

MOS INTEGRATED CIRCUIT μ PD16805

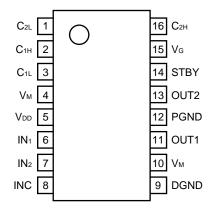
MONOLITHIC H BRIDGE DRIVER CIRCUIT

DESCRIPTION

The μ PD16805 is a monolithic H bridge driver IC which uses low-ON resistance power MOS FETs in its driver stage. This driver has a forward, reverse, and brake functions and is ideal for the driver circuit of motors for camera that advance or rewind the film, and for auto focusing or zooming.

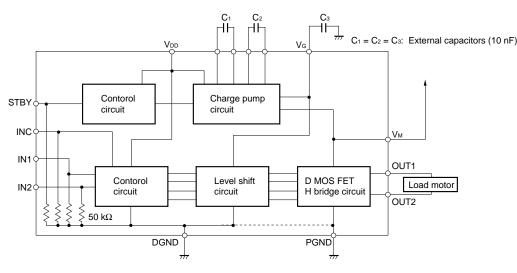
This IC supports a drive current of up to 1.0 A (DC).

FEATURES


- High drive current
- $\label{eq:IDR} \begin{array}{l} \mathsf{I}_{\mathsf{DR}} = 4.2 \mbox{ A MAX. at } \mathsf{PW} \leq 200 \mbox{ ms (single pulse)} \\ \\ \mbox{ I}_{\mathsf{DR}} = 1.0 \mbox{ A (DC)} \end{array}$
- Low-ON resistance (sum of ON resistances of top and bottom MOS FET)

Ron = 0.4 Ω TYP. at IDR = 1.0 A

- Standby function that turns OFF charge pump circuit
- Compact surface mount package
 16-pin plastic SOP (300 mil)


ORDERING INFORMATION

PIN CONFIGURATION (Top View)

Part Number	Package
μPD16805GS	16-pin plastic SOP (300 mil)

BLOCK DIAGRAM

The information in this document is subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	Vdd		-0.5 to +6.5/+8.0 ^{Note}	V
	Vм		-0.5 to +6.5/+8.0 ^{Note}	
V _G pin applied voltage	Vg		15	V
Input voltage	Vin		-0.5 to V _{DD} + 0.5	V
H bridge drive current	IDR1	DC	1.0	А
	Idr2	$PW \le 200 \text{ ms} \text{ (single pulse)}$	4.2	А
Power consumption	Рт	T _A = 25 °C	1.0	W
Operating temperature range	TA		-30 to +60	°C
Operating junction temperature	TJ (MAX)		150	°C
Storage temperature range	Tstg		-55 to +150	°C

Note $\,V_{DD}$ when the charge pump is used/V_{DD} and V_M when V_G is supplied from an external source

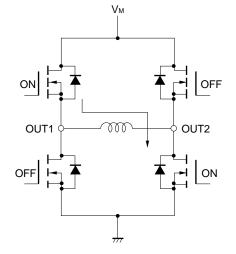
RECOMMENDED OPERATING CONDITIONS

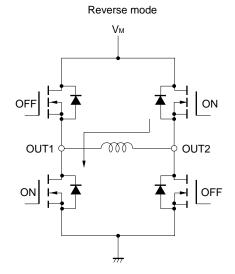
Parameter	Symbol	Conditions	Ratings			Unit
Farameter	Symbol	Conditions	MIN.	TYP.	MAX.	Onit
Supply voltage	V _{DD} During normal operation		3.0		6.0/7.5 ^{Note 2}	V
		All input pins are low	2.5			
	Vм		0.5		7.5	V
Charge pump capacitance	C ₁ to C ₃			10		nF
V _G pin applied voltage ^{Note 1}	Vg		11		14	V
Operating temperature	TA	Ambient temperature	-30		60	°C

Notes 1. When a voltage is applied from an external source to the $\ensuremath{\mathsf{V}}\xspace{\mathsf{g}}$ pin

2. When the charge pump is used/when $\ensuremath{\mathsf{V}}\xspace{\mathsf{G}}$ is supplied from an external source

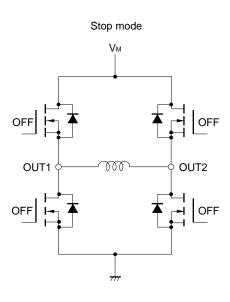
ELECTRICAL SPECIFICATIONS (Unless otherwise specified, $T_A = 25$ °C, $V_{DD} =$ recommended operating condition, $V_M = 0.5$ to 7.5 V)

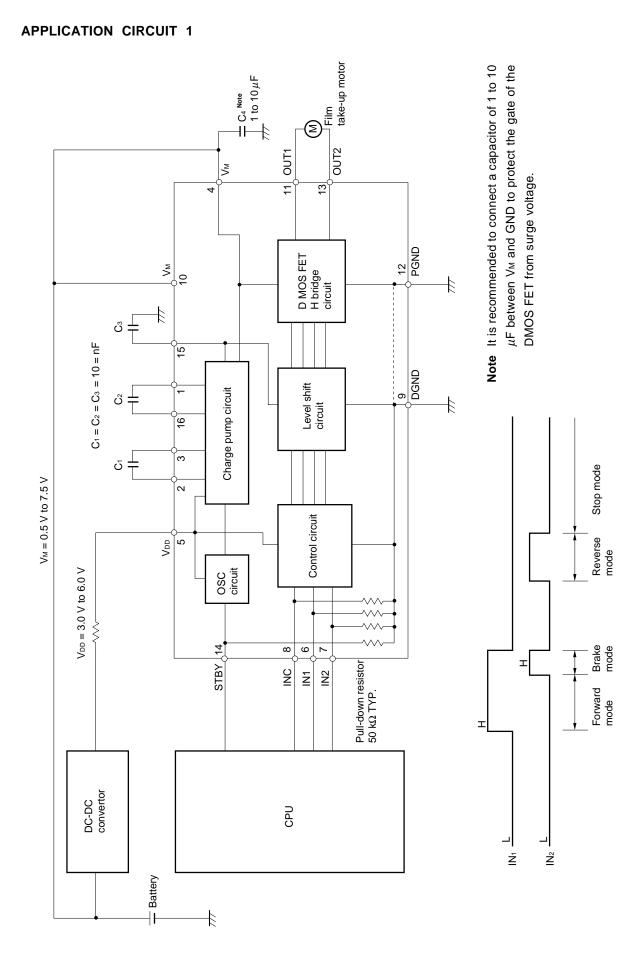

Descention	Symbol	Que ell'ittere e	Ratings			
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{DD} pin current	Idd1	V _{DD} = 5 V, T _A = recommended conditions Control pins at high level		0.6	2.0	mA
	Idd2	V _{DD} = 5 V, T _A = recommended conditions Control pins at low level		0.3	10	μA
V _M pin current	Ім1	Control pins at low level, T _A = recommended conditions		0.1	10	μΑ
	Ім2	Control pins at low level			1.0	μΑ
H bridge ON resistance ^{Note}	Ron	Idr = 1.0 A, Vdd = Vm = 5 V		0.4	0.6	Ω
Control pin high-level input voltage	Vін	T _A = recommended condition	$V_{\text{DD}} \times 0.6$			V
Control pin low-level input voltage	VIL	T _A = recommended condition			$V_{\text{DD}} \times 0.2$	V
Charge pump circuit turn-ON time	tong	$V_{DD} = V_M = 5 V,$		0.5	1.0	ms
H bridge output circuit turn-ON time	tолн	T _A = recommended conditions			10	μs
H bridge output circuit turn-OFF time	toffh	$C_1 = C_2 = C_3 = 10 \text{ nF}$ Idr = 1.0 A			5.0	μs
Control pin input pull-down resistor	RIND		35	50	65	kΩ
		T _A = recommended condition	25		75	kΩ

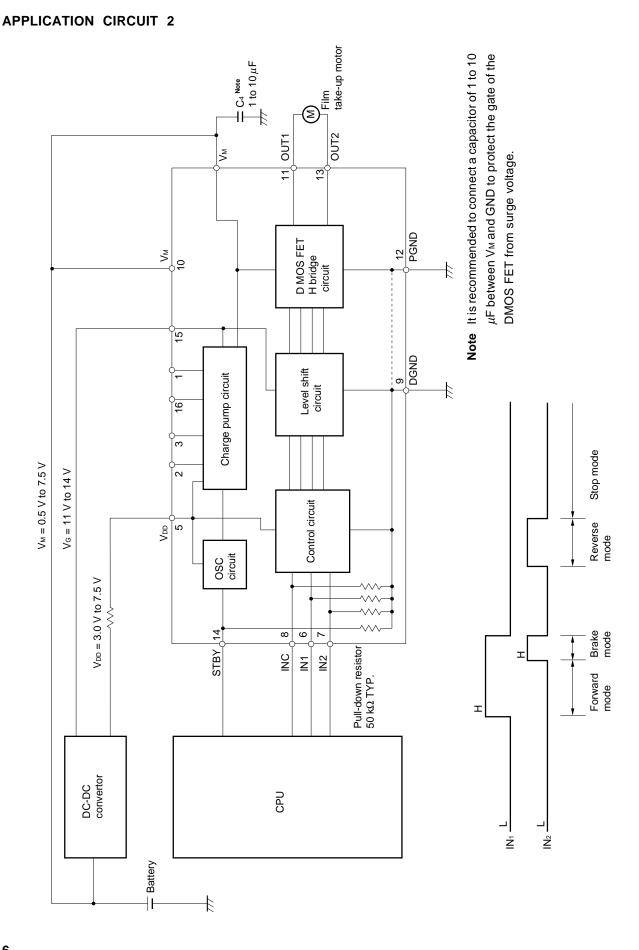

Note Sum of ON resistances of top and bottom MOS FETs

FUNCTION TABLE

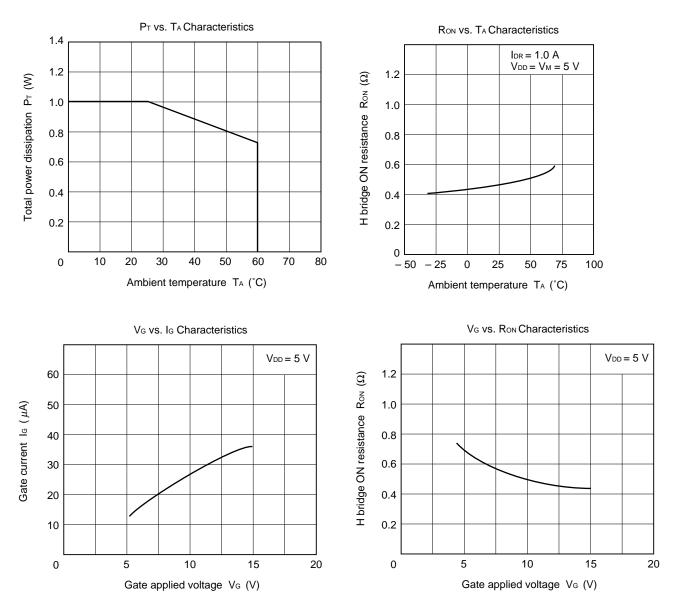

Input Signal			Function			
IN1	IN2	INC	STB	Function		
н	L	Н	н	Forward mode		
L	Н	Н	н	Reverse mode		
Н	Н	Н	Н	Brake mode		
L	L	Н	н	Stop mode		
×	×	L	н	Stop mode		
×	×	×	L	Standby mode		

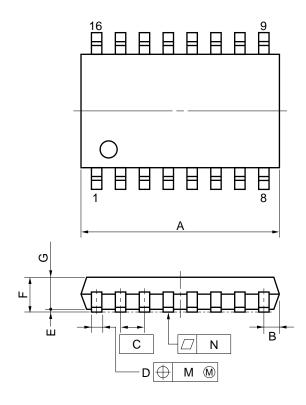

Forward mode



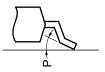


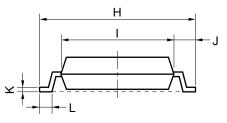
Brake mode





TYPICAL CHARACTERISTICS (TA = 25 $^{\circ}$ C)




PACKAGE DIMENSION

16 PIN PLASTIC SOP (300 mil)

detail of lead end

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
А	10.46 MAX.	0.412 MAX.
В	0.78 MAX.	0.031 MAX.
С	1.27 (T.P.)	0.050 (T.P.)
D	$0.40^{+0.10}_{-0.05}$	$0.016\substack{+0.004\\-0.003}$
E	0.1±0.1	0.004±0.004
F	1.8 MAX.	0.071 MAX.
G	1.55	0.061
Н	7.7±0.3	0.303±0.012
I	5.6	0.220
J	1.1	0.043
к	$0.20^{+0.10}_{-0.05}$	$0.008^{+0.004}_{-0.002}$
L	0.6±0.2	$0.024^{+0.008}_{-0.009}$
М	0.12	0.005
Ν	0.10	0.004
Р	3° ^{+7°} -3°	3° ^{+7°} -3°
		216GM-50-300B-/

P16GM-50-300B-4

RECOMMENDED SOLDERING CONDITIONS

It is recommended to solder this product under the conditions described below. For soldering methods and conditions other than those listed below, consult NEC.

Surface mount type

For the details of the recommended soldering conditions of this type, refer to **Semiconductor Device Mounting Technology Manual (C10535E)**.

μ**PD16805GS**

Soldering Method	Soldering Conditions	Symbol of Recommended Soldering
Infrared reflow	Peak package temperature: 235 °C, Time: 30 seconds MAX. (210 °C MIN.), Number of times: 2 MAX.	IR35-00-2
VPS	Peak package temperature: 215 °C, Time: 40 seconds MAX. (200 °C MIN.), Number of times: 2 MAX.	VP15-00-2

Note The number of storage days at 25 $^\circ\text{C},\,65\%$ RH after the dry pack has been opened

[MEMO]

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.