SONY

CXD1172AM/AP

6-bit 20MSPS Video A/D Converter (CMOS)

Description

CXD1172AM/AP is a 6-bit CMOS A/D converter for video use. The adoption of a 2-step parallel system achieves low consumption at a maximum conversion speed of 20MSPS minimum, 35MSPS typical.

Features

• Resolution: 6-bit ± 1/2LSB

Max. sampling frequency: 20MSPS

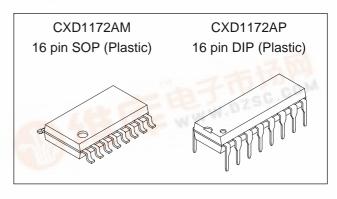
Low power consumption: 40mW (at 20MSPS typ.)
 (Reference current excluded)

• Built-in sampling and hold circuit.

• 3-state TTL compatible output.

• Power supply: 5V single

• Low input capacitance: 4pF


Reference impedance: 250Ω (typ.)

Applications

TV, VCR digital systems and a wide range of fields where high speed A/D conversion is required.

Structure

Silicon gate CMOS monolithic IC

Absolute Maximum Ratings (Ta = 25°C)

Supply voltage VDD 7

Reference voltage

VRT, VRB VDD + 0.5 to Vss - 0.5 V

• Input voltage VIN VDD + 0.5 to Vss – 0.5 V

(Analog)

Input voltage
 Vclk
 Vdd + 0.5 to Vss − 0.5 V

(Digital)

 \bullet Output voltage VoH, VoL VdD + 0.5 to Vss - 0.5 V

(Digital)

• Storage temperature

Tstq -55 to +150 °C

Recommended Operating Conditions

Supply voltage AVDD, AVss 4.75 to 5.25 V
 DVDD, DVss 4.75 to 5.25 V

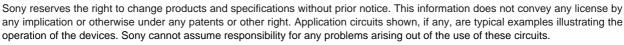
Reference input voltage

 VRB
 0 to 4.1
 V

 VRT
 0.9 to 5.0
 V

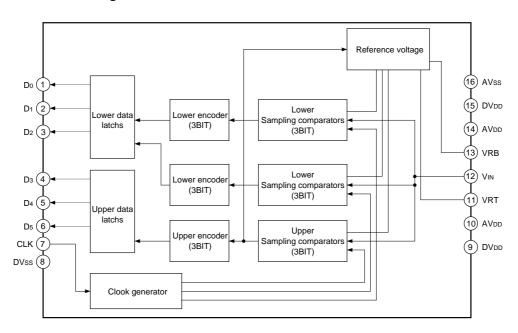
 VRT - VRB
 0.9 to AVDD
 V

Analog input voltage


VIN VRB to VRT V

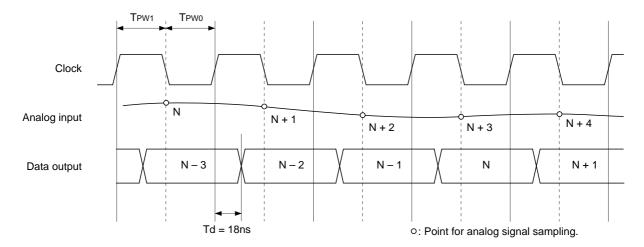
Clock pulse width

Tpw1, Tpw0 23ns (min.) to 1.1µs (max.)


Operating temperature

Topr –20 to +75 °C

Block Diagram and Pin Configuration


PIn Description and Equivalent Circuits

No.	Symbol	Equivalent Circuit	Description	
1 to 6	Do to D5	Di	D₀ (LSB) to D₅ (MSB) output	
7	CLK	7—W———————————————————————————————————	Clock input	
8	DVss		Digital GND	
9, 15	DVdd		Digital +5V	
10, 14	AVDD		Analog +5V	
11	VRT	AVDD	Reference voltage (Top)	
13	VRB	AVss	Reference voltage (Bottom)	
12	Vin	AVDD AVDD AVSS	Analog input	
16	AVss		Analog GND	

Digital Output

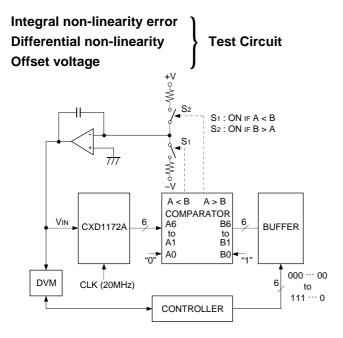
Compatibility between Analog input voltage and the digital output code is indicated in the chart below.

Input signal voltage	Step	Digital output code MSB LSB
Vrt :	0 :	1 1 1 1 1 1
	31	1 0 0 0 0 0
	32	0 1 1 1 1 1
1	:	i
Vrb	63	0 0 0 0 0 0

Timing Chart 1

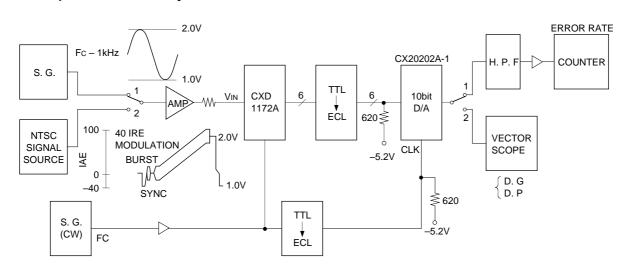
Electrical Characteristics

 $(VDD = 5V, VRB = 1.0V, VRT = 2.0V, Ta = 25^{\circ}C)$

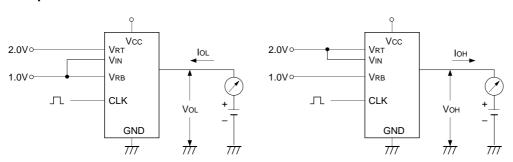

Item	Symbol	Conditions		Min.	Тур.	Max.	Unit	
Conversion speed	Fc	$V_{DD} = 4.75 \text{ to } 5.25V$ $Ta = -20 \text{ to } +75^{\circ}C$ $V_{IN} = 1.0 \text{ to } 2.0V$ $f_{IN} = 1 \text{ kHz ramp}$		0.5		20	MSPS	
Supply current	IDD	Fc = 20MSPS NTSC ramp wave input			7	12	mA	
Reference pin current	IREF			3	4	5.7		
Analog input band width (–1dB)	BW	Envelope			18		MHz	
Analog input capacitance	Cin	VIN = 1.5V +	0.07Vrms		4		pF	
Reference resistance (VRT to VRB)	RREF			175	250	325	Ω	
Offset voltage*1	Еот	Potential difference to VRT		0	-20	-40	mV	
Onset voltage	Еов	Potential difference to VRB		15	35	55	IIIV	
Digital input voltage	ViH	V _{DD} = 4.75 to 5.25V Ta = -20 to +75°C		4.0			V	
Digital input voltage	VIL					1.0		
Digital input current	Іін	V _{DD} = max.	VIH = VDD			5		
Digital input current	lıL	VDD = Max.	VIL = 0V			5	μΑ	
Digital output current	Іон	\/aa min	Voh = Vdd + 0.5V	-1.1			mA	
Digital output current	loL	VDD = min.	Vol = 0.4V	3.7				
Output data delay	Tol	With TTL 1 gate and 10pF load Ta = -20 to +75°C VDD = 4.75 to 5.25V			18	30	ns	
Integral non-linearity error	EL	End point			±0.3	±0.5	LSB	
Differential non-linearity error	Ed				±0.3	±0.5	200	
Differential gain error	DG	NTSC 40 IRE mod ramp			1.0		%	
Differential phase error				1.0		deg		
Aperture jitter	Taj			40		ps		
Sampling delay Tsd				4		ns		

^{*1} The offset voltage EOB is a potential difference between VRB and a point of position where the voltage drops equivalent to 1/2 LSB of the voltage when the output data changes from "00000000" to "00000001". EOT is a potential difference between VRT and a potential of point where the voltage rises equivalent to 1/2 LSB of the voltage when the output data changes from "111111111" to "11111110".

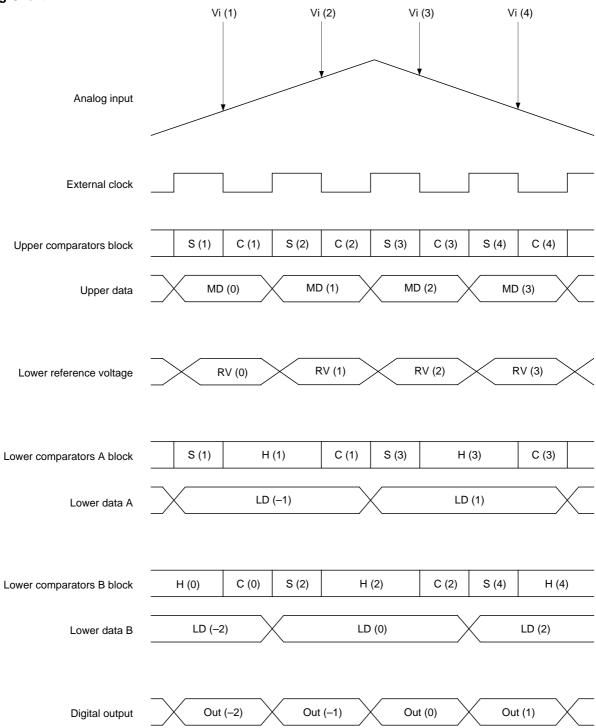
SONY


CXD1172AM/AP

Electrical Characteristics Test Circuit



Maximum operational speed Differential gain error Differential phase error


Test Circuit

Digital output current test circuit

Timing Chart 2

SONY CXD1172AM/AP

Operation (See Block Diagram and Timing Chart)

1. CXD1172AM/AP is a 2-step parallel system A/D converter featuring a 3-bit upper comparators group and 2 lower comparators groups of 3-bit each. The reference voltage that is equal to the voltage between VRT-VRB/8 is constantly applied to the upper 3-bit comparator block. Voltage that corresponded to the upper data is fed through the reference supply to the lower data.

- 2. This IC uses an offset cancel type comparator and operates synchronously with an external clock. It features the following operating modes which are respectively indicated on the timing chart with S, H, C symbols. That is input sampling (auto zero) mode, input hold mode and comparison mode.
- 3. The operation of respective parts is as indicated in the chart. For instance input voltage Vi (1) is sampled with the falling edge of the first clock by means of the upper comparator block and the lower comparator A block. The upper comparators block finalizes comparison data MD (1) with the rising edge of the first clock. Simultaneously the reference supply generates the lower reference voltage RV (1) that corresponded to the upper results. The lower comparator block finalizes comparison data LD (1) with the rising edge of the second clock. MD (1) and LD (1) are combined and output as Out (1) with the rising edge of the 3rd clock. Accordingly there is a 2.5 clock delay from the analog input sampling point to the digital data output.

Operation Notes

1. VDD, Vss

To reduce noise effects, separate the analog and digital systems close to the device. For both the digital and analog VDD pins, use a ceramic capacitor of about 0.1µF set as close as possible to the pin to bypass to the respective GND's.

2. Analog input

Compared with the flash type A/D converter, the input capacitance of the analog input is rather small. However it is necessary to conduct the drive with an amplifier featuring sufficient band and drive capability. When driving with an amplifier of low output impedance, parasite oscillation may occur. That may be prevented by inserting a resistance of about 100Ω in series between the amplifier output and A/D input.

3. Clock input

The clock line wiring should be as short as possible also, to avoid any interference with other signals, separate it from other circuits.

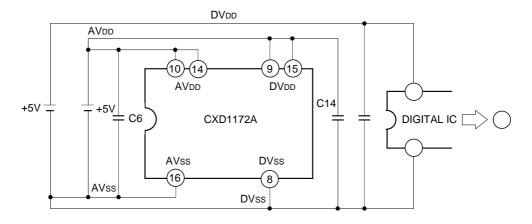
4. Reference input

Voltage between VRT to VRB is compatible with the dynamic range of the analog input. Bypassing VRT and VRB pins to GND, by means of a capacitor about 0.1µF, stable characteristics are obtained.

5. Timing

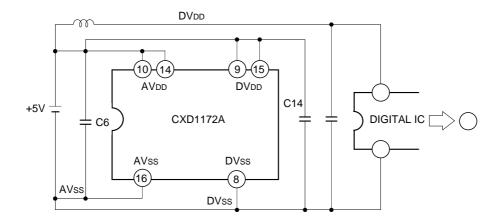
Analog input is sampled with the falling edge of CLK and output as digital data with a delay of 2.5 clocks and with the following rising edge. The delay from the clock rising edge to the data output is about 18ns.

6. About latch up

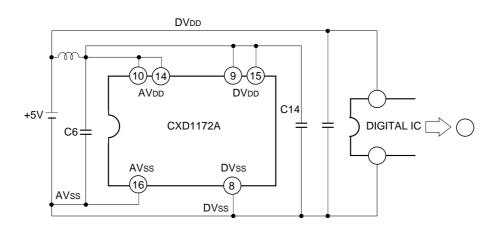

It is necessary that AVDD and DVDD pins be the common source of power supply. This is to avoid latch up due to the voltage difference between AVDD and DVDD pins when power is ON. See "For latch up prevention" of CXD1172P/CXA1106P PCB description. (Page 6, 7)

Latch Up Prevention

The CXD1172A is a CMOS IC which requires latch up precautions. Latch up is mainly generated by the lag in the voltage rising time of AVDD (Pins 10 and 14) and DVDD (Pins 9 and 15), when power supply is ON.

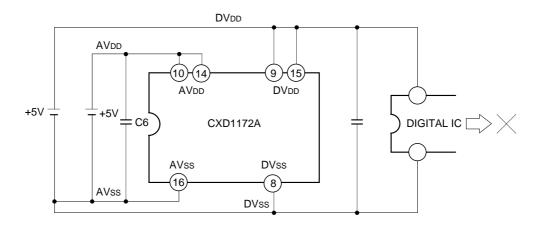

1. Correct usage

a. When analog and digital supplies are from different sources

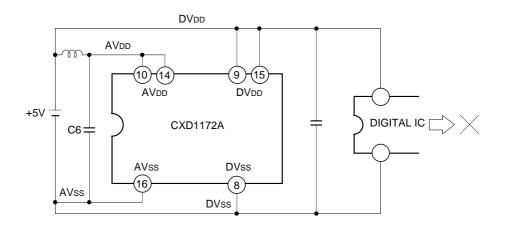


b. When analog and digital supplies are from a common source

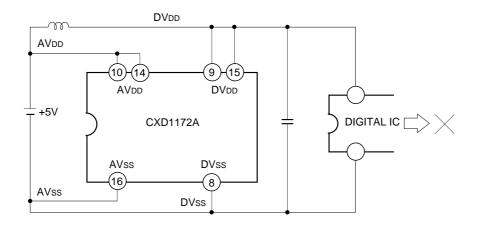
(i)


(ii)

SONY

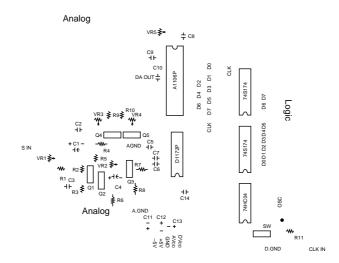

CXD1172AM/AP

- 2. Example when latch up easily occurs
- a. When analog and digital supplies are from different sources

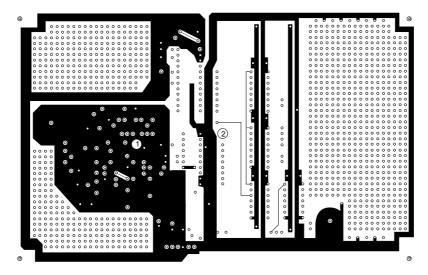


b. When analog and digital supplies are from common source

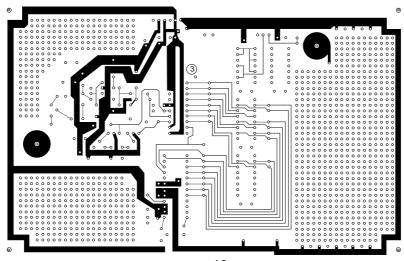
(i)



(ii)

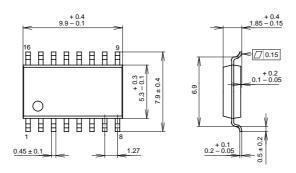


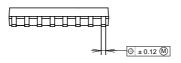
6-bit, 20MSPS ADC and DAC Evaluation Board


Silk Side

Component Side

Soldering Side

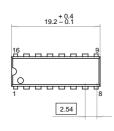

SONY CXD1172AM/AP

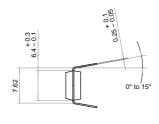

Package Outline

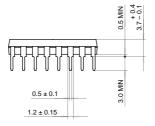
Unit: mm

CXD1172AM

16PIN SOP (PLASTIC) 300mil


PACKAGE STRUCTURE


SONY CODE	SOP-16P-L01
EIAJ CODE	*SOP016-P-0300-A
JEDEC CODE	


PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE WEIGHT	0.2g

CXD1172AP

16PIN DIP (PLASTIC)

Two kinds of package surface:

1.All mat surface type.

2.All mirror surface type.

PACKAGE STRUCTURE

DIP-16P-01
DIP016-P-0300
Similar to MO-001-AE

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE MASS	1.0 g