SONY

CXA1690Q

Head Amplifier for Digital CCD Cameras

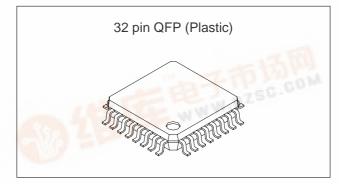
Description

The CXA1690Q is a bipolar IC developed as a head amplifier for digital CCD cameras. The CXA1690Q provides the following functions: correlated double sampling, AGC for CCD signals, GCA for chroma signals, GCA for line signals, sample and hold for A/D converters, blanking, and reference voltage output/output driver for A/D converters.

Features

- Permits higher sensitivity with a high-gain AGC amplifier
- Blanking function for the purpose of calibrating the deviation in black levels of the CCD output signals
- Permits output offset adjustment
- Provides a regulator output pin for the reference voltage for A/D converters
- Built-in GCA that amplifies video signals (chroma and line signals) from an external source
- Built-in sample-and-hold circuits (for both camera signals and video signals) required by external A/D converters

Absolute Maximum Ratings

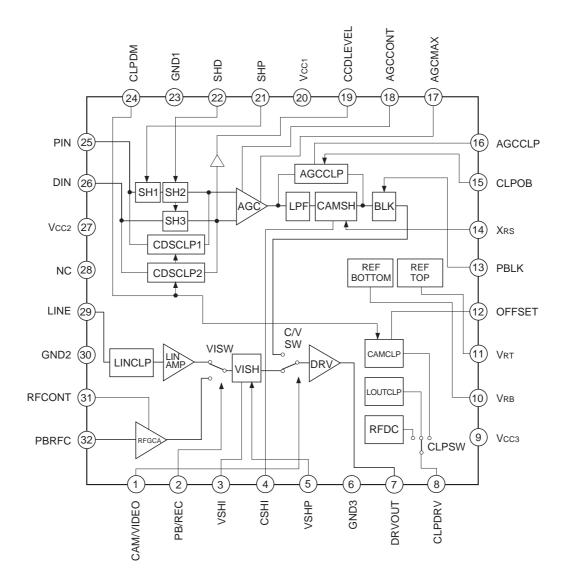

 Supply voltage 	Vcc	14	V
Operating temperature	Topr	-20 to +75	°C
Storage temperature	Tstg	-65 to +150	°C

Allowable power dissipation PD 460 mW

Operating Conditions

Supply voltage

Vcc1, 2, 3 4.5 to 5



Structure Bipolar silicon monolithic IC

Applications Digital CCD cameras

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

SONY

CXA1690Q

Pin Description (Vcc = 4.5V)						
Pin No.	Symbol	Pin voltage	Equivalent circuit	Description		
1	CAM VIDEO	H: Vcc L: GND VTH = $\frac{18}{50}$ Vcc	1k ≥ 46μA	Switches between CAM mode for the camera signal system and PB and LIN modes for the video signal system.		
2	PB REC	H: Vcc L: GND Vтн = <u>18</u> Vcc	$\begin{array}{c c} & & & \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \\ \\$	CAM VIDEO High Low U 50 Video system Video PB mode PB mode M Camera system Video system CAM mode LIN mode		
3	VSHI	1.4V	VRT 100≶ 2.4k ≶ 1k ≶ 127	This pin adjusts the slew rate when the video sample-and-hold circuit (VISH) built into the CXA1690 is sampling. Normally used open. R = 1K: approx. +6dB; R = 5K: approx. –6dB		
4	CSHI	1.4V	3k 3k 50k 7/7 7/7 7/7 7/7 7/7	This pin adjusts the slew rate when the camera sample-and- hold circuit (CAMSH) built into the CXA1690 is sampling. Normally used open. R = 1K: approx. +6dB; R = 5K: approx. –6dB		
5	VSHP	Sampling VTH = $\frac{18}{50}$ Vcc	100 127 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Pulse input for VISH.		
6 23 30	GND3 GND1 GND2	GND		Driver GND. Camera signal GND. Video signal GND.		
7	DRVOUT	Camera system CAM mode black level: 1.3V Video system LIN mode black level: 1.4V Video system RF mode DC level: 2.2V	Typ. 14mA	Driver output. Standard D range. Camera system signal: 870mVp-p Video system PB RFC signal: 500mVp-p Video system LIN signal: 1.4Vp-p		

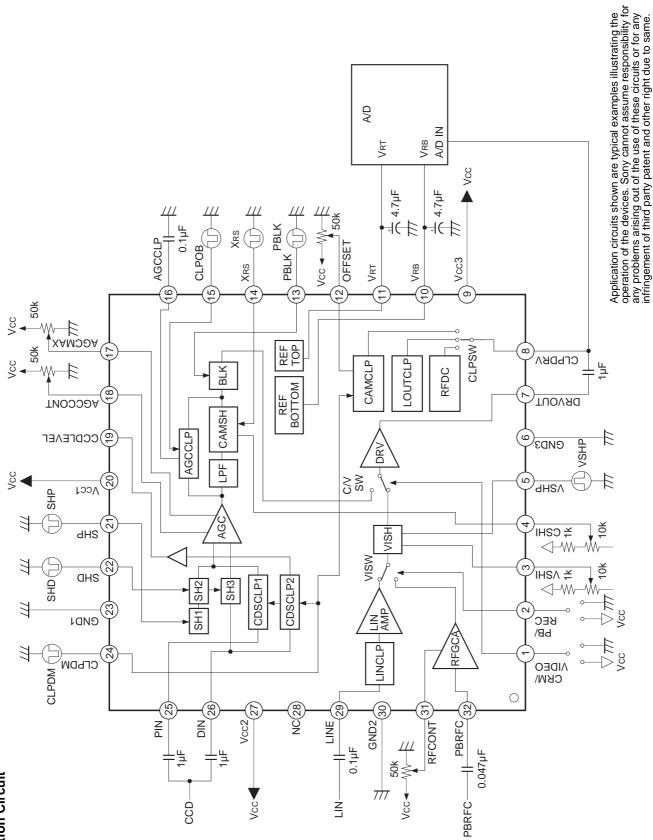
- 3 -

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
8	CLPDRV	Camera system CAM mode black level: 2V Video system LIN mode clamp level: 2V Video system PB mode DC level: 3V	$\begin{array}{c} 127 \\ \hline \\ 400\mu \\ \hline \\ 50\mu \\ 127 \\ \hline \\ 777 $	Clamps and outputs the DRVOUT (Pin 7) output signal. The switch for each mode is closed and the clamp potentials applied to this pin by selecting CAMVIDEO (Pin 1) or PBRFC (Pin 2).
9 20 27	Vcc3 Vcc1 Vcc2	Vcc		Driver Vcc. Camera signal Vcc. Video signal Vcc.
10	Vrb	2.02V	16k 16k 777 777 777 777 777 777 777 7	$2V$ regulator output $V_{RB} - V_{RT}$ load: 160 Ω or greater. Be sure to decouple this pin near the IC pins to prevent the oscillation and external noise when this pin is not used. (Recommended capacitor value: 4.7µF)
11	Vrt	3.88V	4k	4V regulator output. Be sure to decouple this pin near the IC pins to prevent the oscillation and external noise when this pin is not used. (Recommended capacitor value: 4.7µF)

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
12	OFFSET	Vcc to $\frac{20}{50}$ Vcc	127 № 1k 127 125k 125k 39µА 777 777 777 777 777 777 777	This pin offset adjusts the CLPDRV black level when the CXA1690 satisfies the operating conditions for the camera signal system (when CAMVI is High and PBREC is Low). VCC: approx. 500mV 20/50 VCC: approx. -50mV Preset: approx. 70mV
13	PBLK	$V_{\text{TH}} = \frac{18}{50} \text{Vcc}$	$62k = 46\mu A$ 127 $46\mu A$ 127 777 777 777 777 777 777 777 777	Pulse input for BLK (active: Low). This pin functions only when CAMVI is High and PBREC is Low, and calibrates the black level of the AGC output waveform. When the pulse is low, the DRVOUT potential is forced to 2V.
14	XRS	$V_{TH} = \frac{22}{50} V_{CC}$	≥ 200	High-speed S/H pulse input for CAMSH (active: Low).
21	SHP	VTI 25 Voc		High-speed S/H pulse input for SH1 (active: Low).
22	SHD	$V_{TH} = \frac{25}{50} V_{CC}$	₹ 200 7777 7777	High-speed S/H pulse input for SH2 and SH3 (active: Low).
15	CLPOB	$V_{\text{TH}} = \frac{18}{50} \text{Vcc}$	127 ₩ 1127 ₩ 127 100μ 777	Clamp pulse input for AGCCLP (active: Low).

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
16	AGCCLP	Approx. 2.8V	1k $2k1k$ $2k12741\mu A 2k127777777$	Capacitor connection for AGCCLP clamping. 0.1 to 1µF
17	AGCMAX	Vcc to $\frac{20}{50}$ Vcc	$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & &$	AGC amplifier MAX gain adjustment.
18	AGCCONT	Vcc to $\frac{20}{50}$ Vcc	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	AGC amplifier gain adjustment. MIN GAIN for $\frac{20}{50}$ Vcc, MAX GAIN for Vcc for both AGCMAX and AGCCONT.
19	CCD LEVEL	DIN input CCD signal black level: approx. 2.6V	≥200 260µ 777 777	CCD level detector


Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
24	CLPDM	$V_{\text{TH}} = \frac{18}{50} \text{Vcc}$	$\begin{array}{c} 1k \\ 127 \\ 1k \\ 1k \\ 1k \\ 1k \\ 86\mu \\ 777 \\ 778\mu \\ 778\mu \\ 78\mu \\ 63k \\ 1k \\ 39\mu \\ 777$	Clamp pulse input (active: Low).
25	PIN DIN	Black level: approx. 2.6V	127 127 0.9µ ↓ \$ 36k 777 777 777 777 \$ 2k ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	CCD signal input.
29	LINE	Clamp potential: approx. 2.5V	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	LIN signal input.


Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
31	RFCONT	Vcc to $\frac{20}{50}$ Vcc	$4k$ $4k$ $42k$ $42k$ $42k$ 50μ 100μ $52k$	RFGCA gain control.
32	PBRFC	approx. 2.8V	127 10k ₹ 100μ 7.3k 7.3k 7.3k 7.3k 7.3k 100μ 7/7 100μ 7/7 100μ 7/7 100μ 7/7 100μ 7/7 100μ 7/7 100μ 7/7 100μ	PBRFC signal input.

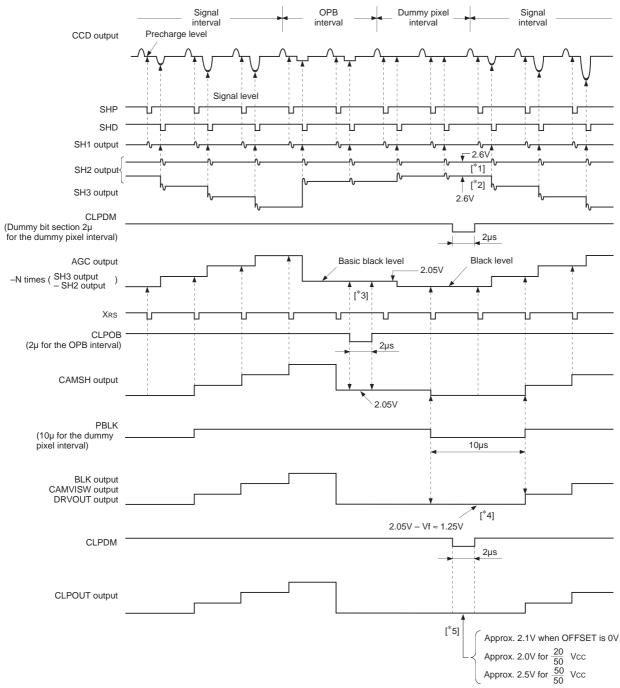
Electrical Characteristics

(Ta = 25°C, Vcc1, 2, 3 = 4.5V)

Item		Symbol	Conditions	Min.	Тур.	Max.	Unit	
Current	Camera mode	IDC	CAM/VIDEO = 4.5V, PB/RFC = 0V		49	62		
consump- tion	LINE mode	Idl	CAM/VIDEO = 0V, PB/RFC = 4.5V		33	42	mA	
lion	RF mode	ldr	CAM/VIDEO = 4.5V, PB/RFC = 4.5V		33	42		
	AGCCONT max.	A CONmax.	AGCMAX = 4.5V, AGCCONT = 4.5V	40	43			
	AGCCONT min.	A CONmin.	AGCMAX = 4.5V, AGCCONT = 1.8V	_	7.8	10	dB	
	AGCMAX min.	A MAXmin.	AGCMAX = 1.8V, AGCCONT = 4.5V	_	19	21		
AGC	Amount of variation in gain	AGC G	A CONmaxA CONmin.	32	35	_		
	Dynamic range max.	AGCMAX = 4.5V, AGCCONT = 4.5V AGCmax D Level at which the CLPOUT output 1.9 2.05		_				
	Dynamic range min.	AGCmin. D	AGCMAX = 4.5V, AGCCONT = 1.8V Level at which the CLPOUT output signal is saturated	1.9	2.05		V	
	Offset High	CAOF high	OFFSET = 4.5V	440	490			
CAMCLP	Offset Low	CAOF low	OFFSET = 1.8V		-65	-30	mV	
	Offset Preset	CAOF pre	OFFSET = 0V	13	43 73			
	VRT DC level	VRTO	With 200Ω load	3.66	3.86	4.06	V	
REF	VRB DC level	VRBO	With 200Ω load	1.88	2.03	2.18		
	VRT – VRB	ΔVR	With 200 Ω load	1.73	1.83	1.93]	
BLK Offset BLKO		BLKOF	BLKOF (BLK = 4.5V) - BLKOF (BLK = 0V)	-5	7	15	mV	
LINGCA	Gain	LIN G	Adjust the DC level so that LIN input = 15kHz, 500mVp-p sine wave LINCLP.	8.5	9.5	10.5		
REGON	RF CONT max.	RF CONmax.	RFCONT = 4.5V, 15kHz, 80mVp-p sine wave	14	17	_	dB	
RFGCA	RF CONT min.	RF CONmin.	RFCONT = 1.8V, 15kHz, 400mVp-p sine wave	_	0.5	2	1	

Application Circuit

1. Camera signal processing system


Process the video signal processing pins as follows only in camera mode.

- <5> VSHP ... Connect to GND.
- <29> LINE ... Connect to GND via the capacitor (approx. 0.01µF).
- <31> RFCONT ... Connect to GND.
- <32> PBRFC ... Connect to GND via the capacitor (approx. 0.01µF).

Operating conditions

The camera signal processing system operates when CAM/VIDEO is High, and PB/REC is Low.

Camera Signal Processing System Timing Chart

CDS:

The CCD signal from the CCD image sensor enters PIN and DIN where it is correlated double sampled (CDS: Correlated Double Sampling) by SH1, SH2 and SH3. The precharge level of the CCD output signal is sampled-and-held and output by the SH2 output, and the signal level is sampled-and-held and output by the SH3 output.

CDSCLP:

The CDSCLP stabilizes the DC level of the input signal, clamps (CLPDM) the input signal during the dummy pixel interval for the purpose of eliminating the AGC input offset, and combines the DC level ([*1], [*2]) of SH2 and SH3.

AGC:

The gain can be varied with the AGCMAX and AGCCONT voltage control (20/50) Vcc to Vcc. The maximum gain can be varied from 19 to 43dB for AGCMAX, and from 7.9 to 43dB for AGCCONT.

LPF:

A primary low-pass filter has been installed for the purpose of eliminating unused bands and white noise and improving S/N.

CAMSH:

The CAMSH is used for camera system signal processing. It is a sample-and-hold circuit which synchronizes the data read-in timing for the external A/D. The slew rate of the input signal for the sample-and-hold circuit can be controlled by adjusting the input current to the CSHI pin.

AGCCLP:

The basic black level is set ([*3]) by clamping it with the CLPOB clock during the OPB interval of the AGC output waveform. The capacitance for AGCCLP is connected to the AGCCLP pin.

BLK:

The black level is calibrated by blanking the black level signal of the AGC output waveform so that it does not fall below the basic black level and replacing the DC potential. ([*4]) The signal is blanked when PBLK is low.

C/VSW:

When the CAM/VIDEO and PB/REC pin voltages are set so that the camera signal processing system operates, C/VSW leads the BLK output (camera signal) into the DRV. In addition, when these voltages are set so that the video signal processing system operates, C/VSW leads the VISH output (video signal) into the DRV.

CLPSW:

By selecting the CAM/VIDEO and PB/REC pin voltages, either [CAMCLP] is connected and lead into the CLPDRV pin as the clamp for the output signal of the camera signal processing system, or [LOUTCLP] as the clamp for the LIN mode output signal or [RFDC] as the DC shift for the PBREC mode output signal of the video signal processing system.

DRV:

DRV drives the external A/D. RF mode or LIN mode signals for either the camera or video signals are input to the DRV and output from DRVOUT by switching C/VSW.

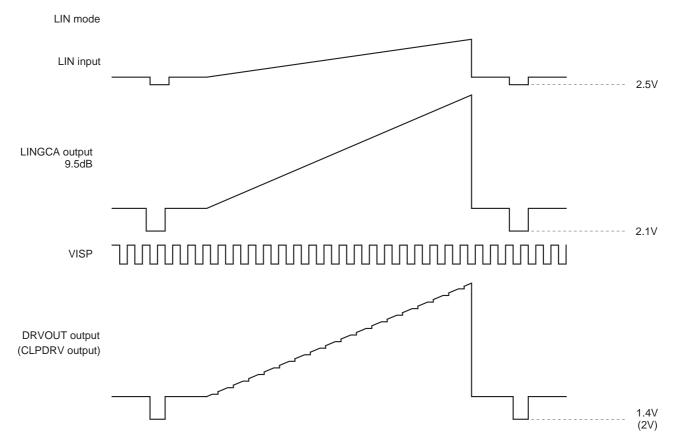
CAMCLP:

The signal black level interval is clamped by the CLPDM clock to bring camera system signals within the allowable input voltage range for the external A/D, and the signals are output to CLPOUT. ([*5]) In addition, the CAMCLP contains an OFFSET control pin which adjusts the CLP potential for the purpose of compensating the clamp level difference generated by the DRV.

REFBOTTOM, REFTOP:

REFBOTTOM and REFTOP are reference voltage source for the external A/D. They are connected to VRB and VRT, and supply 2V and 4V to the A/D.

2. Video signal processing system


Operating conditions

The video signal processing system has two modes: LIN signal mode and PBREC signal mode.

The video signal processing system operates in LIN signal mode when CAM/VIDEO is Low, and PB/REC is High.

The video signal processing system operates in PBREC signal mode when PB/REC is High.

Video Signal Processing System Timing Chart

LIN signal mode

LINCLP:

The video signal enters the LIN pin. LINCLP sync tip clamps the input signal to allow full input. The input signal level and frequency are respectively 500mVp-p (typ.) and DC up to approx. 7MHz.

LINAMP:

This is a 9.5dB gain amplifier.

VISW:

VISW switches between the LIN signal and PBRFC signal for the video signal processing system. The signals are switched according to the input conditions of the CAM/VIDEO and PB/REC pins.

VISH:

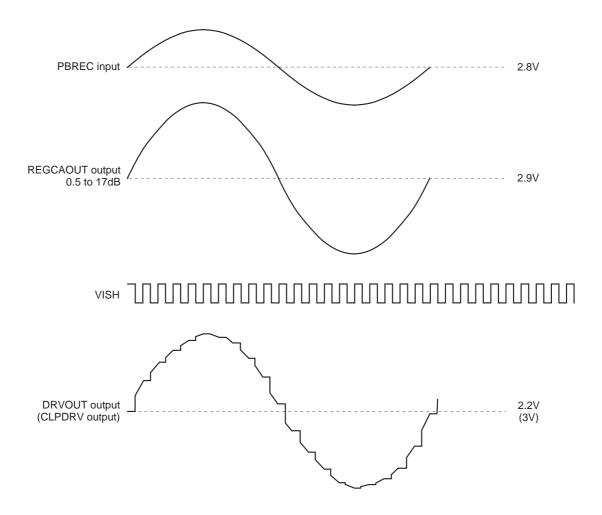
The VISH is used for video signal processing system. It is a sample-and-hold circuit which synchronizes the data read-in timing for the external A/D. The slew rate of the input signal for the sample-and-hold circuit can be controlled by adjusting the input current to VSHI.

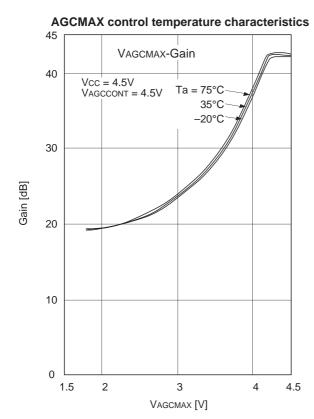
LOUTCLP:

LOUTCLP is a clamp circuit which operates when the LIN signal is output by the DRV. The clamp potential is 2V.

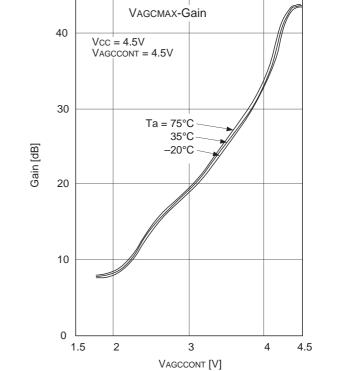
SONY

PBREC signal mode

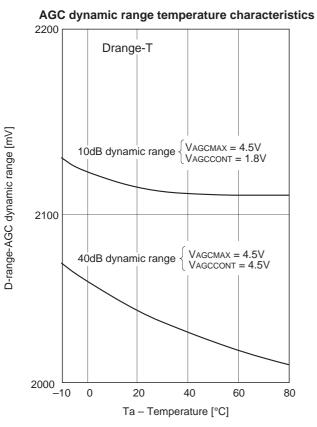

RFGCA:

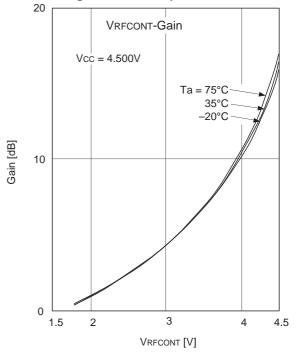

This is an amplifier which controls the gain of the video chroma RF signal input to PBRFC. The RFCONT voltage can be varied from (20/50) Vcc to Vcc, enabling the gain to be varied from 0.5 to 17dB. The input signal level and frequency are respectively 200mVp-p (typ.) and DC up to approx. 1.5MHz.

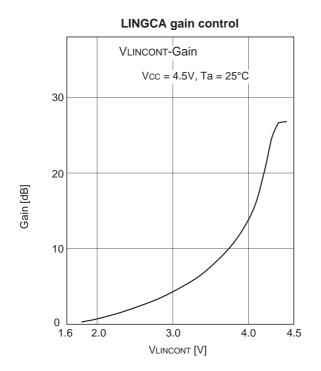
RFDC:

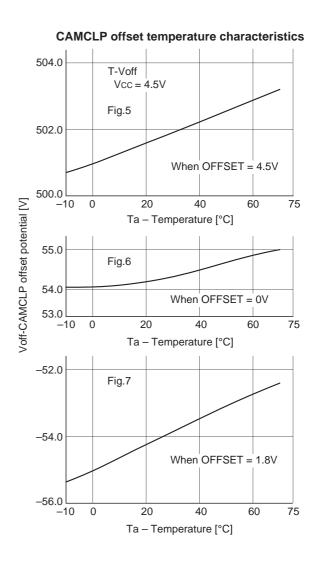

RFDC is a DC bias circuit which operates when the PBREC signal is output by the DRV. The DC bias potential is 3V.

PBREC mode

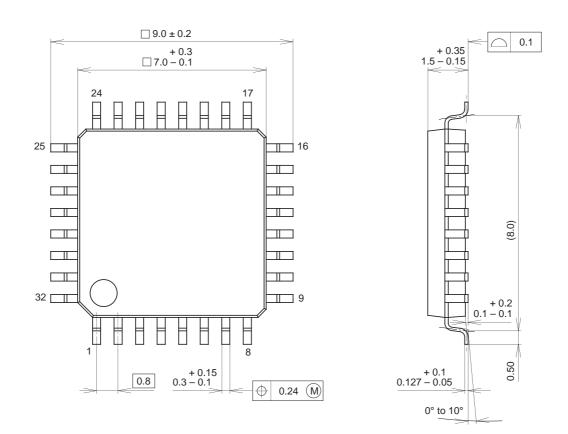



Example of Representative Characteristics





RFGCA gain control temperature characteristics



Package Outline Unit: mm

32PIN QFP (PLASTIC)

		PACKAGE MATERIAL	EPOXY RESIN
SONY CODE	QFP-32P-L01	LEAD TREATMENT	SOLDER PLATING
EIAJ CODE	QFP032-P-0707	LEAD MATERIAL	42 ALLOY
JEDEC CODE		PACKAGE MASS	0.2g