

High Performance Driver/Comparator on a Single Chip

AD53033

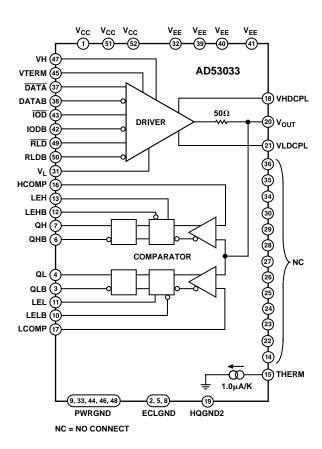
FEATURES

250 MHz Operation
Driver/Comparator Included
52-Lead LQFP Package with Built-in Heat Sink

APPLICATIONS

Automatic Test Equipment
Semiconductor Test Systems
Board Test Systems
Instrumentation and Characterization Equipment

PRODUCT DESCRIPTION


The AD53033 is a single chip that performs the pin electronics functions of driver and comparator (D-C) in ATE VLSI and memory testers.

The driver is a proprietary design that features three active states: Data High Mode, Data Low Mode and Term Mode as well as an Inhibit State. This facilitates the implementation of high speed active termination. The output voltage range is -3 V to +8 V to accommodate a wide variety of test devices. The output leakage is typically less than 250 nA over the entire signal range.

The dual comparator, with an input range equal to the driver output range, features built-in latches and ECL-compatible outputs. The outputs are capable of driving 50 Ω signal lines terminated to -2 V. Signal tracking capability is upwards of 5 V/ns.

Also included on the chip is an onboard temperature sensor whose purpose is to give an indication of the surface temperature of the D-C. This information can be used to measure θ_{JC} and θ_{JA} or flag an alarm if proper cooling is lost. Output from the

FUNCTIONAL BLOCK DIAGRAM

sensor is a current sink that is proportional to absolute temperature. The gain is trimmed to a nominal value of 1.0 $\mu A/K$. As an example, the output current can be sensed by using a 10 $k\Omega$ resistor connected from +10 V to the THERM (IOUT) pin. A voltage drop across the resistor will be developed that equals: $10K\times 1~\mu A/K=10~mV/K=2.98~V$ at room temperature.

AD53033-SPECIFICATIONS

DRIVER SPECIFICATIONS

(All specifications are at $T_J = +85^{\circ}\text{C} \pm 5^{\circ}\text{C}$, $+V_S = +12 \text{ V} \pm 3\%$, $-V_S = -7 \text{ V} = \pm 3\%$ unless otherwise noted. All temperature coefficients are measured at $T_J = +75^{\circ}\text{C}$ to $+95^{\circ}\text{C}$). CHDCPL = CLDCPL = 39 nF.

Parameter	Min	Typ	Max	Units	Test Conditions
DIFFERENTIAL INPUT CHARACTERISTICS (DATA to DATA, IOD to IOD, RLD to RLD) Input Voltage	-2	F-04	0	V	
Differential Input Range Bias Current	-250	ECL	+250	μA	$V_{IN} = -2 \text{ V}, 0.0 \text{ V}$
REFERENCE INPUTS					
Bias Currents	-50		+50	μΑ	$V_L, V_H, V_T = 5 V$
OUTPUT CHARACTERISTICS					
Logic High Range	-2		8	V	DATA = H, $V_H = -2 V \text{ to } +8 V$ $V_L = -3 V (V_H = -2 V \text{ to } +6 V)$ $V_I = -1 V (V_H = +6 V \text{ to } +8 V)$
Logic Low Range	-3		5	V	DATA = L, $V_L = -3 \text{ V to } +5 \text{ V}, V_H = +6 \text{ V}$
Amplitude (V_H and V_L) Absolute Accuracy	0.1		9	V	$V_L = 0.0 \text{ V}, V_H = +0.1 \text{ V}, V_T = 0 \text{ V}$ $V_L = -2 \text{ V}, V_H = +7 \text{ V}, V_T = 0 \text{ V}$
V_H Offset	-50		+50	mV	DATA = H, $V_H = 0 \text{ V}$, $V_L = -3 \text{ V}$, $V_T = +3 \text{ V}$
V _H Gain + Linearity Error	0.3 – 5		+0.3 + 5	$\%$ of $V_H + mV$	DATA = H, $V_H = -2 V$ to +8 V, $V_L = -3 V$, $V_T = +3 V$
V _L Offset	-50		+50	mV	DATA = L, $V_L = -3 \text{ V}$, $V_H = +6 \text{ V}$, $V_T = +7.5 \text{ V}$
V _L Gain + Linearity Error	-0.3 - 5	0.5	+0.3 + 5	$\%$ of $V_L + mV$	DATA = L, $V_L = 0 \text{ V}$, $V_H = +6 \text{ V}$, $V_T = +7.5 \text{ V}$
Offset TC		0.5		mV/°C	$V_L = 0 \text{ V}, V_H = +5 \text{ V}, V_T = 0 \text{ V}$
Output Resistance $V_H = -2 V$	44	46	48	Ω	$V_{L} = -3 \text{ V}, V_{T} = 0 \text{ V}, I_{OUT} = 0, +1, +30 \text{ mA}$
$V_H = -2 V$ $V_H = +8 V$	44	46	48	Ω	$V_L = -3 \text{ V}, V_T = 0 \text{ V}, I_{OUT} = 0, -1, -30 \text{ mA}$
$V_{\rm L} = -3 \text{ V}$	44	46	48	Ω	$V_{\rm H} = +6 \text{ V}, V_{\rm T} = 0 \text{ V}, I_{\rm OUT} = 0, -1, -30 \text{ mA}$
$V_{L} = +5 \text{ V}$	44	46	48	Ω	$V_{H} = +6 \text{ V}, V_{T} = 0 \text{ V}, I_{OUT} = 0, -1, -30 \text{ mA}$
$V_H = +3 \text{ V}$	**	46	-0	Ω	$V_L = 0 \text{ V}, V_T = 0 \text{ V}, I_{OUT} = -30 \text{ mA} \text{ (Trim Point)}$
Dynamic Current Limit	100			mA	$C_{\text{RYP}} = 39 \text{ nF}, V_{\text{H}} = +7 \text{ V}, V_{\text{L}} = -2 \text{ V}, V_{\text{T}} = 0 \text{ V}$
Static Current Limit	-85		+85	mA	Output to -3 V, $V_H = +8$ V, $V_L = -1$ V, $V_T = 0$ V DATA = H and Output to $+8$ V, $V_H = +6$ V, $V_L = -3$ V, $V_T = 0$ V, DATA = L
V_{TERM}					
Voltage Range	-3		8.0	V	TERM MODE, $V_T = -3 \text{ V to } +8 \text{ V}, V_L = 0 \text{ V}, V_H = 3 \text{ V}$
V _{TERM} Offset	-50		+50	mV	TERM MODE, $V_T = 0 \text{ V}$, $V_L = 0 \text{ V}$, $V_H = 3 \text{ V}$
V _{TERM} Gain + Linearity Error	-0.3 + 5		+0.3 + 5	% of V _{SET} + mV	TERM MODE, $V_T = -3 \text{ V to } +8 \text{ V}, V_L = 0 \text{ V}, V_H = 3 \text{ V}$
Offset TC		0.5		mV/°C	$V_T = 0 \text{ V}, V_L = 0 \text{ V}, V_H = 3 \text{ V}$
Output Resistance	44	46	49	Ω	$\begin{split} &I_{OUT} = +30 \text{ mA}, +1.0 \text{ mA}, V_T = -3.0 \text{ V}, V_H = 3 \text{ V}, V_L = 0 \text{ V} \\ &I_{OUT} = -30 \text{ mA}, -1.0 \text{ mA}, V_T = +8.0 \text{ V}, V_H = 3 \text{ V}, V_L = 0 \text{ V} \\ &I_{OUT} = \pm 30 \text{ mA}, \pm 1.0 \text{ mA}, V_T = 0 \text{ V}, V_H = 3 \text{ V}, V_L = 0 \text{ V} \end{split}$
DYNAMIC PERFORMANCE, $(V_H \text{ AND } V_L)$					
Propagation Delay Time	1.1	1.6	2.1	ns	Measured at 50%, $V_H = +400 \text{ mV}$, $V_L = -400 \text{ mV}$
Propagation Delay TC		2		ps/°C	Measured at 50%, $V_H = +400 \text{ mV}$, $V_L = -400 \text{ mV}$
Delay Matching, Edge to Edge Rise and Fall Times		<100		ps	Measured at 50%, $V_H = +400 \text{ mV}$, $V_L = -400 \text{ mV}$
1 V Swing 3 V Swing		0.6		ns	Measured 20%–80%, V _L = 0 V, V _H = 1 V Measured 20%–80%, V _I = 0 V, V _H = 3 V
5 V Swing		1.0 1.7		ns	Measured 20%–80%, $V_L = 0 \text{ V}$, $V_H = 5 \text{ V}$ Measured 10%–90%, $V_L = 0 \text{ V}$, $V_H = 5 \text{ V}$
9 V Swing		3.0		ns ns	Measured $10\%-90\%$, $V_L = 0$ V, $V_H = 3$ V Measured $10\%-90\%$, $V_L = -2$ V, $V_H = 7$ V
Rise and Fall Time Temperature Coefficient		5.0			The second services of the ser
1 V Swing		±1		ps/°C	Measured 20%–80%, $V_L = 0 \text{ V}$, $V_H = 1 \text{ V}$
3 V Swing		±2		ps/°C	Measured 20%–80%, $V_L = 0 \text{ V}$, $V_H = 3 \text{ V}$
5 V Swing		± 4		ps/°C	Measured 10%–90%, $V_L = 0 \text{ V}$, $V_H = 5 \text{ V}$
Overshoot and Preshoot	-3.0 - 50		+3.0 + 50	% of Step + mV	$egin{array}{l} V_{L}, V_{H} = -0.1 \ V, \ 0.1 \ V, \ V_{L}, \ V_{H} = 0.0 \ V, \ 1.0 \ V \\ V_{L}, V_{H} = 0.0 \ V, \ 3.0 \ V, \ V_{L}, \ V_{H} = 0.0 \ V, \ 5.0 \ V \\ V_{L}, V_{H} = -2.0 \ V, \ 7.0 \ V \\ \end{array}$
Settling Time					
S	1			İ	I and the second
to 15 mV		< 50		ns	$V_{L} = 0 \text{ V}, V_{H} = 0.5 \text{ V}$

-2-

REV. 0

Parameter	Min	Тур	Max	Units	Test Conditions
Delay Change vs. Pulsewidth		<50		ps	$V_{L} = 0 \text{ V}, V_{H} = 2 \text{ V}$
Minimum Pulsewidth					
3 V Swing		2		ns	$V_L = 0 \text{ V}, V_H = 3 \text{ V}, 90\% \text{ Reached, Measure } @ 50\%$
5 V Swing		3		ns	$V_L = 0 \text{ V}, V_H = 5 \text{ V}, 90\% \text{ Reached, Measure } @ 50\%$
Toggle Rate		250		MHz	$V_L = 0 \text{ V}, V_H = 5 \text{ V}, VDUT > 3.0 \text{ V p-p}$
DYNAMIC PERFORMANCE, INHIBIT					
Delay Time, Active to Inhibit	1.5		4.0	ns	Measured at 50%, $V_H = +2 \text{ V}$, $V_L = -2 \text{ V}$
Delay Time, Inhibit to Active	1.5		3.5	ns	Measured at 50%, $V_H = +2 \text{ V}$, $V_L = -2 \text{ V}$
Delay Time Matching (Z)			± 2.2	ns	Z = Delay Time Active to Inhibit Test (Above)—
					Delay Time Inhibit to Active Test (Above)
					(Of Worst Two Edges)
I/O Spike		<200		mV, p-p	$V_H = 0 V, V_L = 0 V$
Rise, Fall Time, Active to Inhibit			3.5	ns	$V_{\rm H}$ = +2 V, $V_{\rm L}$ = -2 V (Measured 20%/80% of 1 V Output)
Rise, Fall Time, Inhibit to Active			2.2	ns	$V_H = +2 \text{ V}, V_L = -2 \text{ V} \text{ (Measured 20\%/80\% of 1 V Output)}$
DYNAMIC PERFORMANCE , V _{TERM}					
Delay Time, V _H to V _{TERM}			3.0	ns	Measured at 50%, $V_L = V_H = +0.4 \text{ V}$, $V_{TERM} = -0.4 \text{ V}$
Delay Time, V _L to V _{TERM}			5.0	ns	Measured at 50%, $V_L = V_H = +0.4 \text{ V}$, $V_{TERM} = -0.4 \text{ V}$
Delay Time, V _{TERM} to V _H and V _{TERM} to V _L			4.0	ns	Measured at 50%, $V_L = V_H = +0.4 \text{ V}$, $V_{TERM} = -0.4 \text{ V}$
Overshoot and Preshoot	-3.0 + 75		+3.0 + 75	% of Step + mV	V_H/V_L , $V_{TERM} = (+0.4 \text{ V}, -0.4 \text{ V}), (0.0 \text{ V}, -2.0 \text{ V}),$
					(0.0 V, +7.0 V)
V _{TERM} Mode Rise Time			4.0	ns	V_L , $V_H = 0$ V, $V_{TERM} = -2$ V, $20\%-80\%$
V _{TERM} Mode Fall Time			5.5	ns	V_L , $V_H = 0$ V, $V_{TERM} = -2$ V, $20\%-80\%$
PSRR, DRIVE or TERM Mode		35		dB	$V_S = V_S \pm 3\%$

Specifications subject to change without notice.

COMPARATOR SPECIFICATIONS

(All specifications are at $T_J = +85^{\circ}C \pm 5^{\circ}C$, $+V_S = +12 \text{ V} \pm 3\%$, $-V_S = -7 \text{ V} = \pm 3\%$ unless otherwise noted. All temperature coefficients are measured at $T_J = +75^{\circ}C$ to $+95^{\circ}C$).

Parameter	Min	Тур	Max	Units	Test Conditions
DC INPUT CHARACTERISTICS					
Offset Voltage (VOS)	-25		25	mV	CMV = 0 V
Offset Voltage (Drift)		50		μV/°C	CMV = 0 V
HCOMP, LCOMP Bias Current	-50		50	μA	$V_{IN} = 0 V$
Voltage Range (V _{CM})	-3		8.0	v	
Differential Voltage (V _{DIFF})			9.0	V	
Gain and Linearity	-0.05		0.05	% FSR	$V_{IN} = -3 V \text{ to } +8 V$
LATCH ENABLE INPUTS					
Logic "1" Current (I _{IH})			250	μA	LE, $\overline{\text{LE}} = -0.8 \text{ V}$
Logic "0" Current (I _{IL})	-250			μA	LE, $\overline{LE} = -1.8 \text{ V}$
DIGITAL OUTPUTS					
Logic "1" Voltage (V _{OH})	-0.98			V	Q or \overline{Q} , 50 Ω to -2 V
Logic "0" Voltage (V _{OL})			-1.5	V	$Q \text{ or } \overline{Q}, 50 \Omega \text{ to } -2 \text{ V}$
Slew Rate		1		V/ns	
SWITCHING PERFORMANCE					
Propagation Delay					
Input to Output	0.9		2.5	ns	$V_{IN} = 2 V_{p-p}$
Latch Enable to Output		2		ns	HCOMP = +1 V, LCOMP = +1 V
Propagation Delay Temperature Coefficient		2		ps/°C	
Propagation Delay Change with Respect to					
Slew Rate: 0.5 V, 1.0 V, 3.0 V/ns		<±10	0	ps	$V_{IN} = 0 \text{ V to 5 V}$
Slew Rate: 5.0 V/ns		<±35	0	ps	$V_{IN} = 0 \text{ V to 5 V}$
Amplitude: 1.0 V, 3.0 V, 5.0 V		<±20	0	ps	$V_{IN} = 1.0 \text{ V/ns}$
Equivalent Input Rise Time		450		ps	$V_{IN} = 0 \text{ V to } 3 \text{ V}, 3 \text{ V/ns}$
Pulsewidth Linearity		<±20	0	ps	$V_{IN} = 0 \text{ V to } 3 \text{ V}, 3 \text{ V/ns}, PW = 3 \text{ ns} - 8 \text{ ns}$
Settling Time		<25		ns	Settling to ± 8 mV, $V_{IN} = 1$ V to 0 V
Latch Timing					
Input Pulsewidth		<1.5		ns	
Setup Time		<1.0		ns	
Hold Time		<1.0		ns	

Specifications subject to change without notice.

REV. 0 -3-

AD53033-SPECIFICATIONS

TOTAL FUNCTION SPECIFICATIONS

(All specifications are at $T_J = +85^{\circ}\text{C} \pm 5^{\circ}\text{C}$, $+V_S = +12 \text{ V} \pm 3\%$, $-V_S = -7 \text{ V} = \pm 3\%$ unless otherwise noted. All temperature coefficients are measured at $T_J = +75^{\circ}\text{C}$ to $+95^{\circ}\text{C}$).

Parameter	Min	Typ	Max	Units	Test Conditions
OUTPUT CHARACTERISTICS					
Output Leakage Current, $V_{OUT} = -2 \text{ V to } +7 \text{ V}$	-500		+500	nA	
Output Leakage Current, $V_{OUT} = -3 \text{ V}$ to +8 V	-2		+2	μA	
Output Capacitance		6		pF	Driver INHIBITED
POWER SUPPLIES					
Total Supply Range		19		V	
Positive Supply		12		V	
Negative Supply		-7		V	
Positive Supply Current			178	mA	Driver = Active
Negative Supply Current			195	mA	Driver = Active
Total Power Dissipation			3.5	W	Driver = Active
Temperature Sensor Gain Factor	0.7	1	1.4	μA/K	$R_{LOAD} = 10 \text{ k}\Omega, V_{SOURCE} = +10 \text{ V}$

NOTES

Connecting or shorting the decoupling pins to ground will result in the destruction of the device.

Specifications subject to change without notice.

Table I. Driver Truth Table

DATA	DATA	IOD	ĪOD	RLD	RLD	OUTPUT STATE
0	1	1	0	X	X	VL
1	0	1	0	X	X	VH
X	X	0	1	0	1	INH
X	X	0	1	1	0	VTERM

Table II. Comparator Truth Table

						C	UTPUT ST	ATES	
V_{OU}	Т	LEH	LEH	LEL	LEL	QH	$\overline{\mathbf{QH}}$	QL	$\overline{\mathbf{QL}}$
>HCOMP	>LCOMP	1	0	1	0	1	0	1	0
>HCOMP	<lcomp< td=""><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td></lcomp<>	1	0	1	0	1	0	0	1
<hcomp< td=""><td>>LCOMP</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td><td>1</td><td>0</td></hcomp<>	>LCOMP	1	0	1	0	0	1	1	0
<hcomp< td=""><td><lcomp< td=""><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0</td><td>1</td></lcomp<></td></hcomp<>	<lcomp< td=""><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0</td><td>1</td></lcomp<>	1	0	1	0	0	1	0	1
X	X	0	1	0	1	QH (t-1)	\overline{QH} (t-1)	QL (t-1)	$\overline{\mathrm{QL}}$ (t-1)

-4- REV. 0

Power Supply Voltage $+V_S$ to GND+1 $+V_S$ to $-V_S$+2 PWR GND to ECL GND or HQ GND $\dots \pm 0$. Inputs DATA, \overline{DATA} , IOD, \overline{IOD} , RLD, \overline{RLD} +5 V, – DATA to \overline{DATA} , IOD to \overline{IOD} , RLD to \overline{RLD} \pm LEL, $\overline{\text{LEL}}$, LEH, $\overline{\text{LEH}}$+5 V, – LEL to $\overline{\text{LEL}}$, LEH to $\overline{\text{LEH}}$ \pm VH, VL, VTERM to GND +9 V, -(VH - VTERM) and (VTERM - VL) ± 1 HCOMP +9 V, -LCOMP +9 V, -

V_{OUT} Short Circuit Duration Indefinite² V_{OUT} Inhibit Mode +9 V, -4 V VHDCPL Do Not Connect Except for Cap to V_{CC} VLDCPL Do Not Connect Except for Cap to V_{EE}

THERM+13 V, 0 V

ABSOLUTE MAXIMUM RATINGS¹

QH, \overline{QH} , QL, \overline{QL} Maximum I_{OUT}

ower supply voltage	Op.
+V _S to GND+13 V	Sto
-V _S to GND	Lea
$+V_S$ to $-V_S$	NOTES
PWR GND to ECL GND or HQ GND ±0.4 V	¹ Stresse
nputs	nent d
DATA, \overline{DATA} , IOD, \overline{IOD} , RLD, \overline{RLD} +5 V, -3 V	device section
DATA to \overline{DATA} , IOD to \overline{IOD} , RLD to \overline{RLD} ± 3 V	individ
LEL, $\overline{\text{LEL}}$, LEH, $\overline{\text{LEH}}$ +5 V, -3 V	tions f
LEL to $\overline{\text{LEL}}$, LEH to $\overline{\text{LEH}}$ ±3 V	² Outpu
VH, VL, VTERM to GND +9 V, -4 V	sinking ³ To ens
VH to VL	hands
$(VH-VTERM)$ and $(VTERM-VL)$ $\pm 11~V$	±5°C
HCOMP +9 V, -4 V	
LCOMP	
HCOMP, LCOMP to V_{OUT} $\pm 11 \text{ V}$	
Dutpute	

Environmental

Operating Temperature (Junction)	.+175°C
Storage Temperature65°C to	o +150°C
Lead Temperature (Soldering, 10 sec) ³	.+260°C

ses above those listed under Absolute Maximum Ratings may cause permadamage to the device. This is a stress rating only; functional operation of the e at these or any other conditions above those indicated in the operational ons of this specification is not implied. Absolute maximum limits apply idually, not in combination. Exposure to absolute maximum rating condifor extended periods may affect device reliability.

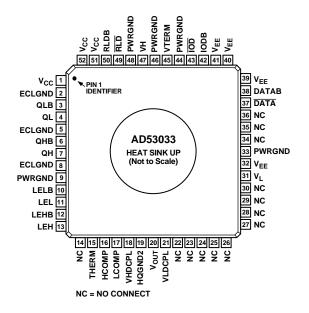
ut short circuit protection to ground is guaranteed as long as proper heat ng is employed to ensure compliance with the operating temperature limits. sure lead coplanarity (±0.002 inches) and solderability, handling with bare s should be avoided and the device should be stored in environments at $24\,^{\circ}\mathrm{C}$ $(75^{\circ}\text{F} \pm 10^{\circ}\text{F})$ with relative humidity not to exceed 65%.

Table III. Package Thermal Characteristics

θ _{JA} , °C/W
33
25
22

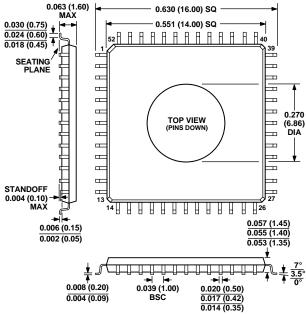
ORDERING GUIDE

Model	Package Description	Shipment Method Quantity per Shipping Container	Package Option
AD53033JSTP	52-Lead LQFP-EDQUAD	90	SQ-52


CAUTION_

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD53033 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

REV. 0 -5-


PIN CONFIGURATION

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

52-Lead LQFP-EDQUAD with Integral Heat Slug (SQ-52)

CENTER FIGURES ARE TYPICAL UNLESS OTHERWISE NOTED