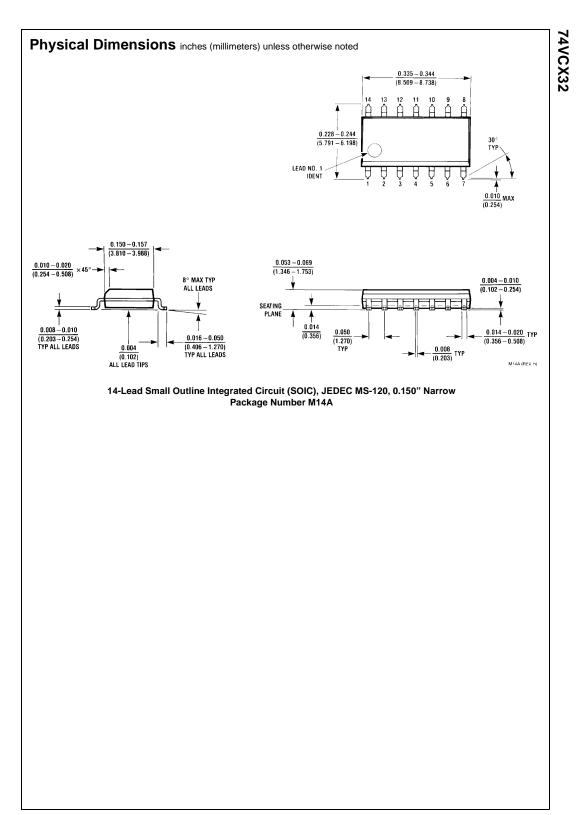
AC Electrical Characteristics (Note 4)

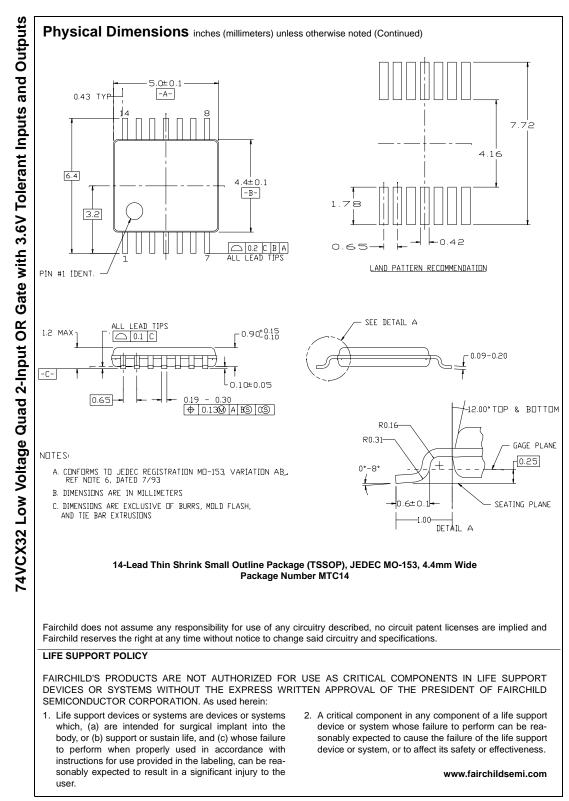
		$\textbf{T}_{\textbf{A}}=-\textbf{40}^{\circ}\textbf{C}$ to +85°C, $\textbf{C}_{\textbf{L}}=\textbf{30}\textbf{pF},\textbf{R}_{\textbf{L}}=\textbf{500}\Omega$						
Symbol	Parameter	V _{CC} = 3.3	$3V \pm 0.3V$	V _{CC} = 2.5	$5V \pm 0.2V$	V _{CC} = 1.8	$V \pm 0.15V$	Units
		Min	Max	Min	Max	Min	Max	
t _{PHL}	Propagation Delay	0.6	2.8	0.8	3.7	1.0	7.4	ns
t _{PLH}								
t _{OSHL}	Output to Output		0.5		0.5		0.75	ns
t _{OSLH}	Skew (Note 5)							

Note 4: For C_L = 50 pF, add approximately 300 ps to the AC maximum specification.


Note 5: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Symbol	Parameter	Conditions	V _{CC}	$T_A = 25^{\circ}C$	Uni
Symbol	Faranielei	Conditions	(V)	Typical	011
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	0.25	
			2.5	0.6	V
			3.3	0.8	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	-0.25	
			2.5	-0.6	V
			3.3	-0.8	
V _{OHV}	Quiet Output Dynamic Valley V _{OH}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	1.5	
			2.5	1.9	V
			3.3	2.2	


Capacitance


Symbol	Parameter	Conditions	$T_A = +25^{\circ}C$	Units
Gymbol	i arameter	Conditions	Typical	onita
CIN	Input Capacitance	$V_{I} = 0V \text{ or } V_{CC}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	6	pF
C _{OUT}	Output Capacitance	$V_{I} = 0V \text{ or } V_{CC}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	7	pF
C _{PD}	Power Dissipation Capacitance	$V_{\rm I}$ = 0V or V_{CC},f = 10 MHz, V_{CC} = 1.8V, 2.5V or 3.3V	20	pF

AC Loading and Waveforms

Symbol	v _{cc}					
Cymbol	$\textbf{3.3V} \pm \textbf{0.3V}$	$\textbf{2.5V} \pm \textbf{0.2V}$	$\textbf{1.8V} \pm \textbf{0.15V}$			
V _{mi}	1.5V	V _{CC} /2	V _{CC} /2			
V _{mo}	1.5V	V _{CC} /2	V _{CC} /2			

