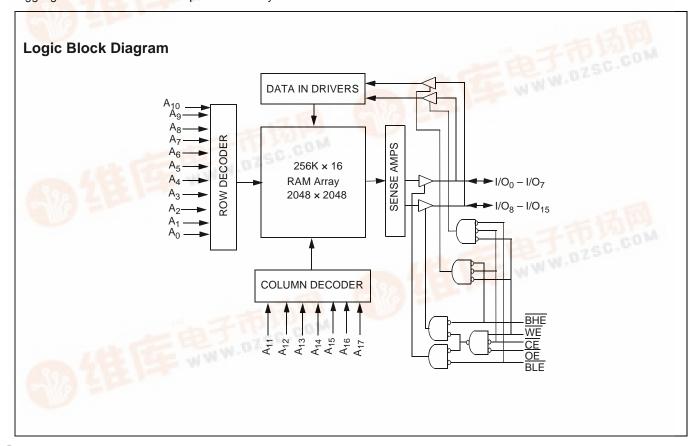


CY62146V MoBL®

4M (256K x 16) Static RAM

Features

- Wide voltage range: 2.7V-3.6V
- Ultra-low active, standby power
- Easy memory expansion with CE and OE features
- TTL-compatible inputs and outputs
- Automatic power-down when deselected
- CMOS for optimum speed/power
- Package available in a standard 44-Pin TSOP Type II (forward pinout) package

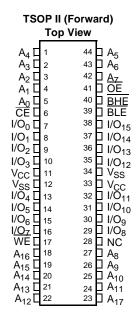

Functional Description[1]

The CY62146V is a high-performance CMOS static RAM organized as 256K words by 16 bits. These devices feature advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life[®] (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when

deselected ($\overline{\text{CE}}$ HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected ($\overline{\text{CE}}$ HIGH), outputs are disabled ($\overline{\text{OE}}$ HIGH), BHE and BLE are disabled ($\overline{\text{BHE}}$, BLE HIGH), or during a write operation ($\overline{\text{CE}}$ LOW, and $\overline{\text{WE}}$ LOW).

Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O $_0$ through I/O $_7$), is written into the location specified on the address pins (A $_0$ through A $_{16}$). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O $_8$ through I/O $_{15}$) is written into the location specified on the address pins (A $_0$ through A $_{17}$).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the truth table at the back of this data sheet for a complete description of read and write modes.



For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Synress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-26

Pin Configurations

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......-55°C to +125°C Supply Voltage to Ground Potential -0.5V to +4.6V

DC Voltage Applied to Outputs in High-Z State $^{[2]}$ -0.5V to $\rm V_{CC}$ + 0.5V

DC Input Voltage^[2].....-0.5V to VCC + 0.5V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-up Current	. >200 mA

Operating Range

		Ambient Temperature	v _{cc}
	Industrial	–40°C to +85°C	2.7V to 3.6V

Product Portfolio

						Pow	er Dissipati	ion
	V _{CC} Range (V)		Speed	Operating I _{CC} , (mA)		Standby I _{SB2} , (μA)		
Product	V _{CC(min.)}	V _{CC(typ.)} ^[3]	V _{CC(max.)}	(ns)	Typ. ^[3]	Maximum	Typ . ^[3]	Maximum
CY62146VLL	2.7	3.0	3.6	70	7	15	2	20

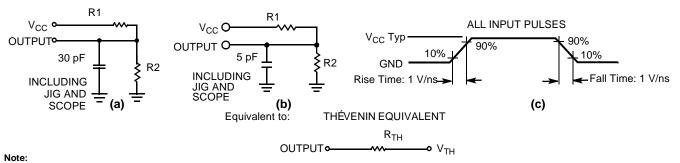
Notes:

- V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.

 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

Electrical Characteristics Over the Operating Range

					CY62146V-	70		
Parameter	Description	Test Cond	Test Conditions		Typ. ^[3]	Max.	Unit	
V _{OH}	Output HIGH Voltage	$I_{OH} = -1.0 \text{ mA}$	V _{CC} = 2.7V	2.4			V	
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	V _{CC} = 2.7V			0.4	V	
V _{IH}	Input HIGH Voltage		V _{CC} = 3.6V	2.2		V _{CC} + 0.5V	V	
V _{IL}	Input LOW Voltage		$V_{CC} = 2.7V$	-0.5		0.8	V	
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$	•	-1	<u>+</u> 1	+1	μΑ	
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, O	$GND \le V_O \le V_{CC}$, Output Disabled			+1	μΑ	
I _{CC}	V _{CC} Operating Supply Current	$I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC},$ CMOS Levels	V _{CC} = 3.6V		7	15	mA	
		I _{OUT} = 0 mA, f = 1 M CMOS Levels	Hz,		1	2	mA	
I _{SB1}	Automatic CE Power-down Current— CMOS Inputs	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			2	20	μА	
I _{SB2}	Automatic CE Power-down Current— CMOS Inputs		V _{CC} = 3.6V					


Capacitance^[4]

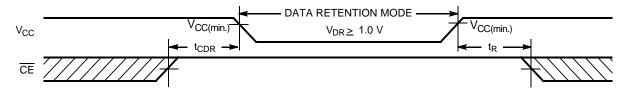
Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ.)}$	8	pF

Thermal Resistance

Parameter	Description	Test Conditions	BGA	TSOPII	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient) ^[4]	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	55	60	°C/W
$\Theta_{\sf JC}$	Thermal Resistance (Junction to Case) ^[4]		16	22	°C/W

AC Test Loads and Waveforms

4. Tested initially and after any design or process changes that may affect these parameters.



Parameter	3.0V	Unit
R1	1105	Ohms
R2	1550	Ohms
R _{TH}	645	Ohms
V _{TH}	1.75	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Typ. ^[3]	Max.	Unit
V_{DR}	V _{CC} for Data Retention)		1.0		3.6	V
I _{CCDR}	Data Retention Current	V_{CC} = 1.0V, $\overline{CE} \ge V_{CC} - 0.3$ V, $V_{IN} \ge V_{CC} - 0.3$ V or $V_{IN} \le 0.3$ V; No input may exceed $V_{CC} + 0.3$ V		1	10	μΑ
t _{CDR} ^[4]	Chip Deselect to Data Retention Time		0			ns
t _R ^[5]	Operation Recovery Time		70			ns

Data Retention Waveform

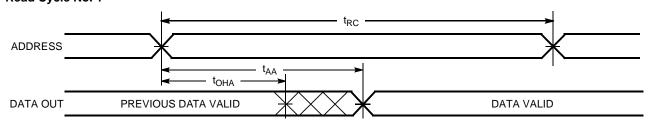
Switching Characteristics Over the Operating Range [6]

		70	ns ns		
Parameter	Description	Min.	Max.	Unit	
Read Cycle		•	•		
t _{RC}	Read Cycle Time	70		ns	
t _{AA}	Address to Data Valid		70	ns	
t _{OHA}	Data Hold from Address Change	10		ns	
t _{ACE}	CE LOW to Data Valid		70	ns	
t _{DOE}	OE LOW to Data Valid		25	ns	
t _{LZOE}	OE LOW to Low-Z ^[7, 8]	5		ns	
t _{HZOE}	OE HIGH to High-Z ^[8]		20	ns	
t _{LZCE}	CE LOW to Low-Z ^[7]	10		ns	
t _{HZCE}	CE HIGH to High-Z ^[7, 8]		20	ns	
t _{PU}	CE LOW to Power-up	0		ns	
t _{PD}	CE HIGH to Power-down		70	ns	
t _{DBE}	BHE / BLE LOW to Data Valid		35	ns	
t _{LZBE}	BHE / BLE LOW to Low-Z	5		ns	
t _{HZBE}	BHE / BLE HIGH to High-Z		20	ns	
Write Cycle ^[9, 10]	·	<u>'</u>	1		
t _{WC}	Write Cycle Time	70		ns	

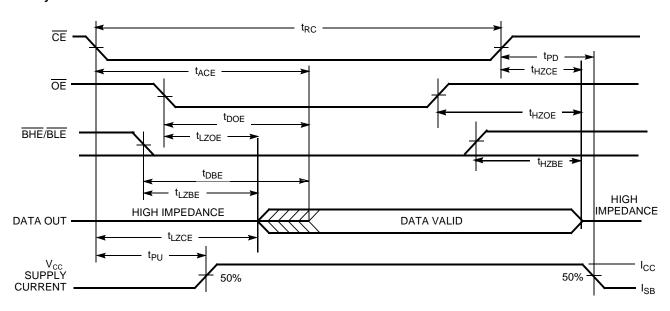
Notes:

- Full Device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 10 \,\mu s$ or stable $V_{CC(min.)} \ge 10 \,\mu s$. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to $V_{CC(typ.)}$, and output loading of the specified

- lest conditions assume signal transition time or 5 ns or less, timing reference levels of 1.5v, input pulse levels of 0 to v_{CC(typ.)}, and output loading of the specified log. Inc./I_{OH} and 30 pF load capacitance.
 At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
 The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
 The minimum write cycle time for Write Cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.



Switching Characteristics Over the Operating Range (continued)^[6]


		7(0 ns	
Parameter	Description	Min.	Max.	Unit
t _{SCE}	CE LOW to Write End	60		ns
t _{AW}	Address Set-up to Write End	60		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-up to Write Start	0		ns
t _{PWE}	WE Pulse Width	40		ns
t _{BW}	BHE / BLE Pulse Width	60		ns
t _{SD}	Data Set-up to Write End	30		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High-Z ^[7, 8]		25	ns
t _{LZWE}	WE HIGH to Low-Z ^[7]	10		ns

Switching Waveforms

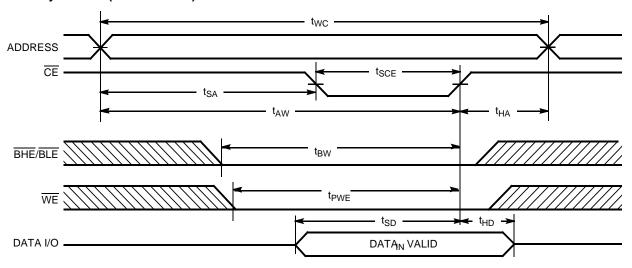
Read Cycle No. 1 $^{[11, 12]}$

Read Cycle No. 2 $^{[12, 13]}$

Notes:

- Device is continuously selected. OE, CE = V_{IL}.
 WE is HIGH for read cycle.
 Address valid prior to or coincident with CE transition LOW.

 t_{HD}

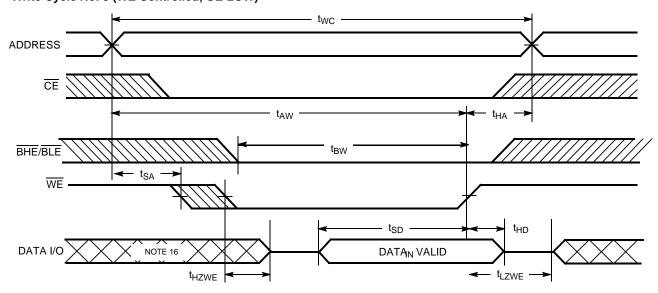

Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\text{WE}}$ Controlled) $^{[9, 14, 15]}$ t_{WC} **ADDRESS** CE t_{AW} t_{SA} t_{PWE} WE BHE/BLE

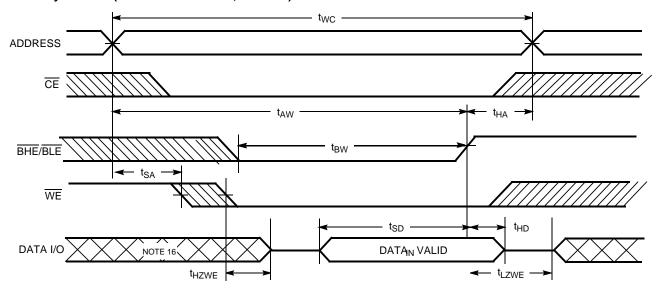
 t_{SD}

DATAN VALID

Notes:

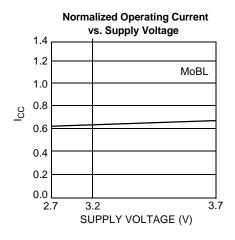

DATA I/O

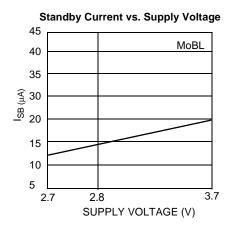
- 14. Data I/O is high-impedance if OE = V_{IH}.
 15. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
 16. During this period, the I/Os are in output state and input signals should not be applied.

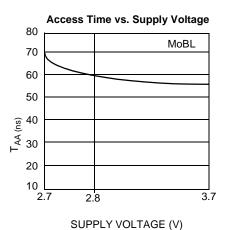


Switching Waveforms (continued)

Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) $^{[10,\ 15]}$



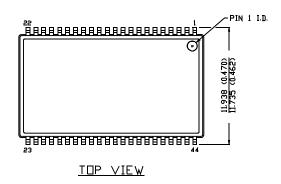

Write Cycle No. 4 $\overline{(BHE/BLE}$ Controlled, \overline{OE} LOW $^{[16]}$

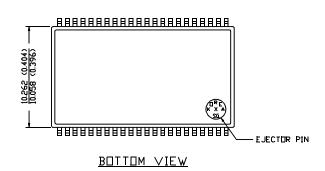


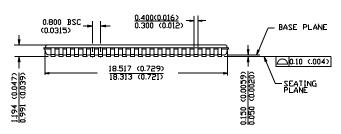
Typical DC and AC Characteristics

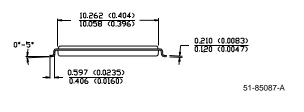
Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O ₀ -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	اـ	Data Out (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High-Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ -I/O ₁₅); I/O ₀ -I/O ₇ in High-Z	Read	Active (I _{CC})
L	Н	L	Н	Н	High-Z	Output Disabled	Active (I _{CC})
L	Н	Н	Х	X	High-Z	Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O ₀ -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High-Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High-Z	Write	Active (I _{CC})
L	L	Х	Н	Н	High-Z	Output Disabled	Active (I _{CC})


Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62146VLL-70ZI	Z44	44-pin TSOP II	Industrial


Package Diagram


44-Pin TSOP II Z44

D[MENS][IN MM (INCH) MAX MIN.

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.

Document Title: CY62146V MoBL [®] 4M (256K x 16) Static RAM Document Number: 38-05159				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	109963	10/02/01	SZV	Change from Spec number: 38-00647 to 38-05159
*A	116594	09/04/02	GBI	Added footnote 1. Deleted fBGA package; replacement fBGA package is available in CY62146CV30.