DATA SHEET

MOS INTEGRATED CIRCUIT μ PD61051, 61052

MPEG2 AUDIO/VIDEO ENCODER

The μ PD61051 and μ PD61052 are LSIs of MPEG audio and video encoding, decoding and transcoding.

The μ PD61051 has MPEG2 video encoder, MPEG audio encoding DSP, 32-bit RISC CPU, video input/output unit which contains a processing filter and a time base corrector (TBC), and MPEG system layer which contains the multiplexer and de-multiplexer. It combines with 64 M or 128 Mbit SDRAM and it uses. The μ PD61052 has a DolbyTM Digital Consumer Encoder in addition to the μ PD61051.

The μ PD61051, 61052 are the optimal choice for consumer digital video recording replay equipment to process a MPEG.

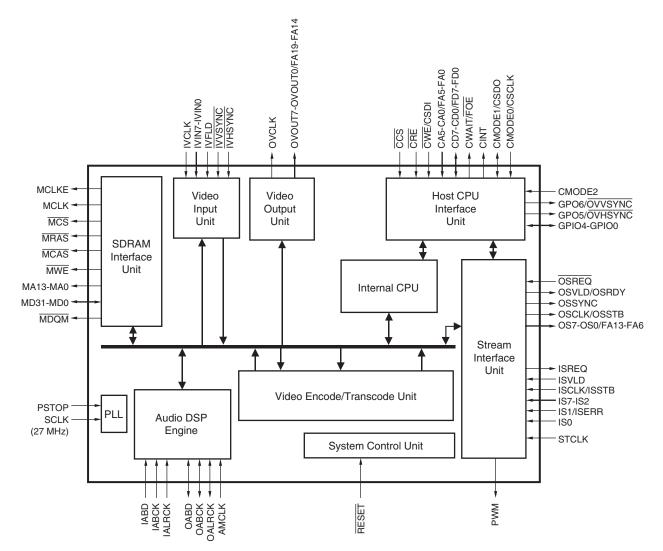
FEATURES

- Video encode
 - Stream standard: MPEG2 video MP@ML, SP@ML standard, MPEG1 standard
 - Picture size: Horizontal: 720, 704, 544, 480, 352 dots/line Vertical: 480, 240, 576, 288 line/frame
 - Single pass variable bit rate (VBR), constant bit rate (CBR) encoding
 - Transcoding: Bit rate conversion, VBR \Leftrightarrow CBR
 - Video input/output
 - Format: 8-bit Y/Cb/Cr 4:2:2 (ITU-R BT.656)
 - Pre analysis: Film detect, scene changing detect, and motion estimation assist
 - TBC, VBI data slicer
- Audio encoding
 - Bit length: 16 bits, 20 bits, 24 bits
 - Sampling rate: 32 kHz, 44.1 kHz, 48 kHz
 - MPEG1 audio layer 2 standard based
 - Dolby Digital Consumer Encoder standard based (Only the µPD61052)
 - Elementary stream and PCM audio input/output
- MPEG system processing
 - Multiplex: MPEG2-PS, MPEG2-TS, DVD-Video, and DVD-VR
 - De-multiplex: MPEG2-PS, MPEG2-TS
 - Transcoding: MPEG2 format conversion (MPEG2-TS ⇔ MPEG2-PS)
 - Partial TS generation
- Package: 208-pin fine pitch QFP
- Power supply: 1200 mW (Typ.)
- Power supply voltage: 3.3±0.165 V, 2.5±0.2 V (Internal circuit power)

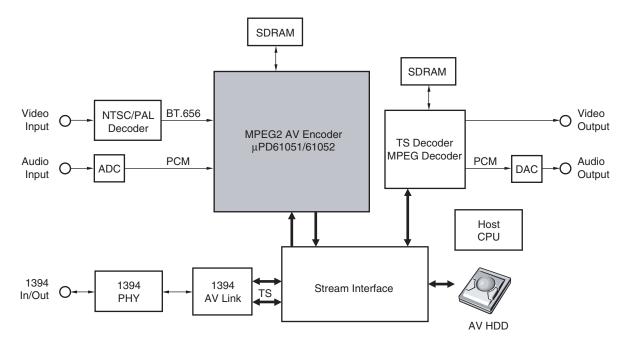
"Dolby" is a trademark of Dolby Laboratories. To use the μ PD61052, a license from Dolby Laboratories Licensing Corporation is necessary.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

APPLICATION

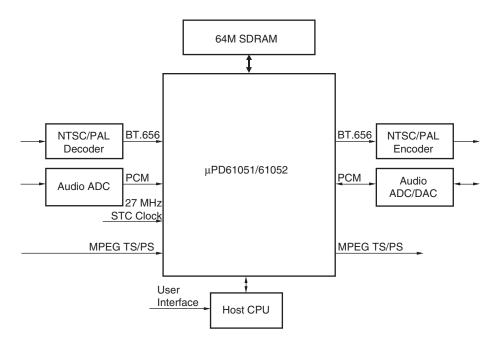

D-VHS, DVD video recorder, HDD video recorder

ORDERING INFORMATION

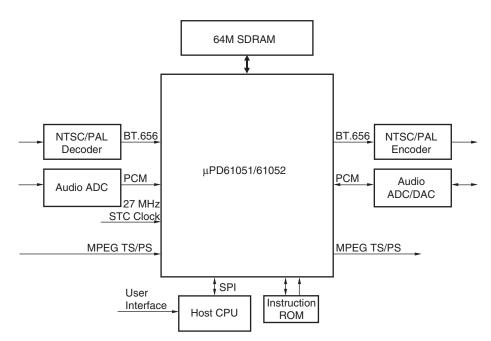

	Part Number	Package
	μ PD61051GD-LML	208-pin plastic QFP (Fine pitch) (28×28)
*	μ PD61051GD-LML-A ^{Note}	208-pin plastic QFP (Fine pitch) (28×28)
	μ PD61052GD-LML	208-pin plastic QFP (Fine pitch) (28×28)
*	μ PD61052GD-LML-A ^{Note}	208-pin plastic QFP (Fine pitch) (28×28)

Note Lead-free product

BLOCK DIAGRAM

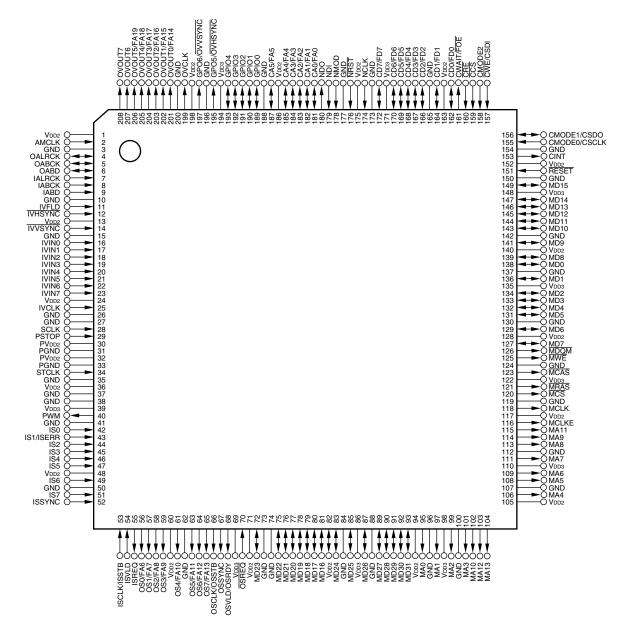


PERIPHERAL CONNECTION



This LSI deals with two kinds of methods to connect a system controller.

Parallel Bus Interface


Serial Bus Interface

PIN CONFIGURATION (TOP VIEW)

• 208-pin plastic QFP (Fine pitch) (28×28)

μPD61051GD-LML μPD61051GD-LML-A μPD61052GD-LML μPD61052GD-LML-A

NEC

PIN LIST

AMCLK	:Audio Main Clock	MA0 to MA13	:Memory Address
CA0/FA0 to CA5/FA5	:Host CPU Address/	MCAS	:Memory Column Address Strobe
	Instruction ROM Address	MCLK	:Memory Clock
CCS	:Host CPU Chip Select	MCLKE	:Memory Clock Enable
CD0/FD0 to CD7/FD7	:Host CPU Data/	MCS	:Memory Chip Select
	Instruction ROM Data	MD0 to MD31	:Memory Data
CINT	:Host CPU Interrupt	MDQM	:Memory DQ Mask Enable
CMODE0/CSCLK	:Host CPU Mode/	MRAS	:Memory Row Address Strobe
	SPI Clock	MWE	:Memory Write Enable
CMODE1/CSDO	:Host CPU Mode/	NCLK	:N-wire Clock
	SPI Data Output	NDI	:N-wire Data Input
CMODE2	:Host CPU Mode	NDO	:N-wire Data Output
CRE	:Host CPU Read Enable	NMOD	:N-wire Mode
CWAIT/FOE	:Host CPU Wait/	NRST	:N-wire Reset
	Instruction ROM Output Enable	OABCK	:Output Audio Bit Clock
CWE/CSDI	:Host CPU Write Enable/	OABD	:Output Audio Bit Data
	SPI Data Input	OALRCK	:Output Audio LR Clock
GND	:Ground	OS0/FA6 to OS7/FA13	:Output Stream Data/
GPIO0 to GPIO4	:General Purpose IO		Instruction ROM Address
GPO5/OVHSYNC	:General Purpose Output/	OSCLK/OSSTB	:Output Stream Data Clock/
	Output Video Horizontal Sync		Output Stream Data Strobe
GPO6/OVVSYNC	:General Purpose Output/	OSREQ	:Output Stream Data Request
	Output Video Vertical Sync	OSSYNC	:Output Stream Data Sync
IABCK	Input Audio Bit Clock	OSVLD/OSRDY	:Output Stream Data Valid/
IABD	Input Audio Bit Data		Output Stream Data Ready
IALRCK	Input Audio LR Clock	OVCLK	:Output Video Clock
IS0, IS2 to IS7	:Input Stream Data	OVOUT0/FA14 to	:Output Video Data/
IS1/ISERR	:Input Stream Data/ Input Stream Error	OVOUT5/FA19	Instruction ROM Address
ISCLK/ISSTB	:Input Stream Data Clock/	OVOUT6,OVOUT7	:Output Video Data
	Input Stream Data Strobe	PGND	:PLL Ground
ISREQ	Input Stream Data Request	PSTOP	:PLL Stop
ISSYNC	Input Stream Data Sync	PV _{DD2}	:PLL 2.5 V Power Supply
ISVLD	Input Stream Data Valid	PWM	:PWM Output
IVCLK	Input Video Clock	RESET	:Reset
IVFLD	Input Video Field Index	SCLK	:System Clock
IVHSYNC	Input Video Horizontal Sync	STCLK	:System Time Clock
IVIN0 to IVIN7	Input Video Data	VDD2	:2.5 V Power Supply
IVVSYNC	Input Video Vertical Sync	Vdd3	:3.3 V Power Supply

CONTENTS

1.	PIN	FUNC	TION	. 9
	1.1	Video	Input Interface	9
	1.2	Video	Output Interface	9
	1.3	Audio	Input Interface	9
	1.4	Audio	Input/output Interface	10
	1.5	Stream	n Input Interface	10
	1.6	Stream	n Output Interface	11
	1.7	SDRA	M Interface	11
	1.8	Host (CPU Interface	12
		1.8.1	Parallel bus interface	12
		1.8.2	Serial bus interface	12
	1.9	Clock	, Reset	13
	1.10	N-Wir	e	13
			r Supply	
	1.13	Recor	nmended Connections of Unused Pins	15
2.			OVERVIEW	
	2.1			
		2.1.1	Encoding	
		2.1.2	Transcoding	
		2.1.3	Input/output processing	
	2.2)	
		2.2.1	Encoding	
		2.2.2	Transcoding (DEMUX, MUX)	
		2.2.3	Input/output processing	
	2.3		System Processing	
		2.3.1	System time clock	
		2.3.2	Multiplex	
		2.3.3	De-multiplex	
		2.3.4	Transcode	
	2.4		n Interface	
		2.4.1	Parallel steam data interface	
	. -	2.4.2	Serial stream data interface	-
	2.5		CPU Interface	
	2.6		M Interface	
	2.7		bry Connection Diagram	
	2.8	Memo	ргу Мар	36
3.	SVS		NTERFACE REGISTER	38
5.	3.1		ter Mapping (General Mapping)	
	3.2	-	ter Functions	
		3.2.1	Common register	
		3.2.2	Data transfer register	
		3.2.3	Internal CPU interrupt register	
		3.2.4	Interrupt mask register	

		3.2.5	Download interrupt register	47
		3.2.6	Interrupt register	48
		3.2.7	Reset register	48
		3.2.8	ROM access cycle register	49
		3.2.9	Port setup register	49
4.	SYS	TEM I		50
	4.1	Outlin	ie	51
	4.2	Firmw	/are Download	
		4.2.1	Host CPU to instruction RAM of internal CPU	52
		4.2.2	External ROM to instruction RAM of internal CPU	53
		4.2.3	Host CPU to SDRAM	54
		4.2.4	External ROM to SDRAM	55
	4.3	SDRA	M Write during Executing	56
	4.4	SDRA	M Read during Executing	57
	4.5	SDRA	M Initialization	58
	4.6	Opera	tion Mode Setting by Changing Firmware	59
	4.7	Trans	fer Ending	60
	4.8	Trans	fer Error Handling	61
		4.8.1	Transfer error handling 1	61
		4.8.2	Transfer error handling 2	62
		4.8.3	Transfer error handling 3	63
5.	EXA	MPLE	FOR COMMON REGISTER USAGE	64
	5.1	Regis	ter Map Example	65
	5.2	-	ple of the Common Register Which A Firmware Defines	
		5.2.1	COMCODE: Command code register	
		5.2.2	ESTS: Status register	66
6.	ELE	CTRIC	AL CHARACTERISTICS	68
7.	PAC	KAGE	DRAWING	102
8.	REC	OMME	ENDED SOLDERING CONDITIONS	103

NEC

1. PIN FUNCTION

Sharing pin is bold faced in name and explains the feature shown.

1.1 Video Input Interface

The video input is based on the ITU-R BT.656 format. The horizontal synchronization signal, and the vertical synchronization signal, the field index can be used without using SAV and EAV to provide at ITU-R BT. 656, too.

Name	ю	Pin Number	Function	Active Polarity
IVIN7 to IVIN0	Ι	23 to 16	Video data	
IVCLK	Ι	25	Video clock (27 MHz)	↑
IVHSYNC	Ι	12	Horizontal synchronization	L
IVVSYNC	Ι	14	Vertical synchronization	L
IVFLD	Ι	11	Field index	

1.2 Video Output Interface

The video output is based on the ITU-R BT.656 format. It is able to output horizontal and vertical synchronization signals with SAV/EAV. These synchronization signals are chosen output by the firmware. These ports become GPO until the firmware initializes after hardware reset.

At the time of the odd field, OVVSYNC falls in the 4th clock after falling of OVHSYNC.

At the time of the even field, $\overline{OVVSYNC}$ falls in to the H/2+4th clock the $\overline{OVHSYNC}$ falling.

Name	10	Pin Number	Function	Active Polarity
OVOUT7, OVOUT6	0	208, 207	Video data	
OVOUT5 to OVOUT0/ FA19 to FA14	0	206 to 201	Video data	
OVCLK	0	199	Video clock (27 MHz)	\uparrow
GPO5/OVHSYNC	0	195	Horizontal synchronization	L
GPO6/OVVSYNC	0	197	Vertical synchronization	L

1.3 Audio Input Interface

Name	ю	Pin Number	Function	Active Polarity
IALRCK	Ι	7	Left/Right clock	
IABCK	Ι	8	Bit clock	\uparrow
IABD	Ι	9	Bit data	

1.4 Audio Input/output Interface

After hardware reset, it becomes input. OALRCK, OABCK and OABD connect with 3.3 V V_{DD} through the 10 k Ω pull up resistance. Firmware controls input/output of those pins.

Name	ю	Pin Number	Function	Active Polarity
OALRCK	10	4	Left/Right clock	
OABCK	10	5	Bit clock	\uparrow
OABD	10	6	Bit data	
AMCLK	I	2	Audio clock	\uparrow

1.5 Stream Input Interface

Stream input corresponds to MPEG TS/PS stream. When slave mode (MPEG2-TS input with using valid signal), data input is possible to select 8 bits parallel data or serial data mode. When serial data mode, data input to ISO.

Active polarity of ISREQ is selected by the port setup register.

Active polarity of ISCLK/ISSTB, ISSYNC ISERR and ISVLD are selected by firmware. These are unsettled after the turning on.

Name	Ю	Pin Number	Function	Active Polarity
ISREQ	0	55	Stream data request	
			Only parallel interface, this pin is active.	
			After reset, default is active low.	
ISCLK/ISSTB	Ι	53	Stream data strobe	
			After reset, default is ISCLK.	
ISCLK/ISSTB	Ι	53	Stream data clock	
			After reset, default is active high edge.	
ISSYNC	Ι	52	Stream data synchronization	
			After reset, default is active high.	
ISVLD	Ι	54	Stream data valid	
			After reset, default is active low.	
IS1/ISERR	Ι	43	Stream error	
			After reset, default is active high.	
IS1/ISERR	Ι	43	Stream data input	
IS7 to IS2, IS0	Ι	51,49, 47 to 44, 42	Stream data input	

Remark In this table, means of reset are hardware reset by the RESET pin and ALL RESET of the reset register.

1.6 Stream Output Interface

This interface outputs MPEG TS/PS stream. When in master mode (MPEG2-TS output with using valid signal), data output is possible to select 8bits parallel data or serial data mode. In serial mode, data output from OS0.

Active polarity of OSVLD is selected by the port setup register.

Active polarity of OSCLK/OSSTB and OSSYNC are selected by firmware. These are unsettled after the turning on.

Name	Ю	Pin Number	Function	Active Polarity
OSREQ	Ι	70	Stream data request in slave mode	L
OSCLK/OSSTB	0	66	Stream data strobe	
			After reset, default is active high edge.	
OSCLK/OSSTB	0	66	Stream data clock	
			After reset, default is OSSTB.	
OSSYNC	0	67	Stream data synchronization	
			After reset, default is active high.	
OSVLD/OSRDY	0	68	Stream data valid	
			After reset, default is OSRDY.	
OSVLD/OSRDY	0	68	Stream data ready prepared	
			After reset, default is active low.	
OS7 to OS0 / FA13 to FA6	0	65 to 63, 61, 59 to 56	Stream data output	

Remark In this table, means of reset are hardware reset by the RESET pin and ALL RESET of the reset register.

1.7 SDRAM Interface

Name	Ю	Pin Number	Function	Active Polarity
MA13 to MA0	0	104, 103, 115, 102, 114, 113, 111, 109, 108, 106, 101, 99, 97, 95	Address of row/column	
MD31 to MD0	Ю	93 to 89, 87, 85, 83, 72, 75 to 81, 149, 147 to 143, 141, 139, 127, 129, 131 to 134, 136, 138	Data (Built-in 50 kΩ pull up resistor)	
MCLK	0	118	Clock	↑
MCKE	0	116	Clock enable	н
MCS	0	120	Chip selection	L
MRAS	0	121	Row address strobe	L
MCAS	0	123	Column address strobe	L
MWE	0	125	Write enable	L
MDQM	0	126	Data input/output mask enable	L

1.8 Host CPU Interface

It chooses a parallel bus connection and a serial bus connection by the setting of CMODE2.

Name	Ю	Pin Number	Function	Active Polarity
CMODE2	Ι	158	Host CPU interface select	
			L: Parallel, H: Serial	

1.8.1 Parallel bus interface

Name	ю	Pin Number	Function	Active Polarity
CA5 to CA0 / FA5 to FA0	I	187, 185 to 181	Address	
CD7 to CD0/ FD7 to FD0	ю	172, 170 to 166, 164, 162	Data	
CWE/CSDI	Ι	157	Write enable	L
CRE	Ι	160	Read enable	L
CCS	Ι	159	Chip selection	L
CINT	0	153	Interrupt	н
CWAIT/FOE	0	161	Wait	
CMODE0/CSCLK	I	155	Setting of polarity of CWAIT L: Low wait, H: High wait	
CMODE1/CSDO	I	156	156 Setting of operation of CWAIT (Built-in 50 kΩ pull up resistor) L: Wait operation.(after ready, pin continues ready)	
			H: Ready operation.(after ready, pin turns to wait)	

1.8.2 Serial bus interface

When connecting a serial bus, it downloads instruction of internal CPU from instruction ROM.

(1) Serial bus interface

Name	Ю	Pin Number	Function	Active Polarity
CMODE0/CSCLK	Ι	155	5 SPI serial interface clock	
			Fix CSCLK to high level during $\overline{\text{CCS}}$ is disable (high level).	
CWE/CSDI	Ι	157	SPI serial interface data input	
CMODE1/CSDO	0	156	SPI serial interface data output (Built-in 50 kΩ pull up resistor)	
ccs	Ι	159	Chip selection	L
CINT	0	153	Interrupt	н

(2) Instruction ROM interface

Name	Ю	Pin Number	Function	Active Polarity
CA5 to CA0/ FA5 to FA0	0	187, 185 to 181	Address	
OS7 to OS0/ FA13 to FA6	0	65 to 63, 61, 59 to 56	Address	
OVOUT5 to OVOUT0/ FA19 to FA14	0	206 to 201	Address	
CD7 to CD0/ FD7 to FD0	I	172, 170 to 166, 164, 162	Data	
CWAIT/FOE	0	161	Output enable	L

1.9 Clock, Reset

Name	Ю	Pin Number	Function	Active Polarity
SCLK	Ι	28	System clock	\uparrow
STCLK	Ι	34	System time clock	\uparrow
PSTOP	Ι	29	Internal PLL operation control	н
			L: Normal, H: Internal PLL stop	
PWM	0	40	PWM output	
RESET	Ι	151	Reset	L

1.10 N-Wire

IE Port for firmware of Internal CPU evaluation

When not connecting an in-circuit emulator, take countermeasures against noise by pulling up the NDI pin to avoid the pin becoming low level.

Name	ю	Pin Number	Function	Active Polarity
NMOD	Ι	178	Pin used when connecting IE	
			Pull up when connecting IE	
NCLK	Ι	174	Serial clock	\uparrow
NRST	Ι	176	N-wire reset	L
NDI	I	179	Data input	
NDO	0	180	Data output	

1.11 GPIO

GPIO becomes input after hardware reset by the $\overline{\text{RESET}}$ pin and ALL RESET by the reset register. GPIO connect with 3.3 V V_{DD} through the 10 k Ω pull up resistance.

Name	Ю	Pin Number	Function	Active Polarity
GPIO0	10	189	Firmware use pin	
GPIO1	10	190	Firmware use pin	
GPIO2	10	191	Firmware use pin	
GPIO3	10	192	Firmware use pin	
GPIO4	10	193	Firmware use pin	
GPO5/OVHSYNC	0	195	Firmware use pin	
GPO6/OVVSYNC	0	197	Firmware use pin	

1.12 Power Supply

Name	Ю	Pin Number	Function	Active Polarity
VDD3	-	39, 69, 86, 98, 110, 122, 135, 148, 171, 194	3.3 V power supply for interface	
V _{DD2}	-	1, 13, 24, 36, 48, 60, 71, 82, 94, 105, 117, 128, 140, 152, 163, 175, 186, 198	2.5 V power supply for the internal circuit	
GND	-	3, 10, 15, 26, 27, 35, 37, 38, 41, 50, 62, 73, 74, 84, 88, 96, 100, 107, 112, 119, 124, 130, 137, 142, 150, 154, 165, 173, 177, 188, 196, 200	GND	
PV _{DD2}	-	30, 32	2.5 V power supply for PLL	
PGND	-	31, 33	GND for PLL	

1.13 Recommended Connections of Unused Pins

Connect unused pins as follows.

Name	10	Connection
IVIN7 to IVIN0	Ι	GND
IVCLK	I	GND
IVHSYNC	I	GND
IVVSYNC	I	GND
IVFLD	I	GND
OVOUT7, OVOUT6	0	Open
OVOUT5 to OVOUT0/FA19 to FA14	0	Open
OVCLK	0	Open
IALRCK	Ι	GND
IABCK	Ι	GND
IABD	Ι	GND
OALRCK	10	Pull up with 10 k Ω resistor
OABCK	10	Pull up with 10 k Ω resistor
OABD	10	Pull up with 10 k Ω resistor
AMCLK	Ι	GND
ISREQ	0	Open
ISCLK/ISSTB	Ι	GND
ISSYNC	Ι	GND
ISVLD	Ι	GND
IS7 to IS0	Ι	GND
OSREQ	Ι	GND
OSSYNC	0	Open
CA5 to CA0/FA5 to FA0	10	Open
CD7 to CD0/FD7 to FD0	10	Pull up with 10 k Ω resistor
CRE	I	GND
CINT	0	Open
CWAIT/FOE	0	Open
PWM	0	Open
NMOD	Ι	Pull up with 4.7 k Ω resistor
NCLK	Ι	Pull up with 4.7 k Ω resistor
NRST	I	Pull down with 50 k Ω resistor
NDI	I	Pull up with 4.7 k Ω resistor
NDO	0	Pull up with 4.7 k Ω resistor
GPIO4 to GPIO0	10	Pull up with 10 k Ω resistor
GPO5/OVHSYNC	0	Open
GPO6/OVVSYNC	0	Open

2. FEATURE OVERVIEW

The functions and I/O interfaces are set using firmware. Supported functions differ depending on firmware.

2.1 Video

This LSI can do flexible encoding and transcoding by using the firmware control of internal CPU and an exclusive use circuit. NTSC/PAL video format, which is possible of the encoding is as in **Table 2-1**. NTSC/PAL video format of the transcoding is under 720 dots by 480/576 line/frame.

MPEG2	MPEG1	Video format
Yes	No	720 dots by 480/576 line/frame
Yes	No	704 dots by 480/576 line/frame
Yes	No	544 dots by 480/576 line/frame
Yes	No	480 dots by 480/576 line/frame
Yes	No	352 dots by 480/576 line/frame
Yes	Yes	352 dots by 240/288 line/frame

Table 2-1. Video Format

2.1.1 Encoding

It encodes the video that was converted from the 4:2:2 format into the 4:2:0 format in the video input/output unit with MPEG2 standard MP@ML, SP@ML and the MPEG1 standard. It is encoding in variable bit rate (single path VBR encoding) or constant bit rate (CBR). The pre analysis supports high quality picture encoding. Encode supports frame structure.

- Using the following, only 64 Mbits SDRAM is needed.
 Encoding with locally decoding and/or time base corrector (TBC)
 PAL encoding
- DVD encoding needs equal to 128 Mbits SDRAM area.
- The motion estimation size

P picture: ± 128 dots (H) by ± 64 lines (V)

- B picture: ± 96 dots (H) by ± 48 lines (V), ± 64 dots (H) by ± 32 lines (V)
- I/P picture period in MP@ML : M ≤ 3
- Dual prime estimate, only at the time of M = 1.

2.1.2 Transcoding

It transcodes the stream of MPEG2 standard MP@ML based. It is possible for the bit rate conversion.

2.1.3 Input/output processing

(1) Video input

The video input format is ITU-R BT.656 (8-bit Y/Cb/Cr the 4:2:2 format) and 8-bit Y/Cb/Cr which deals with the 4:2:0 format. The horizontal synchronization signal, the vertical synchronization signal and the field index can be used without using SAV and EAV. In this case, IVFLD can be used by taking with IVVSYNC or it judges a field judgment in the polarity of IVHSYNC behind the falling edge two clock of IVVSYNC. It judges that an odd field is 'H' and an even field is 'L'. IVVSYNC and IVHSYNC need the high / low period more than 3 IVCLK. The video-input unit watches over the synchronization signals and detects synchronous error.

(2) Picture size conversion filter

For adapting to the bit rate of the stream, the picture size of the encoding can be changed. In addition, picture size changed with the external filter to the 4:2:0 format can be inputted directly, too.

Format	Line	Data arrangement	
4:2:2	Odd/even lines	Cb0, Y0, Cr0, Y1, Cb1, Y2, Cr1, Y3, Cb2, Y4, Cr2, Y5,	
4:2:0	Odd lines	Cb0, Y0, Cr0, Y1, Cb1, Y2, Cr1, Y3, Cb2, Y4, Cr2, Y5,	
	Even lines (-), Y0, (-), Y1, (-), Y2, (-), Y3, (-), Y4, (-), Y5, .		

Table 2-2. Input Video Data Arrangement

(3) Time base corrector (TBC)

It has a frame-type TBC. It is possible to make stable encoding of the channel changing and the nonstandard video signal such as VTR. When using TBC, it needs over 64 Mbits SDRAM. The following video signals can be corrected.

	Horizontal Sync	Vertical Sync
NTSC	1626 to 1806 IVCLK/H	246 to 278 H/V
PAL	1628 to 1828 IVCLK/H	294 to 330 H/V

Remark IVCLK: 27 MHz

(4) Noise reduction

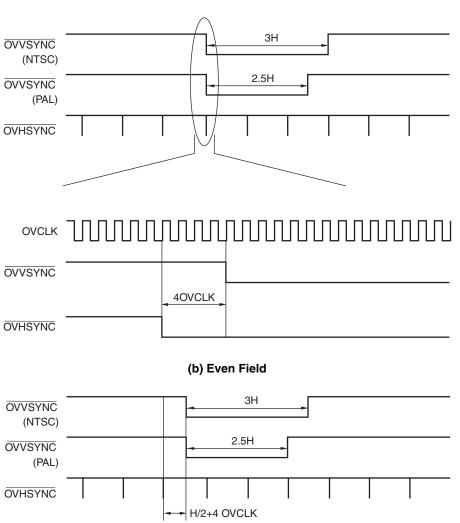
Respectively the noise reduction of the luminance signal and the color signal can be set three levels

(5) Slicer

Slicer decodes the luminance signal to the vertical blanking data. It detects VBID, Closed Caption, and Wide Screen Signal. The host CPU can read, and stop encoding and re-write the copy control information in VBID and the Wide Screen Signal, on the host CPU interface.

Table 2-4.	Slicer
------------	--------

TV method	VBI data	Detection line
NTSC	VBID	20, 283
	Closed caption	21, 284
PAL	Wide screen signal	23 (336)


(6) Video output

It converts an input video or a local-decoded video into picture size of 720 dots by 480/576 line and outputs with the ITU-R BT.656 format.

Horizontal and vertical synchronization signals are switched from GPO.

Field detection is easy due to vertical synchronization signal delays 4VCLK since horizontal synchronization signal.

(a) Odd Field

2.2 Audio

This LSI encodes the MPEG audio encoding and transcode with the internal DSP.

2.2.1 Encoding

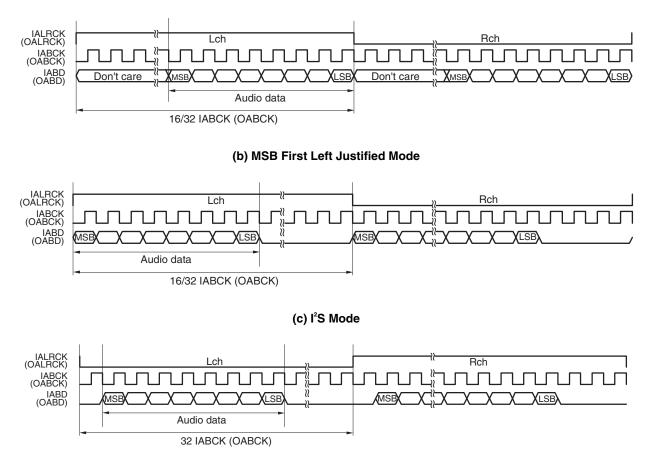
It encodes MPEG1 audio layer 2 or Dolby Digital Consumer Encoder (only the μ PD61052). In addition, it is possible to bypass internal audio encode DSP, when the audio elementary stream is encoded by an external audio encoder are inputted.

2.2.2 Transcoding (DEMUX, MUX)

It is possible to multiplex two de-multiplexed audio streams. It analyzes MPEG1 audio stream, and extracts the information to multiplex and notify to the host CPU.

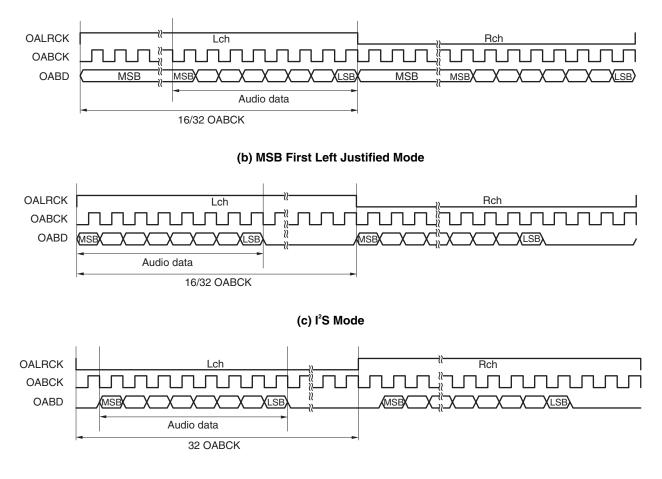
2.2.3 Input/output processing

Two PCM audio signals can be inputted to the audio input interface and the audio input-output interface. When inputting two audio signals, an audio signal is encoded, and another one bypasses the audio encoding DSP, and transfers to the multiplexer. When inputting an audio elementary stream that has been encoded by the external audio encoder and PCM audio, it can multiplex two audio elementary streams.


The PCM audio or the audio elementary stream can be outputted from the audio input-output interface. The audio clock (AMCLK) types the clock by which a phase was locked up STC clock (STCLK).

Item	Input/output format	
Data length	16 bits, 20 bits, 24 bits	
Sampling frequency	32 kHz, 44.1 kHz, 48 kHz	
Justification of transfer	MSB first	
	I ² S Compatible/Left justified/Right justified	
Format	PCM Audio, IEC60958 based	

Table 2-4. Audio Input/output


Figure 2-2. Audio Input

(a) MSB First Right Justified Mode

Figure 2-3. Audio Output

(a) MSB First Right Justified Mode

2.3 MPEG System Processing

This LSI multiplexes and/or de-multiplexes Audio and video streams based on MPEG2-TS/PS and MPEG1. By combining the multiplexer and de-multiplexer, it does the transcode which is accompanied by MPEG2-TS⇔MPEG2 PS conversion.

2.3.1 System time clock

(1) Encoding system

When the encoding system operates, it uses the clock input to STCLK that is generated with the 27 MHz oscillator.

Audio master clock is made with 27 MHz of STCLK, and then Audio synchronizes to STC.

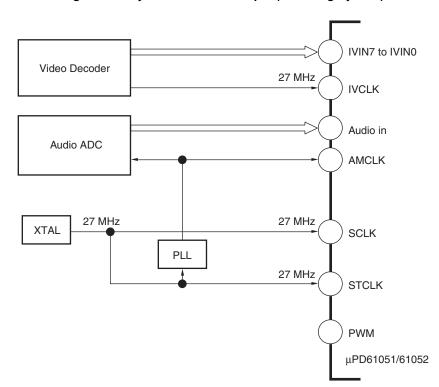
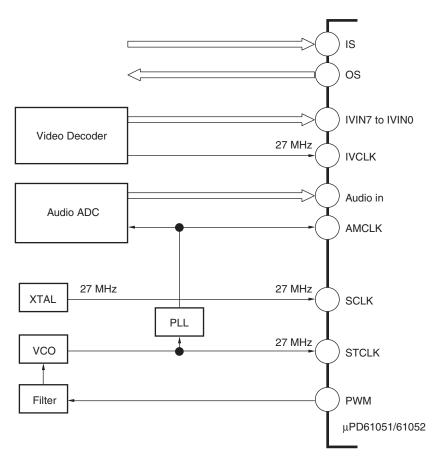



Figure 2-4. System Time Clock Input (Encoding System)

(2) Encoding and Transcoding system

It can output the signal, which generates the pulse wide modulation (PWM) with comparing PCR/SCR of the stream and system time clock value, for making the reference clock of the system.

Figure 2-5. System Time Clock Input (Encoding and Transcoding System)

2.3.2 Multiplex

It stamps SCR, PCR, DTS and PTS after multiplexing streams that are from the video encoder and the audio encoder based on MPEG2-TS/PS.

Partial TS can be made by forming SIT packet from PSI and SI data of base on DVB. It is possible to multiplex the packet that inputted from the host CPU interface.

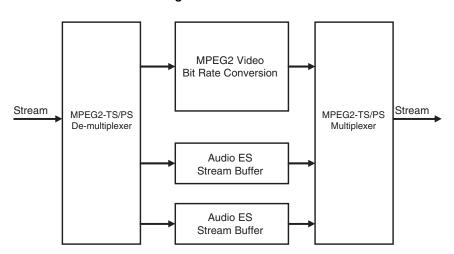
2.3.3 De-multiplex

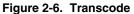
(1) MPEG2-TS

Using the PID filter corresponding to 16 PIDs, It separates MPEG2-TS to one video stream, two audio streams, and two user data streams. Internal CPU extracts section data in PSI and SI of base on DVB.

(2) MPEG2-PS

With the stream ID filter, it separates MPEG2-PS to one video stream, one audio stream, and two user data streams.


(3) VBI data


The user data stream, the wide screen signal, the closed caption, VBID and format of the video and the audio can be read from the host CPU interface.

2.3.4 Transcode

The transcode is a combined multiplexer and de-multiplexer. MPEG2-TS/PS separates into a video stream, two audio streams, and two user data streams. The video stream and the audio stream are multiplexed to MPEG2-TS/PS after transcode on the elementary. PCR, SCR, PTS and DTS are corrected when multiplexing.

In the transcode of MPEG2-TS, it can generate partial TS using the data detected by the PID filter and the section filter.

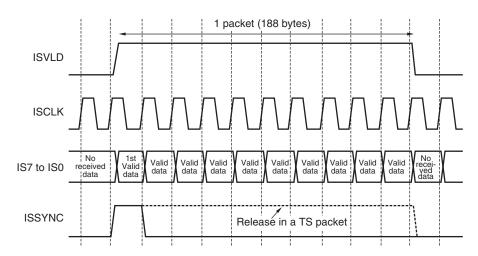
The change of the MPEG system layer is shown below.

 $\begin{array}{l} \mathsf{MPEG2\text{-}TS} \Rightarrow \mathsf{MPEG2\text{-}TS} \\ \mathsf{MPEG2\text{-}TS} \Rightarrow \mathsf{MPEG2\text{-}PS} \\ \mathsf{MPEG2\text{-}PS} \Rightarrow \mathsf{MPEG2\text{-}TS} \\ \mathsf{MPEG2\text{-}PS} \Rightarrow \mathsf{MPEG2\text{-}PS} \\ \mathsf{MPEG1} \Rightarrow \mathsf{MPEG1} \end{array}$

2.4 Stream Interface

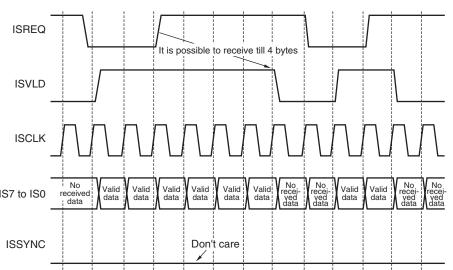
When it inputs MPEG2-TS, it is able to connect parallel data or serial data with the μ PD61051/61052. When it inputs MPEG2-PS, it should connect parallel data with the μ PD61051/61052.

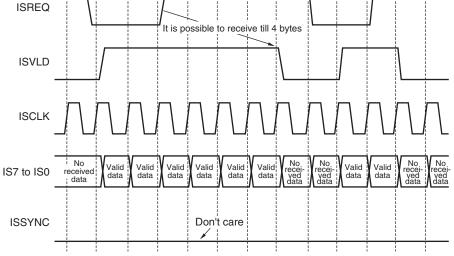
2.4.1 Parallel steam data interface


This LSI connects to external device by the master mode or the slave mode. When parallel interface, the maximum stream input rate is 100 Mbps, the maximum stream output rate is 30 Mbps. The stream of MPEG encoding and transcode is limited to 15 Mbps on MPEG MP@ML.

(1) Stream Input

It is possible to receive 4 bytes data after invalid of ISREQ of the stream input.


Remark ISSTB and ISCLK are identical pins.



(a) Example for Receiving of MPEG2-TS

ISCLK shall be under 13.5 MHz.

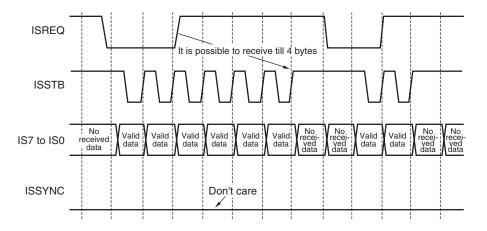


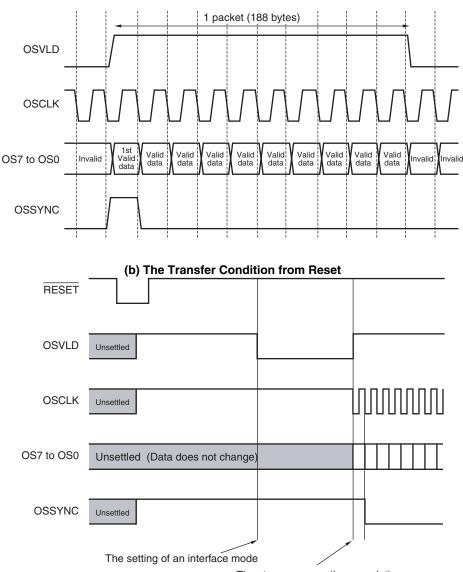
Figure 2-7. Parallel Stream Receiving Mode (2/2)

(b) Example of Receiving MPEG2-PS, ES with Valid and Clock

(c) Example of Receiving MPEG2-PS, MPEG2-ES with a Strobe

(2) Stream output *

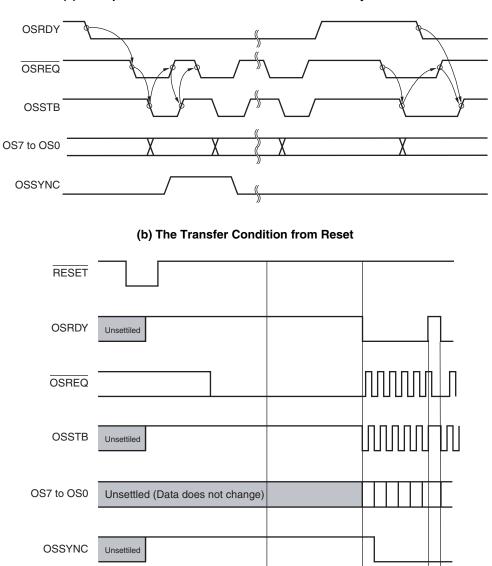
There are two modes: valid operation master mode and strobe operation byte transfer mode. The appropriate transfer mode for the system can be selected by setting the two stream output mode and transfer rate.


Remark OSSTB and OSRDY are the same pins as OSCLK and OSVLD, respectively. Operation can be selected using combinations of OSSTB and OSRDY or OSCLK and OSVLD.

(a) Master Mode Valid

This is the MPEG2-TS dedicated output mode.

The period of OSCLK can be selected from n times 37 ns (1/27 MHz) ($3 \le n \le 255$, n is an integer). If using local decode or input video display, the period is $4 \le n \le 255$ (n is an integer).

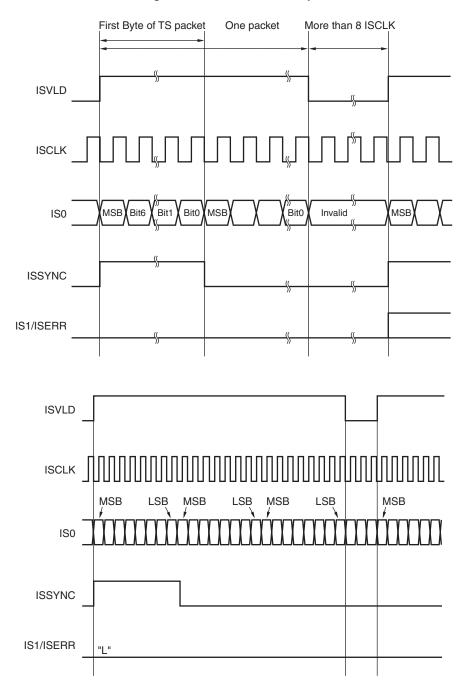

(a) Master Mode, Valid

The stream preparation completion

(b) Bytes Transfer Mode, Strobe

In byte transfer mode, the transfer rate is determined by the handshake of OSREQ and OSSTB.

(a) Example for Transmission of Strobe Mode One Byte Transfer


The setting of an interface mode The stream preparation completion

2.4.2 Serial stream data interface

This LSI is able to input a serial stream. Bit rate of serial input is limited less than parallel interface. Serial Stream Interface can transfer only MPEG2-TS stream. Maximum bit rate of stream input is less then 64 Mbps. Bit rate of stream out is 27 Mbps. Additionally, encoding and transcoding bit rate is limited to 15 Mbps on MPEG2 MP@ML.

(1) Stream input

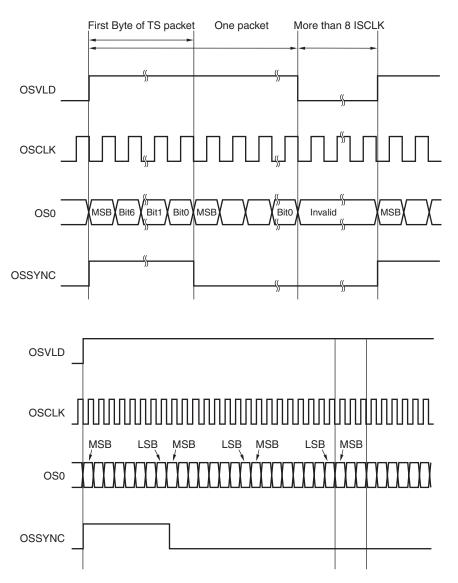
ISCLK is input by less than 64 MHz clock. Data is MSB first. ISSYNC should active while first byte each packet. If packet error occurred, ISERR should active from ISSYNC of the packet. ISVLD should valid while each byte. ISVLD shall invalid while 8 bits between each packets.

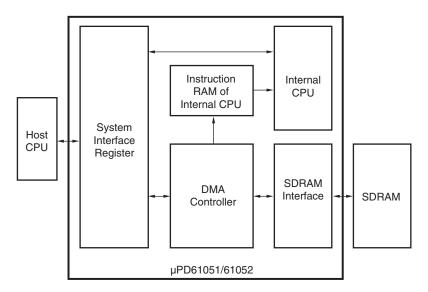
Figure 2-10. Serial Stream Input

Remark Example for ISVLD, ISSYNC, ISERR active high, ISCLK active high edge

(2) Stream Output

OSCLK is fixed 27 MHz OSSYNC active at first byte in each packet. OSVLD is active of 1 packet continuously. Data is the MSB first outputs. ISSYNC becomes active among 1 byte at the head of the packet.




Figure 2-11. Serial Stream Output

Remark Example for OSVLD, OSSYNC, OSERR active high

2.5 Host CPU Interface

The connection of the host CPU can select the eight bits parallel data interface and serial interface (SPI). Internal CPU sends and receives command status through the System Interface Register, which is in the host CPU interface unit. In addition, to control an internal DMA controller through the system interface register, it loads an instruction for internal CPU to the instruction RAM and the transfer of the large-volume data can be sent to the data area on SDRAM.

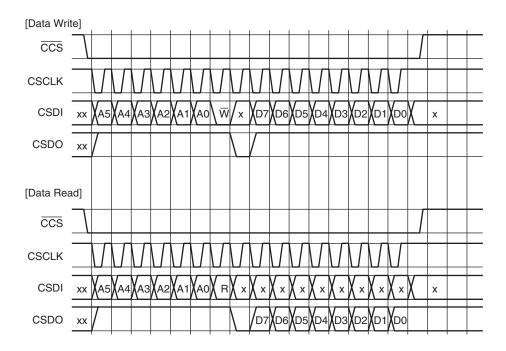
Figure 2-12. Host CPU Interface

The following describes loading of internal CPU instruction.

(1) Parallel interface

When parallel interface is selected, host interface has 6-bit address, 8-bit data bus and control ports. CWAIT is selected with CMODE1 to wait on ready signal mode, CMODE1 selects active polarity of CWAIT.

(2) Serial interface


The μ PD61051/61052 communicates with the host CPU using the SPI (serial peripheral interface) serial bus. The host CPU becomes a bus master.

The low edge of the chip selection is communication beginning. Its high edge is communication ending. An address and the reading / writing mode are shown at the first byte after the chip selection becomes low. It is the MSB first of six bits of addresses, eight bits of data. Fix CSCLK to high level during \overline{CCS} is disabled (high level).

The μ PD61051/61052 becomes a master and downloads the instruction of the internal CPU from external ROM.

CSCLK:	The serial clock
CSDI:	The data input
CSDO:	The data output
CCS:	The chip selection

Figure 2-13. Serial Interface

2.6 SDRAM Interface

External memory is SDRAM. It is possible to use the following.

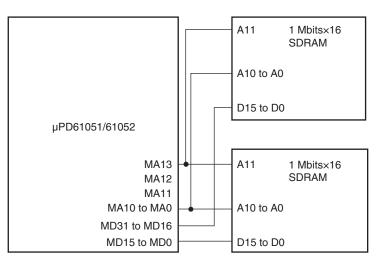
Memory	Data bus width	Quantity	Use memory capacity	
16 Mbit SDRAM	16 bits	2	32 Mbits	
64 Mbit SDRAM	32 bits	1	64 Mbits	
64 Mbit SDRAM	16 bits	2	128 Mbits	
128 Mbit SDRAM	16 bits	2	128 Mbits	
128 Mbit SDRAM	32 bits	1	128 Mbits	

Table 2-6. Use Memory

The μ PD61051/61052 preserves the part of the parameter that is necessary to generate the stream, entry video image, a video stream, an audio stream, a stream header, user data, and the instruction of the firmware at this memory.

This system uses only CAS latency = 3, burst length = 4.

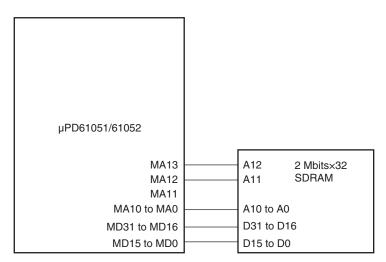
When encode using time base corrector and/or displays local decoding picture, it needs equal to or more than 64 Mbits SDRAM.


When PAL encoding, it needs equal to or more than 64 Mbit SDRAM.

When transcoding, it needs equal to or more than 64 Mbit SDRAM.

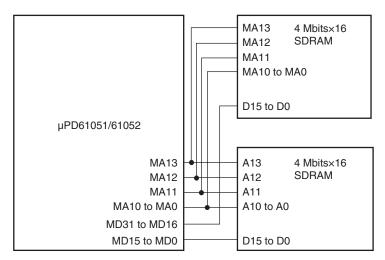
2.7 Memory Connection Diagram

Each memory connection is as follows.


Figure 2-14. Memory Connection Diagram (1/2)

(a) 16 Mbit SDRAM by 2

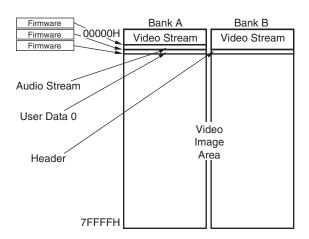
Bank A: SDRAM address = 0x xxxx xxxx xxxxB Bank B: SDRAM address = 1x xxxx xxxx xxxxB


(b) 64 Mbit SDRAM by 1

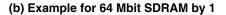
Bank A: SDRAM address = 00 xxxx xxxx xxxxB Bank B: SDRAM address = 10 xxxx xxxx xxxxB Bank C: SDRAM address = 01 xxxx xxxx xxxxB Bank D: SDRAM address = 11 xxxx xxxx xxxxB

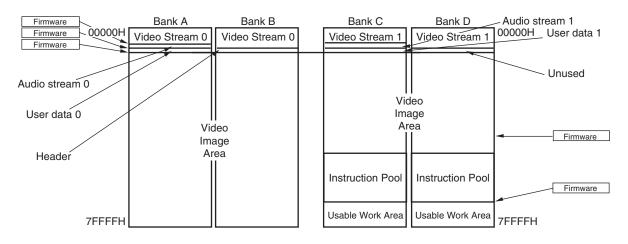
Figure 2-14. Memory Connection Diagram (2/2)

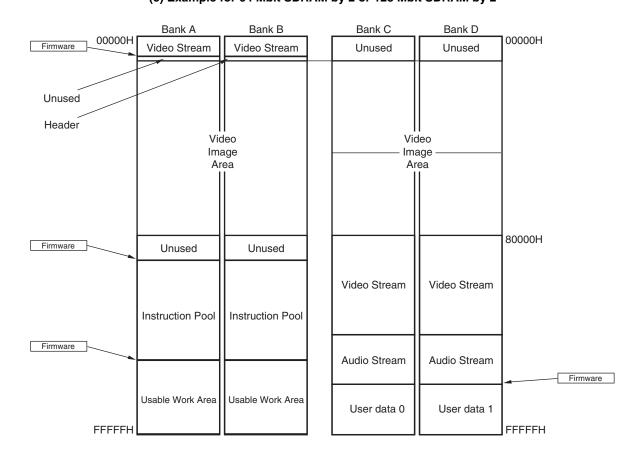
(c) 64 Mbit SDRAM by 2 or 128 Mbit SDRAM by 2



Bank A: SDRAM address = 00 xxxx xxxx xxxB Bank B: SDRAM address = 10 xxxx xxxx xxxB Bank C: SDRAM address = 01 xxxx xxxx xxxxB Bank D: SDRAM address = 11 xxxx xxxx xxxxB


2.8 Memory Map


Firmware sets memory map such as video image area and usable work area. Firmware cabinet (temporal buffered area) is the area which firmware does not use. Video Image area size is changed NTSC or PAL. Each area are changed by the firmware.


Figure 2-15. Memory Map (1/2)

(a) 16 Mbit SDRAM by 2

(c) Example for 64 Mbit SDRAM by 2 or 128 Mbit SDRAM by 2

Figure 2-15. Memory Map (2/2)

3. SYSTEM INTERFACE REGISTER

This LSI corresponds to the various operation modes in exchange instruction of internal CPU from SDRAM to instruction RAM (iRAM).

This has 64 byte Registers. They are defined to common registers, interrupt registers and interrupt mask registers. When there is access in the same address from both of the internal CPU and the host CPU, the later data is left at the register.

Also, when the writing occurs to the same address at the same time about the common register, the data of the host CPU is left at the register

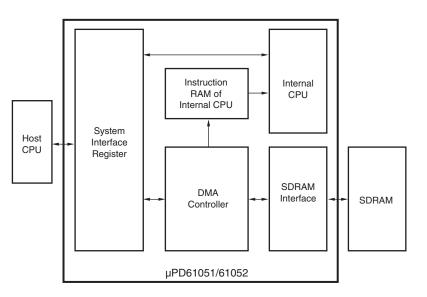


Figure 3-1. System Interface Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	
00H to 1FH				Defined b	y firmware				R/W	
20H	SI	SSD	SDI	MSD	МІ		SDW	SDR	R/W	Download mode
21H						SA19 t	o SA16		R/W	Source address
22H				SA15	to SA8				R/W	Source address
23H				SA7 t	o SA0				R/W	Source address
24H								DA16	R/W	Destination address
25H				DA15	to DA8				R/W	Destination address
26H				DA7 t	o DA0				R/W	Destination address
27H						1	TC18 to TC16	6	R/W	Transfer data count
28H				TC15	to TC8				R/W	Transfer data count
29H	TC7 to TC0								R/W	Transfer data count
2AH								iCPU-INT	R/W	Int. to internal CPU
2BH	DMA- DMA- DMA- ERR-M RDY-M DONE-M								R/W	Interrupt mask0
2CH		•		Defined b	y firmware		L	L	R/W	Interrupt mask1
2DH				Defined b	y firmware				R/W	Interrupt mask2
2EH				Defined b	y firmware				R/W	Interrupt mask3
2FH				Defined b	y firmware				R/W	Interrupt mask4
30H						DMA-ERR	DMA-RDY	DMA- DONE	R/W	Interrupt0
31H				Defined b	y firmware				R/W	Interrupt1
32H				Defined b	y firmware				R/W	Interrupt2
33H				Defined b	y firmware				R/W	Interrupt3
34H	Defined by firmware								R/W	Interrupt4
35H						iR	OM2 to iROM	A0	R/W	Mask ROM cycle
36H							ISREQ	OSVLD	R/W	Port setup
37H to 3DH]
3EH							NBR	ALL RESET	R/W	Reset
3FH		•		TD7 t	o TD0	•	1	1	R/W	Transfer data

3.1 Register Mapping (General Mapping)

3.2 Register Functions

3.2.1 Common register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
00H to 1FH		Defined by firmware							R/W

Each firmware defines these registers.

These registers are used to communicate with host CPU and internal CPU.

For the details of the register, refer to the application notebook.

The reset of the RESET pin or ALL RESET of the reset register initializes addresses 00H and 01H addresses to 0H. The original value of the other register is unsettled. It keeps a setting value before reset.

3.2.2 Data transfer register

These registers are defined data transfer such as host CPU \rightarrow SDRAM, SDRAM \rightarrow host CPU, host CPU \rightarrow iRAM of internal CPU, SDRAM \rightarrow iRAM of internal CPU and instruction ROM \rightarrow iRAM of internal CPU.

The host CPU transfers with SDRAM via had a transfer buffer of 128 bytes on this LSI.

The transfer with the instruction RAM becomes 4 bytes.

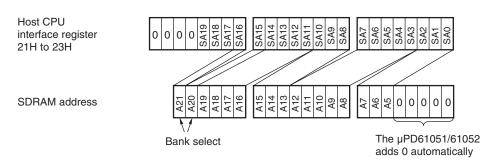
A transfer error occurs if the transfer mode register, source address register, destination address register, or transfer counter register is changed before releasing the transfer mode register following transfer completion after setting the transfer mode register and starting the transfer. When transferring data as follows: host CPU \rightarrow instruction RAM of internal CPU, host CPU \rightarrow SDRAM, SDRAM \rightarrow instruction RAM of internal CPU, instruction ROM \rightarrow SDRAM, instruction ROM \rightarrow instruction RAM of internal CPU (address 3EH \leftarrow 02H) before transfer and release the reset after transfer.

(1) Data transfer register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	
20H	SI	SSD	SDI	MSD	МІ		SDW	SDR	R/W	Download mode

Bit	Field	Function	Initial value
7	SI	Host CPU→instruction RAM of internal CPU	0
		0: Releasing of transfer, 1: Transfer	
6	SSD	Host CPU→SDRAM	0
		0: Releasing of transfer, 1: Transfer	
5	SDI	SDRAM	0
		0: Releasing of transfer, 1: Transfer	
4	MSD	Instruction ROM->SDRAM	0
		0: Releasing of transfer, 1: Transfer	
3	MI	Instruction ROM→instruction RAM of internal CPU	0
		0: Releasing of transfer, 1: Transfer	
2		Reserved (set only 0)	0
1	SDW	Host CPU→SDRAM	0
		0: Releasing of transfer,1: Transfer	
0	SDR	SDRAM→host CPU	0
		0: Releasing of transfer, 1: Transfer	

Note Set internal CPU reset (with Register 3EH←02H)


More than one bit cannot be set to 1 at the same time. It becomes a transfer error when writing at the transfer mode register while transferring. When canceling a transfer while transferring, it stops a transfer. At this time, the data in the transfer buffer becomes invalid. The transfer of SDR with once is to a maximum of 128 bytes. If host CPU stops the transfer, host CPU should operate transfer error handling.


(2) Source address register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W		
21H						SA19 to	R/W	Source address			
22H		SA15 to SA8									
23H			R/W	Source address							

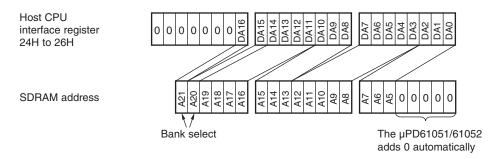
It sets the address of the data to transfer. It becomes effective in case of transfer from SDRAM or instruction ROM. Until it releases a transfer mode after setting a transfer mode register, it isn't possible to change. The transfer error occurs when rewriting this register before releasing a transfer mode. The relation with the address of SDRAM, external instruction ROM is shown in **Figure 3-2** and **3-3**. The addressing of SDRAM becomes a 32 address by 4-word unit (128 bytes).

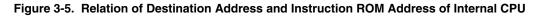
The relation with the SDRAM bank and address is shown in Table 3-1.

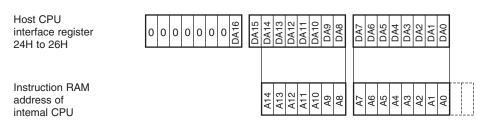
Figure 3-3. Relation of Source Address and External Instruction ROM Address

Host CPU interface register 21H to 23H	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SA16 SA15 SA13 SA13 SA12 SA10 SA10 SA10 SA10 SA8 SA8	SA7 SA6 SA5 SA4 SA3 SA2 SA2 SA1 SA1 SA1
Extemal instruction ROM address	FA19 FA18 FA18	FA16 FA15 FA14 FA13 FA12 FA10 FA9 FA8	FA7 FA6 FA6 FA3 FA3 FA1 FA1 FA1

Table 3-1. Relation of SDRAM Bank and Address


Memory	Bank A	Bank B	Bank C	Bank D
16 Mbit SDRAM by 2	000000H to 07FFFH	200000H to 27FFFFH	-	-
16 Mbit SDRAM by 1	000000H to 07FFFH	200000H to 27FFFFH	100000H to 17FFFH	300000H to 37FFFFH
64 Mbit SDRAM by 2	000000H to 0FFFFH	200000H to 2FFFFFH	100000H to 1FFFFH	300000H to 3FFFFFH
128 Mbit SDRAM by 1				
128 Mbit SDRAM by 2				
128 Mbit SDRAM by 1	000000H to 0FFFFH	200000H to 2FFFFFH	100000H to 1FFFFH	300000H to 3FFFFFH


(3) Destination address register


Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	
24H								DA16	R/W	Destination address
25H			R/W	Destination address						
26H				R/W	Destination address					

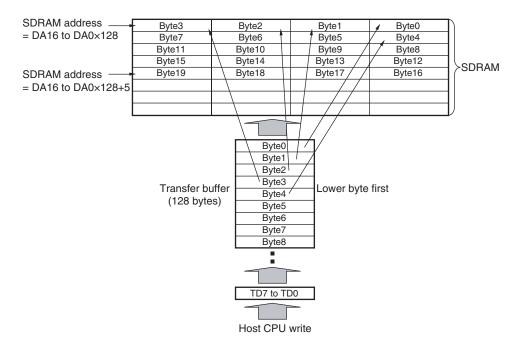
It sets Destination address. It becomes effective in case of transfer to SDRAM or instruction RAM of internal CPU. It isn't possible to change until it cancels a transfer mode after setting a transfer mode register. It becomes a transfer error when rewriting before canceling a transfer mode. The relation of the address of SDRAM and instruction RAM of internal CPU is as in **Figure 3-4** and **3-5**. The addressing of SDRAM becomes a 32 address by 4-word unit (128 bytes).

Figure 3-4. Relation of Destination Address and SDRAM Address

(4) Transfer data counter register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	
27H						F	TC18 to TC1	R/W	Transfer data count	
28H			R/W	Transfer data count						
29H			R/W	Transfer data count						

It sets the transfer data number of the bytes.


In case of transfer between host CPU and SDRAM, it sets the number of the transfer bytes by 4 bytes unit. In case of transfer from instructions ROM, SDRAM host CPU to the instruction RAM of internal CPU, it sets the number of the transfer bytes /4 by the 4 byte unit.

(5) Transfer data register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	
3FH		TD7 to TD0								Transfer data

This register is transfer data window.

SDRAM read

<1> Interrupt mask

Host CPU sets mask bit to interrupt mask register (2CH to 2FH) for the interrupt that needs a data transfer.

<2> Set source address

Host CPU sets the address of SDRAM to the source address register (21H to 23H) of the μ PD61051/61052.

- <3> Set the number (equal to or less than 128 bytes) of the data to read by 4 bytes unit Host CPU sets the data number of the bytes to the transfer data counter register (27H to 29H) of the μ PD61051/61052.
- <4> Set the transfer of SDRAM \rightarrow host CPU. Host CPU sets 01H to the transfer mode register (20H) of the μ PD61051/61052.
- <5> CINT interrupt (Interrupt pin)
- <6> Confirms that the interrupt factor and clear interrupt factor

Host CPU confirms that the interrupt register 0 (30H) of the μ PD61051/61052 becomes 02H or 01H and clears writing a same value of the interrupt register 0 (30H) to the interrupt register 0 (30H) of the μ PD61051/61052.

<7> Data read

Host CPU reads data from the number of times with the set number of bytes, the transfer data register (3FH) of the μ PD61051/61052.

- <8> CINT interrupt (Interrupt pin)
- <9> Confirm the interrupt factor

Host CPU confirms that the interrupt register 0 (30H) of the μ PD61051/61052 becomes 01H. (It clears a writing interrupt factor in 01H at the interrupt register 0 (30H) register of the μ PD61051/61052.)

<10> Release of SDRAM \rightarrow host CPU mode

Host CPU clears a writing interrupt factor in 01H at the interrupt register 0 (30H) register of the μ PD61051/61052 after setting 00H to the transfer mode register (20H) of the μ PD61051/61052.

<11> Release of interrupt mask

It releases the limitation on interrupt which set by <1>.

SDRAM write

<1> Interrupt mask

Host CPU sets mask bit to interrupt mask register (2CH to 2FH) for the interrupt that needs a data transfer.

- <2> Set destination address Host CPU sets the address of SDRAM to the destination address register (24H to 26H) of the µPD61051/61052.
- <3> Set the number of the data to write by a 4 byte unit Host CPU sets the data number of the bytes by 4 bytes unit to the transfer data counter register (27H to 29H) of the µPD61051/61052.
- <4> Set the transfer of host CPU \rightarrow SDRAM Host CPU sets 02H to the transfer mode register (20H) of the μ PD61051/61052.
- <5> Data write

Host CPU writes data to the transfer data register (3FH) of the μ PD61051/61052 at times with more few 128 bytes or transfer data count register setting value.

- <6> CINT interrupt (Interrupt pin)
- <7> Confirm the interrupt factor

When the number of the transfer data is less then 128 bytes, host CPU confirms that the interrupt register 0 (30H) of the μ PD61051/61052 becomes 01H, and go to <9>.

<8> Confirm that next data transfer prepare completed

Host CPU confirms that the interrupt register 0 (30H) of the μ PD61051/61052 becomes 02H or 01H and clears a writing sane value of the interrupt register 0 (30H) to the interrupt register 0 (30H) of the μ PD61051/61052. Return to <5> and next data write.

<9> Release of SDRAM \rightarrow host CPU

Host CPU clears a writing interrupt factor in 01H at the interrupt register 0 (30H) register of the μ PD61051/61052 after setting 00H to the transfer mode register (20H) of the μ PD61051/61052.

<10> Release of interrupt mask

It releases the limitation on interrupt which is set by <1>.

<11> In the case of an interrupt to internal CPU, it is necessary

Host CPU sets a data bank number and the number of the bytes to the address that defined with the firmware. It sets 01H to the 2AH address of the μ PD61051/61052 and it notifies an interrupt to internal CPU.

3.2.3 Internal CPU interrupt register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	
2AH								iCPU-INT	R/W	Int. to internal CPU

Host CPU set interrupt to internal CPU. Internal CPU clears this bit after interrupt operation. The reset of the $\overrightarrow{\text{RESET}}$ pin or ALL RESET of the reset register initializes this address to 0H.

3.2.4 Interrupt mask register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W		
2BH						DMA-ERR	DMA-RDY	DMA-DON	R/W	Interrupt mask0	
						-M	-M	E-M			
2CH				R/W	Interrupt mask1						
2DH		Defined by firmware									
2EH				R/W	Interrupt mask3						
2FH				R/W	Interrupt mask4						

These registers are interrupt masks for next interrupt. Interrupt mask can be set bit by bit. When setting an interrupt mask, CINT does not become high even if the interrupt register becomes 1.

The reset of the RESET pin or ALL RESET of the reset register initializes this address to 0H.

3.2.5 Download interrupt register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	
30H						DMA-ERR	DMA-RDY	DMA-DON	R/W	Interrupt0
								E		

It is set for 1 when the interrupt factor occurs.

The interrupt bit clears when host CPU writes to this register after the interrupt processing. The reset of the $\overrightarrow{\text{RESET}}$ pin or ALL RESET of the reset register initializes this address to 0H. Clear processing continues until interrupt registers is cleared.

Bit	Field	Function	Initial value
7 to 3		Reserved (set 0)	
2	DMA-ERR	Data transfer error	0
		0: Normal, 1: Error	
1	DMA-RDY	Data transfer prepared	0
		0: Normal, 1: Transfer	
0	DMA-DONE	Data transfer ended	0
		0: Normal, 1: Transfer ended	

It outputs DMA-RDY or DMA-DONE every 128-byte transfer. DMA-DONE is output when the transfer ends.

3.2.6 Interrupt register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W			
31H		Defined by firmware										
32H		Defined by firmware										
33H				Defined b	y firmware				R/W	Interrupt3		
34H				Defined b	y firmware				R/W	Interrupt4		

It is set for 1 when the interrupt factor occurs.

The interrupt bit clears when host CPU writes 1 in the bit of the interrupt after the interrupt processing. When the other interrupt (which isn't masked) is set to 1 when clearing a interrupt, CINT becomes high 1 μ s later. The reset of the RESET pin or ALL RESET of the reset register initializes this address to 0H. Clear processing continues until interrupt registers is cleared.

Address	Bit	Field	Function	Initial value
31H to	7 to 0		Firmware define	ОH
34H			0: Normal, 1: Interrupt	

3.2.7 Reset register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W]
3EH							NBR	ALL	R/W	Reset
								RESET		

When the host CPU sets 1 to ALL RESET, it resets the inside and it returns to 0 automatically. The reset of the $\overrightarrow{\text{RESET}}$ pin or ALL RESET of the reset register initializes this address to 0H.

Bit	Field	Function	Initial value
7 to 2		Reserved (Set 0)	
1	NBR	Internal CPU reset	0
		0: Normal, 1: Reset	
0	ALL RESET	Same hardware reset	0
		0: Normal, 1: Reset	

3.2.8 ROM access cycle register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	
35H						iR	OM2 to iROM	ЛО	R/W	Mask ROM cycle

It specifies the access cycle of the instruction ROM of internal CPU when connecting host CPU interface with the serial bus. The reset of the RESET pin or ALL RESET of the reset register initializes this address to 7H.

Bit	Field	Function	Initial value
7 to 3		Reserved (Set 0)	
2 to 0	iROM2 to iROM0	Access cycle of instruction ROM 0: Reserved, 1 to 7: (Setting value+2) by 24.6 MHz	7H

3.2.9 Port setup register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	
36H							ISREQ	OSVLD	R/W	Port setup

This register sets the active polarity of ISREQ and OSVLD. The reset of the RESET pin or ALL RESET of the reset register initializes this address to 0H.

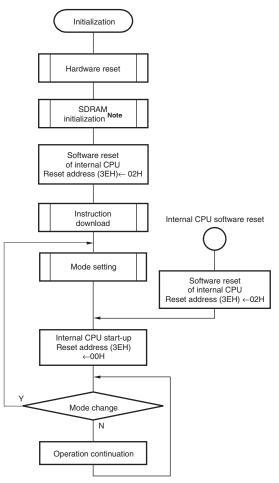
Bit	Field	Function	Initial value
7 to 2		Reserved (Set 0)	
1	ISREQ	Active polarity of ISREQ	0
		0: Low active of request, 1: High active of request	
0	OSVLD	Active polarity of OSVLD/OSRDY	0
		0: Low active of valid/ready	
		1: High active of valid/ready	

4. SYSTEM INTERFACE PROCEDURE

The host CPU transfers the firmware of each operation mode to the instruction RAM of the internal CPU and works it.

This LSI stores up firmware in SDRAM. Host CPU sets to load the firmware of each operation mode in the instruction RAM of internal CPU from SDRAM.

When using a parallel bus interface for the host CPU interface, the host CPU sets a data transfer register after hardware reset and transfers the initialization program of SDRAM to instruction RAM of internal CPU and executing. Host CPU writes firmware to SDRAM.


When using a serial bus interface for the host CPU interface, the host CPU sets a data transfer register after hardware ware reset and transfers the initialization program of SDRAM to instruction RAM of internal CPU from external instruction ROM and executing. Host CPU loads firmware in SDRAM from instruction ROM outside.

It stores the firmware of the encoding and the transcode to SDRAM from ROM in case of start-up of the system, and then it can do the changing of a feature at short time by the high-speed transfer of SDRAM.

The host CPU sets the mode of the terminal of the μ PD61051/61052 and the access cycle of ROM to the system interface register after hardware reset and sets the transfer of the instruction of the internal CPU after SDRAM is initialized.

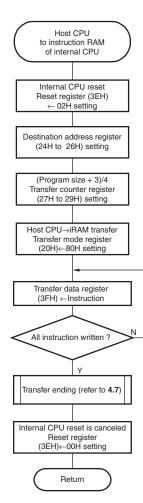
4.1 Outline

An overview from the reset of the hardware to the setting of an operation mode is shown.

Note This is not necessary in case that the SDRAM initialization firmware is not separated.

4.2 Firmware Download

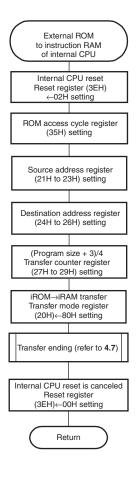
The host CPU downloads the firmware at the instruction RAM for the internal CPU.


When a host CPU is connected with the serial bus, the firmware can be downloaded from the external ROM for the download processing to speed up. In addition, it stores more than one piece of firmware in the instruction pool area of SDRAM and it can be replaced depending on the need, too.

When transferring to the instruction RAM of the internal CPU, the transfer counter register setting value (number of the transfer bytes /4) is (program size +3)/4.

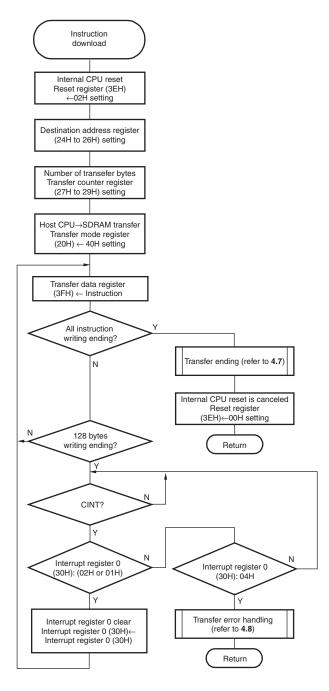
4.2.1 Host CPU to instruction RAM of internal CPU

Host CPU transmits the firmware to instruction RAM of the internal CPU.


When transferring data continuously, transfer during resetting an internal CPU, If reset of internal CPU is can canceled on the way, the internal CPU sometime malfunction.

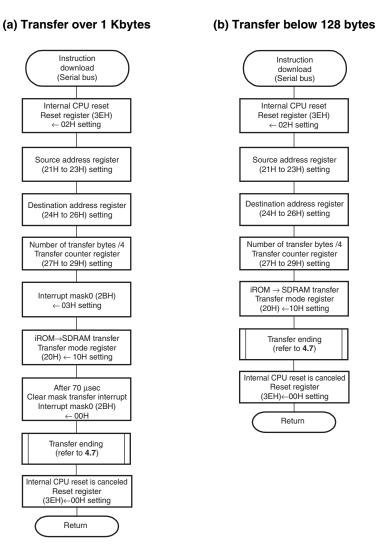
4.2.2 External ROM to instruction RAM of internal CPU

When the host CPU is a serial bus type, CPU transmits the instruction of a mode from external ROM to instruction RAM of Internal CPU.

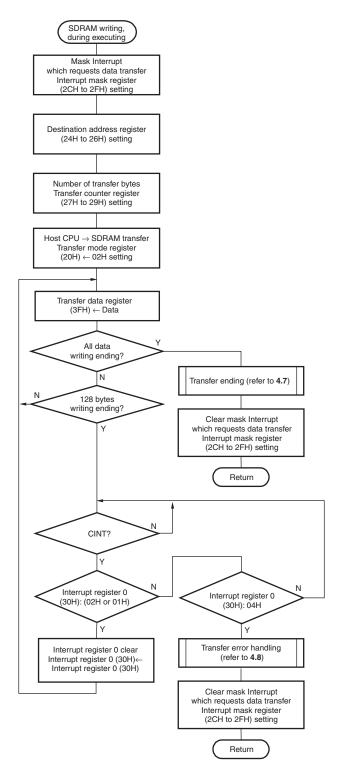

When transferring data continuously, transfer during resetting an internal CPU, If reset of internal CPU is can canceled on the way, the internal CPU sometime malfunction.

4.2.3 Host CPU to SDRAM

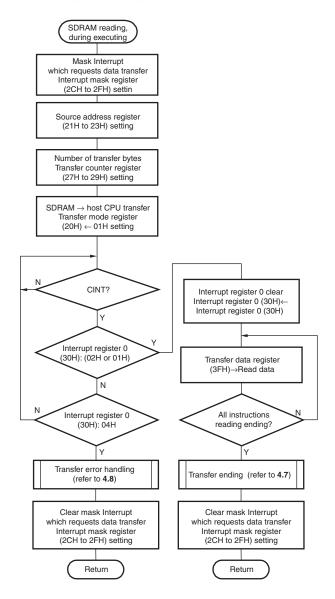
The host CPU can store firmware in the instruction pool area of SDRAM for the internal CPU. It stores more than one piece of firmware and it can be replaced depending on the need, too.


When transferring data continuously, transfer during resetting an internal CPU, If reset of internal CPU is can canceled on the way, the internal CPU sometime malfunction. The number of the transfer bytes is a 4-byte unit.

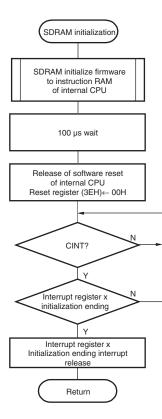
4.2.4 External ROM to SDRAM


The firmware for the internal CPU can be stored in the firmware cabinet of SDRAM from the external ROM. It stores more than one piece of firmware beforehand and it can be replaced according to need, too.

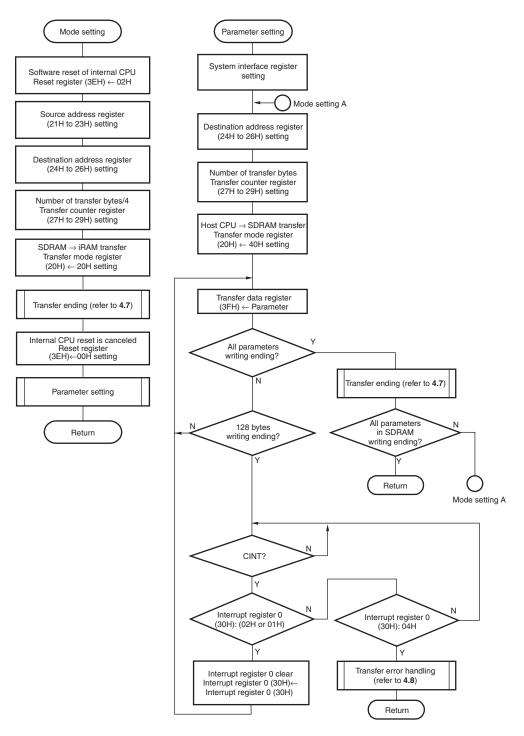
When transferring data continuously, transfer during resetting an internal CPU, If reset of internal CPU is can canceled on the way, the internal CPU sometime malfunction. When transferring data below the 1k-byte, transfer, dividing every 128 bytes. The number of the transfer bytes is a 4-byte unit.


4.3 SDRAM Write during Executing

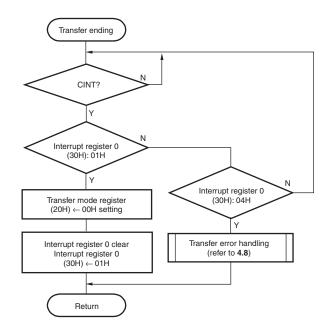
While encoding, the host CPU can transfer parameters to the internal CPU through SDRAM. The number of the transfer bytes is a 4-byte unit.


4.4 SDRAM Read during Executing

While encoding, the host CPU reads parameters of usable work area of SDRAM. The maximum data of the reading once is 128 bytes. When reading is equal to or more than 128 byte data, execute reading processing repeatedly. The number of the transfer bytes is a 4 bytes unit.

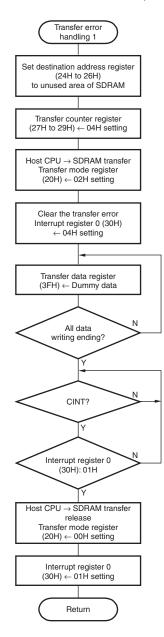

4.5 SDRAM Initialization

The host CPU transfers the firmware which makes SDRAM a standby condition to the instruction RAM of the internal CPU and executes it.

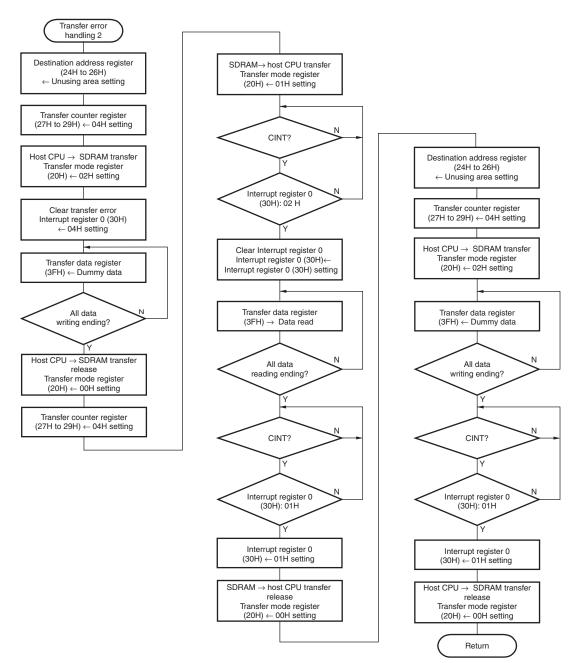

4.6 Operation Mode Setting by Changing Firmware

When changing a mode, host CPU transfers the instruction of each mode from SDRAM to the instruction RAM of the internal CPU and restarts.

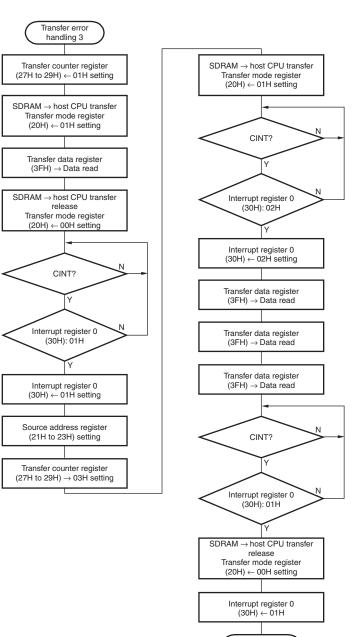
4.7 Transfer Ending


The host CPU confirms a transfer error when the instruction or data transfer ends. The host CPU clears transfer mode and interrupt registers.

4.8 Transfer Error Handling


4.8.1 Transfer error handling 1

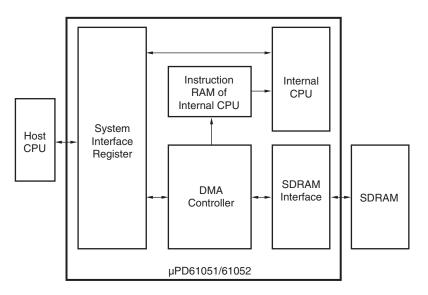
It is the error handling of DMA-ERR which occurs when interrupting the transfers (the host CPU \rightarrow the instruction RAM of internal CPU transfer, the host CPU \rightarrow SDRAM transfer (SSD, SDW), the external ROM \rightarrow SDRAM transfer and the external ROM \rightarrow the instruction RAM of internal CPU transfer)


4.8.2 Transfer error handling 2

This is a error handling of DMA-ERR which occurs when interrupting the transfers (SDRAM read during executing and SDRAM \rightarrow instruction RAM of internal CPU transfer)

4.8.3 Transfer error handling 3

It is the error handling of DMA-ERR which occurs when transfer operation in case of host CPU serial connection with SPI.


Return

5. EXAMPLE FOR COMMON REGISTER USAGE

The μ PD61051, 61052 operates while the "command code register" is in "start". When "command code register" becomes "start", internal CPU reads parameter registers, then starts the operation. Additionally, internal register sets "status register". Register map for system interface register is defined by firmware.

With each application, parameter registers are changed by the firmware.

5.1 Register Map Example

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
00H			-				COMCODE	
01H							ESTS	
02H to 1FH			Paran	neters (Define	d by each firm	nware)		
20H	SI	SSD	SDI	MSD	МІ		SDW	SDR
21H						SA19 te	o SA16	
22H				SA15	to SA8			
23H				SA7 te	o SA0			
24H								DA16
25H				DA15	to DA8			
26H				DA7 t	DA0			
27H							TC18 to TC16	i
28H				TC15	to TC8			
29H				TC7 t	o TC0			
2AH								iCPU-INT
2BH						DMA- ERR-M	DMA- RDY-M	DMA- DONE-M
2CH to 2FH			Interrup	ot Mask (Defin	ed by each fir	mware)		
30H						DMA-ERR	DMA-RDY	DMA- DONE
31H to 34H			Inter	rrupt (Defined	by each firmw	vare)		
35H						iF	ROM2 to iROM	10
36H							ISREQ	OSVLD
37H to 3DH								
3EH							NBR	ALL RESET
3FH				TD7 te	o TD0			

: Reserved

5.2 Example of the Common Register Which A Firmware Defines

5.2.1 COMCODE: Command code register

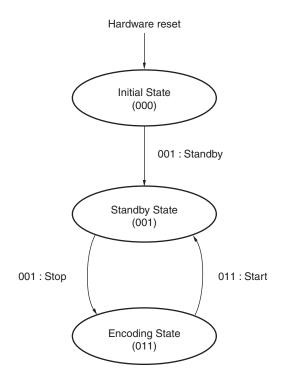
Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
00H							COMCODE	

The host CPU can change the state of operation to the command code register. The μ PD61051/61052 accepts commands to operate in three states as shown in the table below.

Command	Code			
Standby / Stop	001			
Start	011			
Reserved	Others			

The command which it is possible to set depend on the internal state.

In case of the command whose state transfer is possible, the state transfers according to the command.


5.2.2 ESTS: Status register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
01H						ESTS		

This register shows processing state, when command is illegal, the state doesn't transfer.

ESTS	Code			
Initial State	000			
Standby State	001			
Encoding State	011			

Figure 5-2. Command Status Transition

Valid Command in Initial State:StandbyValid Command in Standby State:StartValid Command in Operation State:Stop

6. ELECTRICAL CHARACTERISTICS

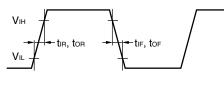
Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol	Conditions	Rating	Unit
Supply Voltage	V _{DD3}	Vdd3, vs GND	4.6	V
	V _{DD2}	VDD2, VS GND	3.6	V
		PVDD2, vs PGND		
Input Voltage	VIN	Vs GND3	-0.5 to +4.6	V
Output Voltage	Vout	Vs GND3	-0.5 to +4.6	V
Output Current	Іоит		20	mA
Permissible Loss	PD		2	W
Operating Ambient Temperature	Та		0 to +70	°C
Storage Temperature	T _{stg}		-55 to +125	°C

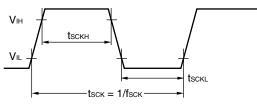
Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the products. Be sure to use the products within the ratings.

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply voltage	V _{DD3}	Vdd3, vs GND	3.135	3.3	3.465	V
	V _{DD2}	VDD2, VS GND	2.3	2.5	2.7	V
		PVDD2, vs PGND				
High-level input voltage	VIH		2.2		VDD3+0.5	V
Low-level input voltage	VIL	SCLK	-0.5		+0.6	V
		Except SCLK	-0.5		+0.7	V
High-level output voltage	Vон		2.4			V
Low-level output voltage	Vol				0.4	V
Input leakage current	lu	Except MD31 to MD0 and CMODE1			±10	μA
Operating current	Idd3	3.3 V power supply			70	mA
	IPDD	2.5 V PLL power supply			15	mA
	Idd2	Internal logic power supply of 2.5 V			510	mA

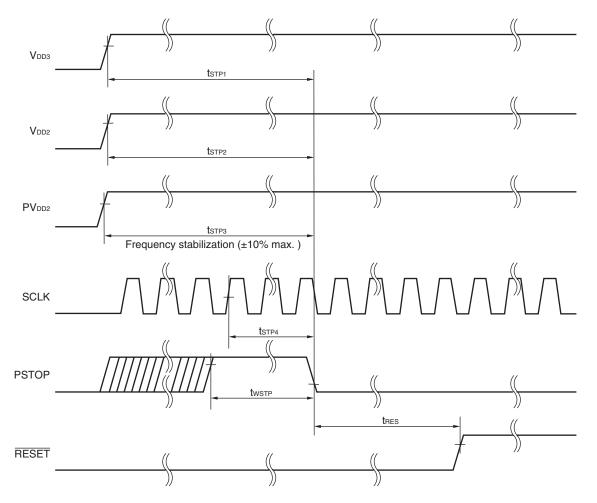
Pin Capacitance (T_A = 25°C)


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input capacitance	С				20	pF
Output capacitance	Co				20	pF
I/O capacitance	Сю				20	pF

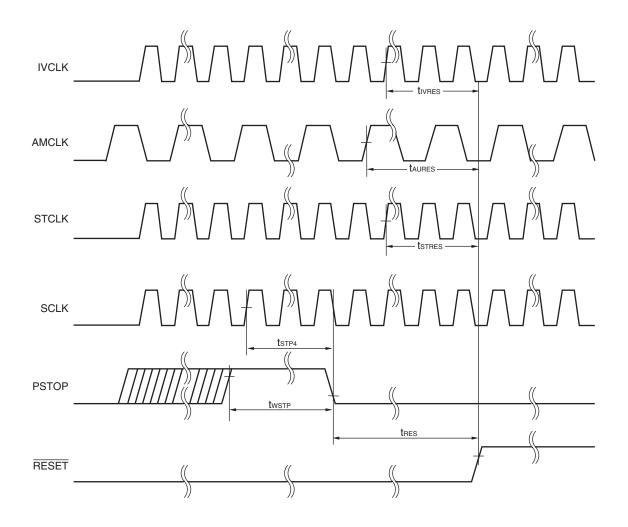
AC Characteristics (T_A = 0 to +70°C, V_{DD3} = 3.3 ± 0.165 V, V_{DD2} = 2.5 ± 0.2 V, C_L = 15 pF, t_R = t_F = 1 ns)

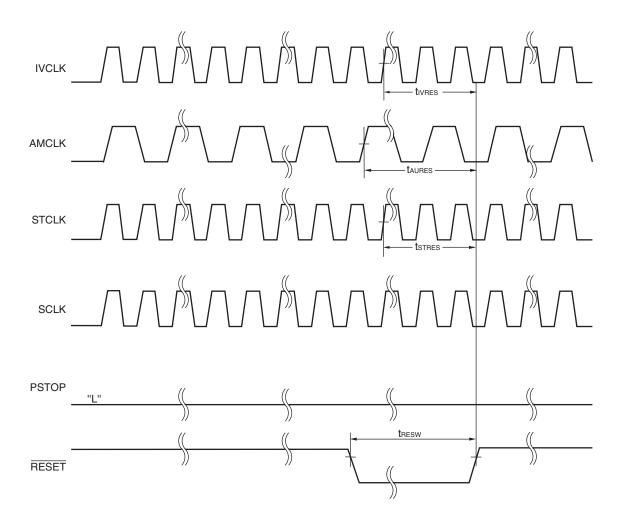

(1) System

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCLK frequency	fscк			27.0		MHz
SCLK high-level width	tscкн	Duty 40:60	13.2			ns
SCLK low-level width	tscк∟	Duty 40:60	13.2			ns
PSTOP release time1	tstp1	Vs Vdd3	1			μs
PSTOP release time2	tstp2	Vs Vdd2	1			μs
PSTOP release time3	tsтрз	Vs PVDD2	1			μs
PSTOP release time4	tstp4	Vs SCLK	1			μs
PSTOP pulse width	twstp		1			μs
RESET release time	tres	Vs falling edge of PSTOP	100			μs
Video input reset time	tivres	After stable IVCLK	600			ns
Audio reset time	taures	After stable AMCLK	600			ns
STC reset time	t STRES	After stable STCLK	600			ns
Reset pulse width	tresw	After stable all clock	600			ns
Input rising time	tırı	Vs AMCLK, STCLK, SCLK, ISCLK			3	ns
		Vs IVCLK			5	ns
Input falling time	tı⊧	Vs AMCLK, STCLK, SCLK, ISCLK			3	ns
		Vs IVCLK			5	ns
Output rising time	tor				3	ns
Output falling time	to⊧				3	ns

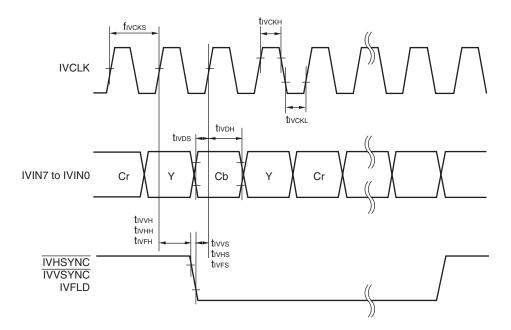

High level, low level

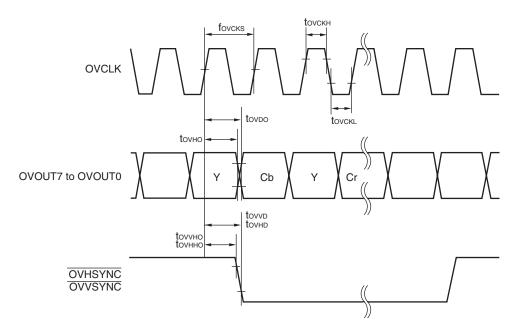
Clock input



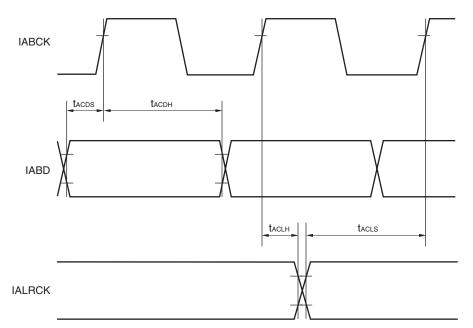

Reset input

Caution Notes on power on/off

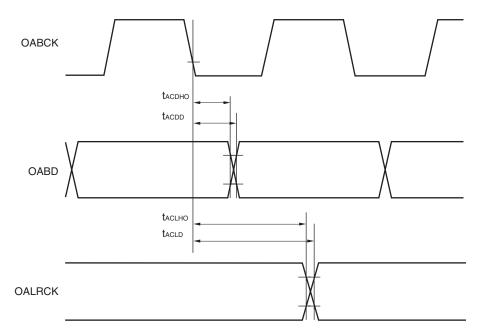

- Apply power to VDD3, and VDD2 and PVDD2 at the same time.
- If it is difficult to apply the power to these pins at the same time, apply the power to V_{DD2} and PV_{DD2} first.
- \bullet Cut the power of $V_{\text{DD3}},$ and V_{DD2} and PV_{DD2} at the same time.
- If it is difficult to cut the power of these pins at the same time, cut the power of VDD2 and PVDD2 last.


(2) Video input interface

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
IVCLK frequency	fivcks			27		MHz
IVCLK high-level width	tvcкн		10			ns
IVCLK low-level width	tvcкL		10			ns
IVIN7 to IVIN0 setup time	tivds	Vs rising edge of IVCLK	5			ns
IVIN7 to IVIN0 hold time	tivdh	Vs rising edge of IVCLK	4			ns
IVVSYNC-input setup time	tivvs	Vs rising edge of IVCLK	5			ns
IVVSYNC-input hold time	tıvvн	Vs rising edge of IVCLK	4			ns
IVHSYNC-input setup time	tivhs	Vs rising edge of IVCLK	5			ns
IVHSYNC-input hold time	tіvнн	Vs rising edge of IVCLK	4			ns
IVFLD-input setup time	tives	Vs rising edge of IVCLK	5			ns
IVFLD-input hold time	tivfh	Vs rising edge of IVCLK	4			ns


(3) Video output interface

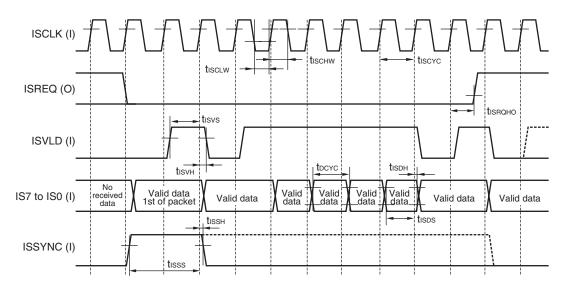
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
OVCLK frequency	fovcкs			27		MHz
OVCLK high-level width	tovскн		8			ns
OVCLK low-level width	t ovckl		8			ns
OVOUT7 to OVOUT0 hold time	tоvно	Vs rising edge of OVCLK	7			ns
OVOUT7 to OVOUT0 delay time	tovdo	Vs rising edge of OVCLK			28	ns
OVVSYNC hold time	tovvнo	Vs rising edge of OVCLK	7			ns
OVVSYNC delay time	tovvd	Vs rising edge of OVCLK			28	ns
OVHSYNC hold time	tovнно	Vs rising edge of OVCLK	7			ns
OVHSYNC delay time	tovнd	Vs rising edge of OVCLK			28	ns


(4) Audio input interface

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Bit data-in setup time	tacds	Vs IABCK	37			ns
Bit data-in hold time	t acdh	Vs IABCK	37			ns
LRCK-in setup time	t ACLS	Vs IABCK	100			ns
LRCK-in hold time	t aclh	Vs IABCK	37			ns

(5) Audio output interface

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Bit data-out hold time	tacdho	Vs OABCK	-5			ns
Bit data-out delay time	tacdd	Vs OABCK			25	ns
LRCK-out hold time	t aclho	Vs OABCK	-5			ns
LRCK-out delay	t acld	Vs OABCK			25	ns
BCK-out duty ratio	dвск			50		%
AMCLK duty ratio	d amclk			50		%
AMCLK frequency	famclk				18.432	MHz

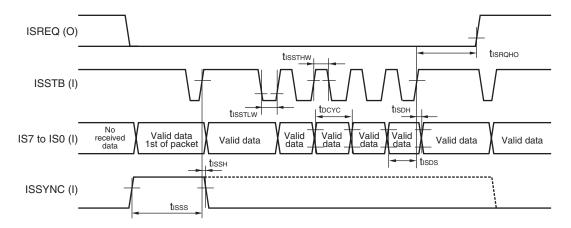

(6) Stream input interface

(a) Parallel stream input

Valid mode

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
ISCLK cycle	tisccyc		80			ns
ISCLK low-level width	tiscLw		37			ns
ISCLK high-level width	t ischw		37			ns
ISREQ output hold time	tisraho	Vs active edge of ISCLK	0			ns
ISVLD setup time	tisvs	Vs active edge of ISCLK	7			ns
ISVLD hold time	tısvн	Vs active edge of ISCLK	3			ns
ISSYNC setup time	tisss	Vs active edge of ISCLK	7			ns
ISSYNC hold time	tıssн	Vs active edge of ISCLK	3			ns
IS7 to IS0 setup time	tisds	Vs active edge of ISCLK	7			ns
IS7 to IS0 hold time	tisdh	Vs active edge of ISCLK	3			ns
Data cycle time	t DCYC		80			ns

Remark ISREQ is effective only when it works by the master mode. ISREQ becomes invalid asynchronously to ISCLK. ISREQ output delay time doesn't prescribe to ISCLK.

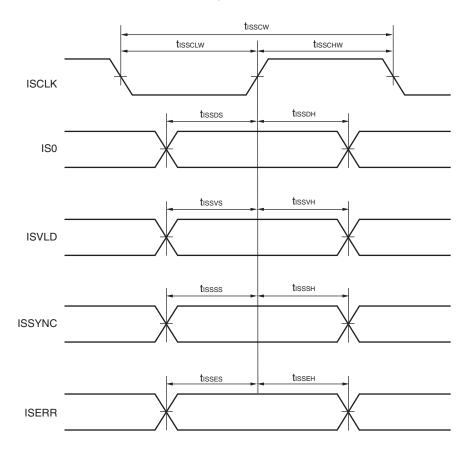


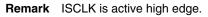
Remark ISSYNC is active high, SREQ is active high and ISCLK is active high edge.

Strobe mode

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
ISSTB low-level width	t ISSTLW		37			ns
ISSTB high-level width	t issthw		37			ns
ISREQ output hold time	tisrqho	Vs active edge of ISSTB	0			ns
ISSYNC setup time	tisss	Vs active edge of ISSTB	7			ns
ISSYNC hold time	tıssн	Vs active edge of ISSTB	3			ns
IS7 to IS0 setup time	tisds	Vs active edge of ISSTB	7			ns
IS7 to IS0 hold time	tisdh	Vs active edge of ISSTB	3			ns
Data cycle time	t DCYC		80			ns

Remark ISREQ becomes invalid asynchronously to ISSTB. ISREQ output delay time doesn't prescribe to ISSTB.

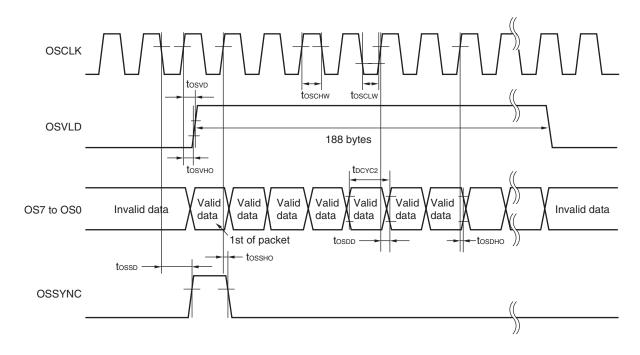



Remark ISSYNC is active high, ISREQ is active low and ISSTB is active high edge.

(b) Serial stream input

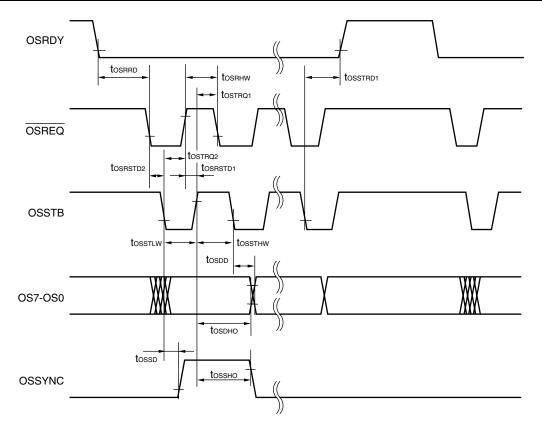
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
ISCLK period	tisscw		15.6			ns
ISCLK low-level width	tissclw		5.0			ns
ISCLK high-level width	tisschw		5.0			ns
ISVLD setup time	tissvs	Vs active edge of ISCLK	2.5			ns
ISVLD hold time	tissvн	Vs active edge of ISCLK	2.5			ns
ISSYNC setup time	tissss	Vs active edge of ISCLK	2.5			ns
ISSYNC hold time	tisssн	Vs active edge of ISCLK	2.5			ns
ISERR setup time	tisses	Vs active edge of ISCLK	2.5			ns
ISERR hold time	tisseh	Vs active edge of ISCLK	2.5			ns
IS0 setup time	tissds	Vs active edge of ISCLK	2.5			ns
IS0 hold time	tissdh	Vs active edge of ISCLK	2.5			ns

Remark Setup and hold time provide to the activist edge of ISCLK.


(7) Stream output interface

(a) Parallel stream data output

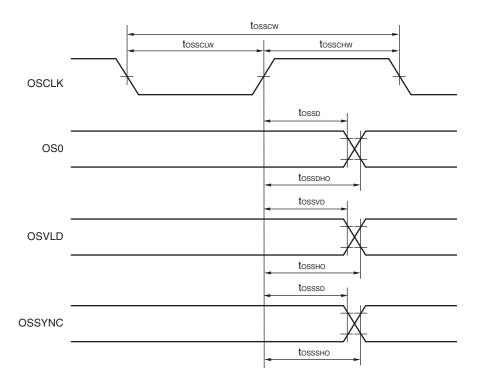
Valid and master mode


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
OSCLK low-level width	tosclw	Active rising edge	30			ns
		Active falling edge	70			ns
OSCLK high-level width	t oschw	Active rising edge	70			ns
		Active falling edge	30			ns
OSVLD hold time	tosvнo	Vs active edge of OSCLK	30			ns
OSVLD delay time	tosvd	Vs non active edge of OSCLK	-5		+5	ns
OSSYNC hold time	tossнo	Vs active edge of OSCLK	30			ns
OSSYNC delay time	tossd	Vs non active edge of OSCLK	-5		+5	ns
OS7 to OS0 hold time	tosdho	Vs active edge of OSCLK	30			ns
OS7 to OS0 delay time	tosdd	Vs non active edge of OSCLK	-5		+5	ns
Data cycle time	tDCYC2		105			ns

Remark OSVLD is active high, OSSYNC is active high and OSCLK is active high edge.

Strobe and byte mode

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
OSREQ high-level time	tosrhw		2			STCLK
OSSTB high-level width	tossthw	Active rising edge	100			ns
		Active falling edge	70			ns
OSSTB low-level width	tosstlw	Active rising edge	70			ns
		Active falling edge	100			ns
OSREQ hold time	tosrrd	Vs active edge of OSRDY	0			ns
OSREQ hold time	tostrq1	Vs active edge of OSSTB	0			ns
	tostra2	Vs non active edge of OSSTB	0			ns
OSSTB delay time	tosrstd1	Vs active edge of OSREQ	2		3	STCLK
	tosrstd2	Vs non active edge of OSREQ	3			STCLK
OSRDY delay time	tosstrd1	Vs non active edge of OSSTB			3	STCLK
OSSYNC-out delay time	tossp	Vs non active edge of OSSTB	-5		+5	ns
OSSYNC-out hold time	tossнo	Vs active edge of OSSTB	70			ns
OS7 to OS0 out delay time	tosdd	Vs non active edge of OSSTB	-5		+5	ns
OS7 to OS0 out hold time	tosdho	Vs active edge of OSSTB	70			ns

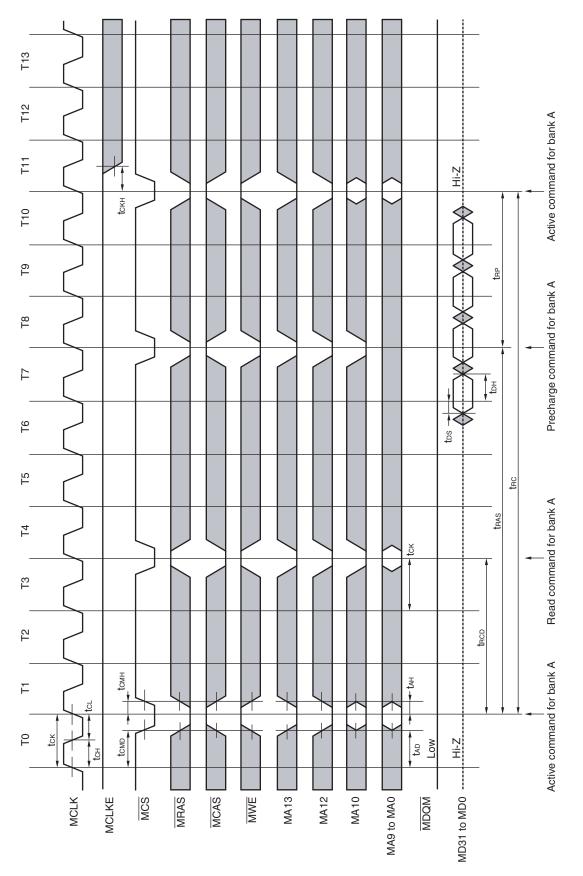

Remark OSSYNC is active high, OSRDY is active low and OSSTB is active high edge.

(b) Serial stream data output

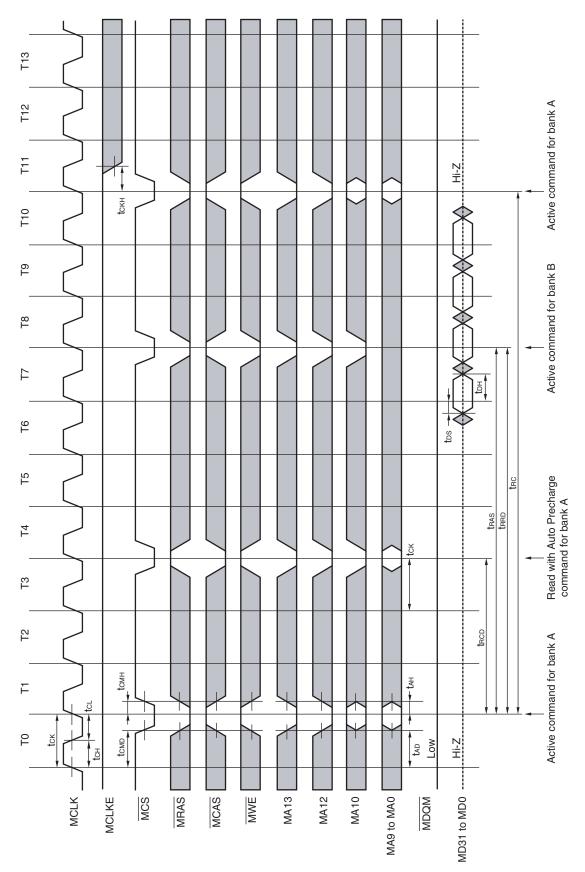
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
OSCLK period	tosscw			37		ns
OSCLK low-level width	tossclw		10			ns
OSCLK high-level width	tosschw		10			ns
OS0 delay time	tossdd	Vs active edge of OSCLK			27	ns
OS0 hold time	tossdho	Vs active edge of OSCLK	5.0			ns
OSVLD delay time	tossvo	Vs active edge of OSCLK			27	ns
OSVLD hold time	tossvнo	Vs active edge of OSCLK	5.0			ns
OSSYNC delay time	tosssd	Vs active edge of OSCLK			27	ns
OSSYNC hold time	tosssнo	Vs active edge of OSCLK	5.0			ns

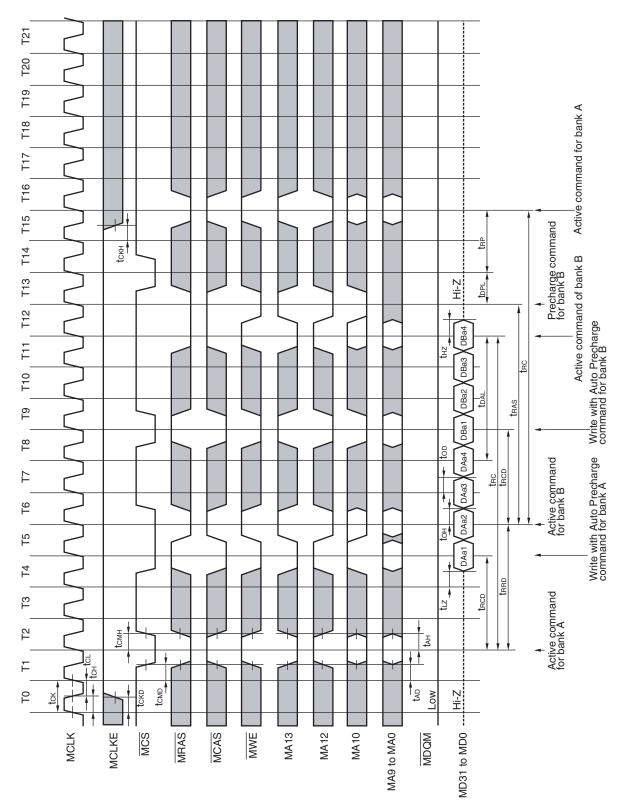
Remarks 1. Active edge of OSCLK is able to change according to the following circuit.

2. Period of the OSCLK is provided by STCLK.


Remark OSCLK is active high edge.

(8) SDRAM interface


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
MCLK cycle time	tск			12.3		ns
MCLK high-level width	tсн		3.5			ns
MCLK low-level width	tc∟		3.5			ns
MD31 to MD0-out hold time	tон	Vs MCLK	1.5			ns
MD31 to MD0-out delay time	top	Vs MCLK			9	ns
MD31 to MD0 low-Z output time	t∟z	Vs MCLK	0			ns
MD31 to MD0 high-Z output time	tнz	Vs MCLK			9	ns
MD31 to MD0-in setup time	tos	Vs MCLK	6			ns
MD31 to MD0-in hold time	tон	Vs MCLK	2			ns
MA13 to MA0 delay time	tad	Vs MCLK			9	ns
MA13 to MA0 hold time	tан	Vs MCLK	1.5			ns
MCLKE delay time	tскs	Vs MCLK			9	ns
MCLKE hold time	tскн	Vs MCLK	1.5			ns
Command delay time	tсмр	Vs MCLK			9	ns
Command hold time	tсмн	Vs MCLK	1.5			ns
$\text{ACT} \rightarrow \text{REF}/\text{ACT}$ command period	trc		12			MCLK
$\text{REF} \rightarrow \text{REF}/\text{ACT}$ command period	tRC1		12			MCLK
$\text{ACT} \rightarrow \text{PRE}$ command period	tras		12			MCLK
$\ensuremath{PRE}\xspace \to \ensuremath{ACT}\xspace$ command period	trp		12			MCLK
$\text{ACT} \rightarrow \text{R/W}$ command delay time	trcd		3			MCLK
ACT (0) \rightarrow ACT (1) command period	trrd		4			MCLK
Data-in to PRE command period	t DPL		2			MCLK
Data-in to ACT (REF) command period (Auto pre-charge)	t dal		6			MCLK
Mode register set cycle period	trsc		2			MCLK
Refresh Time (4096 refresh cycle)	tref				50	ms


Remark REF: Refresh, ACT: Active, PRE: Pre-charge

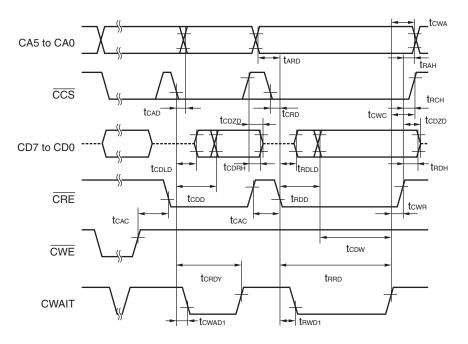
Read timing (Manual pre-charge, burst length = 4, CAS latency = 3)

Read timing (Auto pre-charge, burst length = 4, CAS latency = 3)

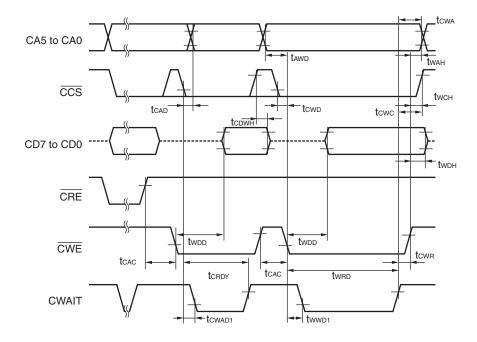
Write timing (Burst length = 4, CAS latency = 3)

NEC

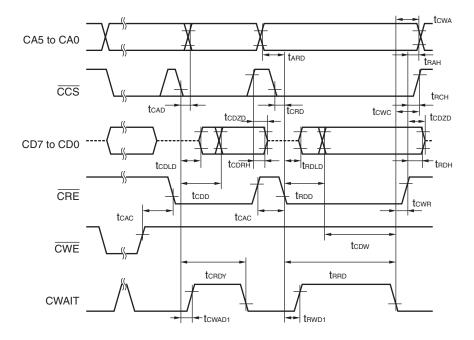
(9) Host CPU interface

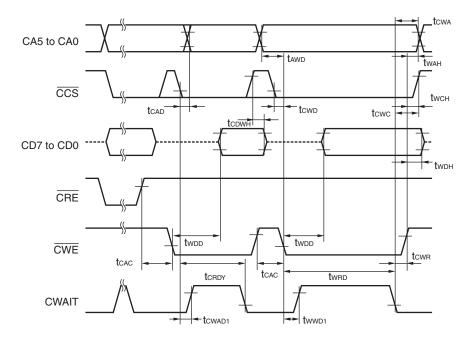

(a) Parallel bus interface: Wait mode

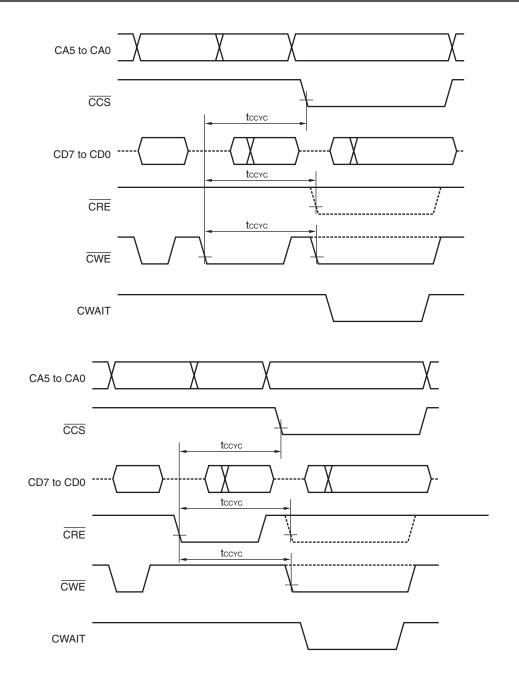
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
$\overrightarrow{\text{CCS}} \rightarrow \text{CA5}$ to CA0 delay time	t CAD	Vs falling edge of \overline{CCS}	-	-	-	ns
		Do not care				
$\overline{\text{CCS}} \downarrow \rightarrow \text{CWAIT}$ delay time	tcwad1	Vs falling edge of CCS			15	ns
		CCS later than CRE/CWE				
$\overline{\text{CCS}} \downarrow \rightarrow \text{CWAIT}$ release time	t CRDY	Vs falling edge of CCS			175	ns
		CCS later than CRE/CWE				
CA5 to CA0 \rightarrow $\overline{CRE} \downarrow$ delay time	tard	Vs CA5 to CA0	-20			ns
$\overline{CCS} \downarrow ightarrow \overline{CRE} \downarrow$ delay time	t CRD	Vs falling edge of CCS	-20			ns
$\overline{CRE} \downarrow \to CWAIT$ delay time	trwD1	Vs falling edge of CRE			15	ns
$\overline{CRE} \downarrow \rightarrow CWAIT$ release time	trrd	Vs falling edge of CRE			175	ns
$\overrightarrow{\text{CCS}} \downarrow \rightarrow \text{CD7}$ to CD0 low-Z time	tCDLD	Vs falling edge of CCS	0			ns
		Data not fixed				
$\overline{CRE} \downarrow \rightarrow CD7$ to CD0 low-Z time	trdld	Vs falling edge of CRE	0			ns
		Data not fixed				
$\overline{\text{CCS}} \downarrow \rightarrow \text{CD7}$ to CD0 delay time	tcdd	Vs falling edge of CCS			150	ns
		Data fixed				
$\overline{CRE} \downarrow \to CD7$ to CD0 delay time	trdd	Vs falling edge of CRE			150	ns
		Data fixed				
$\overline{CRE}^{\uparrow} \rightarrow CD7$ to CD0 hold time	t RDH	Vs rising edge of CRE	0			ns
		Earlier than rising edge of CCS				
$\overline{CRE}^{\uparrow} \rightarrow CA5$ to CA0 hold time	traн	Vs rising edge of CRE	-27			ns
$\overline{CRE}^{\uparrow} \rightarrow \overline{CCS}^{\uparrow}$ hold time	tясн	Vs rising edge of CRE	-27			ns
$\overrightarrow{\text{CCS}}^{\uparrow} \rightarrow \text{CD7}$ to CD0 hold time	t CDRH	Vs rising edge of CCS	0			ns
		Earlier than rising edge of CRE				
CD7 to CD0 \rightarrow CWAIT release time	tcdw	Vs CD7 to CD0 fixed	10			ns
CD7 to CD0 Hi-Z delay time	tcdzd	Vs rising edge of \overline{CRE} or \overline{CCS}			12	ns
CA5 to CA0 $\rightarrow \overline{\text{CWE}}\downarrow$ delay time	tawd	Vs CA5 to CA0	-28			ns
$\overline{CCS} \downarrow \to \overline{CWE} \downarrow$ delay time	tcwp	Vs falling edge of \overline{CCS}	-20			ns
$\overline{CWE} \downarrow \rightarrow CWAIT$ delay time	twwD1	Vs falling edge of CWE			15	ns
$CWE \downarrow \rightarrow CWAIT$ release time	twrd	Vs falling edge of CWE			150	ns
$\overline{\text{CWE}} \downarrow \rightarrow \text{CD7}$ to CD0 delay time	twdd	Vs falling edge of CWE			30	ns
		Until data fixed				
$\overline{CWE}^{\uparrow} \rightarrow CD7$ to $CD0$ hold time	twdн	Vs rising edge of CWE	-7			ns


						(2/2
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
$\overline{\text{CWE}} \uparrow \rightarrow \text{CA5}$ to CA0 hold time	twaн	Vs rising edge of CWE	-27			ns
$\overline{CWE}^{\uparrow} \to \overline{CCS}^{\uparrow}$ hold time	twcн	Vs rising edge of \overline{CWE}	-27			ns
$\overline{\text{CCS}}^{\uparrow} \rightarrow \text{CD7}$ to CD0 hold time	tcdwн	Vs rising edge of CCS	0			ns
$\overline{\text{CCS}}^{\uparrow} \rightarrow \text{CWAIT}$ release time	tcwad2	Vs rising edge of CCS	0		15	ns
$CWAIT \text{ release} \to \overline{CWE} / \overline{CRE} \text{ hold time}$	tcwn	Vs CWAIT release	0			ns
CWAIT release \rightarrow CD5 to CD0 hold time	tcwa	Vs CWAIT release	0			ns
$CWAIT \text{ release} \to \overline{CSS} \uparrow \text{ hold time}$	tcwc	Vs CWAIT release	0			ns
CRE/CWE recovery time	tcac		25			ns
Access cycle after other device	tccyc		200			ns

Remark If CCS change to "H" in wait cycle, it cancels CWAIT. In access time, don't make CCS "H" until wait released.

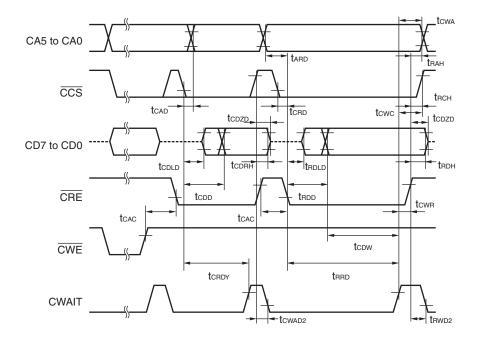

Wait mode (Wait active low, read cycle)


Wait mode (Wait active low, write cycle)

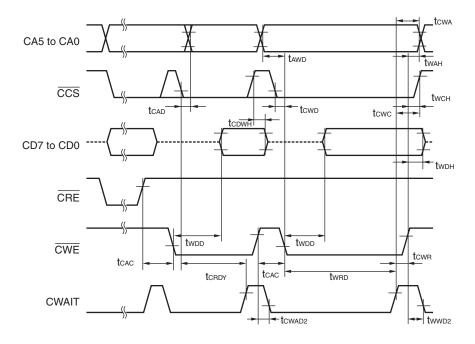


Wait mode (Wait active high, read cycle)

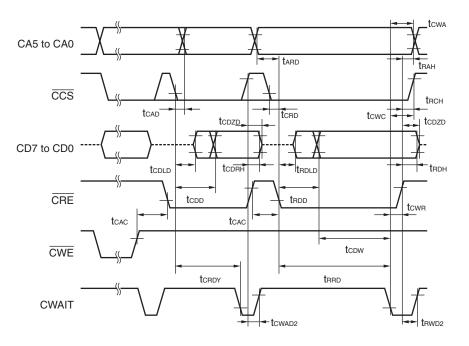
Wait mode (Wait active high, write cycle)

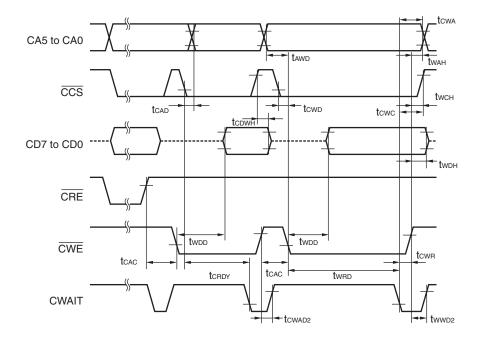

(b) Parallel bus interface: Ready mode

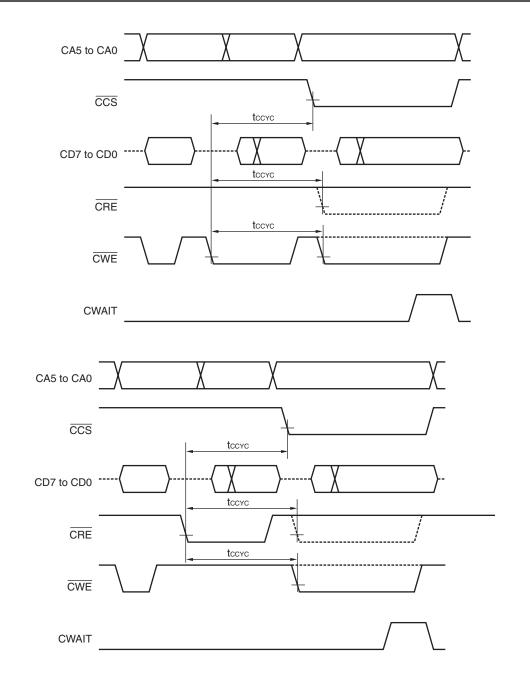
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
$\overline{\text{CS}} \downarrow \rightarrow \text{CA5}$ to CA0 delay time	tCAD	Vs falling edge of CCS	-	-	-	ns
		Do not care				
$\overline{\text{CCS}} \downarrow \rightarrow \text{CWAIT}$ delay time	tcwad1	Vs falling edge of CCS			15	
		CCS later than CRE/CWE				
$\overline{\text{CCS}} \downarrow \rightarrow \text{CWAIT}$ ready time	t CRDY	Vs falling edge of CCS			175	ns
		CCS later than CRE/CWE				
CA5 to CA0 \rightarrow \overrightarrow{CRE} delay time	tard	Vs CA5 to CA0	-20			ns
$\overline{CCS} \downarrow \to \overline{CRE} \downarrow$ delay time	t CRD	Vs falling edge of CCS	-20			ns
$\overline{CRE} \downarrow \rightarrow CWAIT$ ready time	trrd	Vs falling edge of CRE			175	ns
$\overrightarrow{\text{CCS}} \downarrow \rightarrow \text{CD7}$ to CD0 low-Z time	tcdld	Vs falling edge of CCS	0			ns
		Data not fixed				
$\overline{CRE} \downarrow \rightarrow CD7$ to CD0 low-Z time	tRDLD	Vs falling edge of CRE	0			ns
		Data not fixed				
$\overline{\text{CCS}} \downarrow \rightarrow \text{CD7}$ to CD0 delay time	tcdd	Vs falling edge of \overline{CCS}			150	ns
		Data fixed				
$\overline{CRE} \downarrow \rightarrow CD7$ to CD0 delay time	trdd	Vs falling edge of CRE			150	ns
		Data fixed				
$\overline{CRE}^{\uparrow} \rightarrow CD7$ to CD0 hold time	t RDH	Vs rising edge of CRE	0			ns
		Earlier than rising edge of \overline{CCS}				
$CRE^{\uparrow} \rightarrow CA5$ to $CA0$ hold time	tван	Vs rising edge of CRE	-27			ns
$\overline{CRE}^{\uparrow} \to \overline{CCS}^{\uparrow}$ hold time	t RCH	Vs rising edge of CRE	-27			ns
$\overrightarrow{\text{CCS}}$ $\uparrow \rightarrow$ CD7 to CD0 hold time	t CDRH	Vs rising edge of \overline{CCS}	0			ns
		Earlier than rising edge of CRE				
CD7 to CD0 \rightarrow CWAIT ready time	tcow	Vs CD7 to CD0 fixed	10			ns
CD7 to CD0 high-Z delay time	tcdzd	Vs rising edge of \overline{CRE} or \overline{CCS}			12	ns
CA5 to CA0 \rightarrow CWE \downarrow delay time	tawd	Vs CA5 to CA0	-28			ns
$\overline{CCS} \downarrow \to \overline{CWE} \downarrow$ delay time	tcwd	Vs falling edge of CCS	-20			ns
$\overline{CWE} \downarrow \rightarrow CWAIT$ ready time	twrd	Vs falling edge of CWE			150	ns
$\overline{\text{CWE}} \downarrow \rightarrow \text{CD7}$ to CD0 delay time	twdd	Vs falling edge of CWE			30	ns
		Until data fixed				
$\overrightarrow{CWE}^{\uparrow} ightarrow CD7$ to CD0 hold time	twdн	Vs rising edge of CWE	-7			ns
$\overline{CWE}^{\uparrow} ightarrow CA5$ to CA0 hold time	twaн	Vs rising edge of CWE	-27			ns
$\overline{CWE}^{\uparrow} \to \overline{CCS}^{\uparrow}$ hold time	twcн	Vs rising edge of CWE	-27			ns
$\overrightarrow{CCS}^{\uparrow} ightarrow CD7$ to CD0 hold time	tcowн	Vs rising edge of CCS	0			ns
$\overline{CRE}^{\uparrow} \rightarrow CWAIT$ release time	trwd2	Vs rising edge of CRE	0		15	ns


						(2/2
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
$\overline{\text{CWE}} \uparrow \rightarrow \text{CWAIT}$ release time	twwd2	Vs rising edge of CWE	0		15	ns
$\overline{\text{CCS}} \uparrow \rightarrow \text{CWAIT}$ release time	tcwad2	Vs rising edge of CCS	0		15	ns
$\label{eq:cwalt_ready} \begin{array}{l} CWAIT \text{ ready} \to \overline{CWE}/\overline{CRE} \text{ hold} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	tcwn	Vs CWAIT ready	0			ns
CWAIT ready \rightarrow CA5 to CA0 hold time	tcwa	Vs CWAIT ready	0			ns
$CWAIT\ ready \to \overline{CCS} \uparrow hold\ time$	tcwc	Vs CWAIT ready	0			ns
CRE/CWE recovery time	tcac		25			ns
Access cycle after other device	tссус		200			ns

Remark If CCS change to "H" in wait cycle, it cancels CWAIT. In access time, don't make CCS "H" until wait becomes ready.

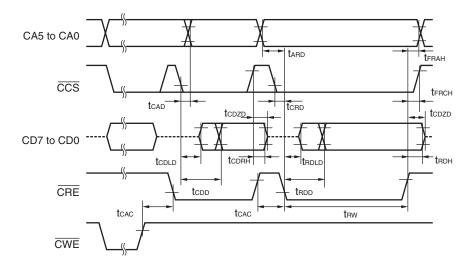

Ready mode (Ready active high, read cycle)

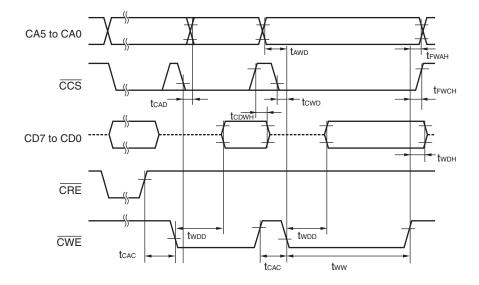

Ready mode (Ready active high, write cycle)

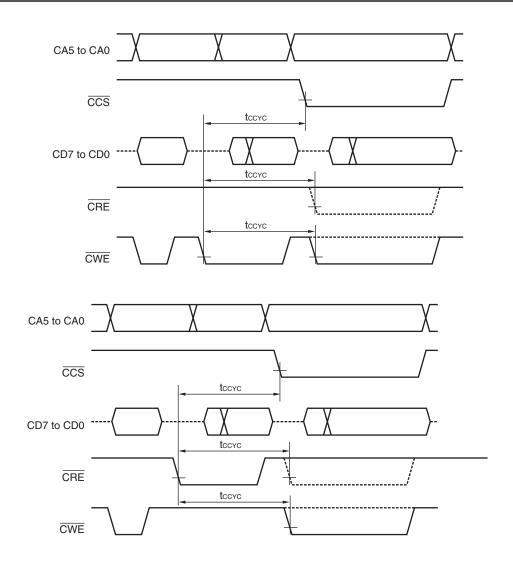


Ready mode (Ready active low, read cycle)

Ready mode (Ready active low, write cycle)

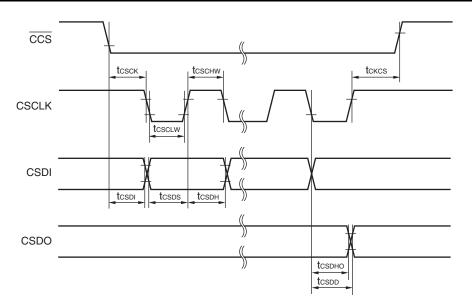


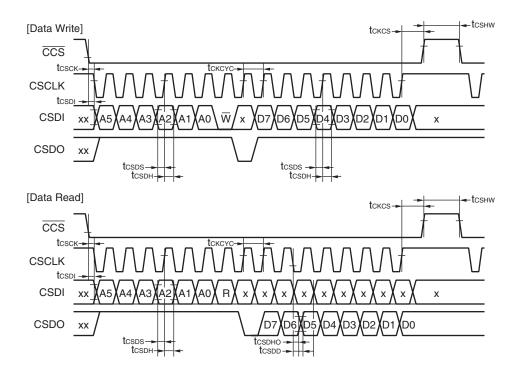

(c) Parallel bus interface: Fixed wait mode


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
$\overline{\text{CCS}} \downarrow \rightarrow \text{CA5}$ to CA0 delay time	t CAD	Vs falling edge of CCS	-	-	-	ns
		Do not care				
CRE pulse width	trw		175			ns
CA5 to CA0 $\rightarrow \overline{\text{CRE}} \downarrow$ delay time	tard	Vs CA5 to CA0	-20			ns
$\overline{\text{CCS}} \downarrow \rightarrow \overline{\text{CRE}} \downarrow \text{delay time}$	t CRD	Vs falling edge of \overline{CCS}	-20			ns
$\overline{\text{CCS}} \downarrow \rightarrow \text{CD7}$ to CD0 low-Z time	tcdld	Vs falling edge of CCS	0			ns
		Data not fixed				
$\overline{\text{CRE}} {\downarrow} \rightarrow \text{CD7}$ to CD0 low-Z time	trdld	Vs falling edge of CRE	0			ns
		Data not fixed				
$\overline{\text{CCS}} {\downarrow} \rightarrow \text{CD7}$ to CD0 delay time	tcdd	Vs falling edge of \overline{CCS}			150	ns
		Data fixed				
$\overline{\text{CRE}} {\downarrow} \rightarrow \text{CD7}$ to CD0 delay time	trdd	Vs falling edge of CRE			150	ns
		Data fixed				
$\overline{\text{CRE}} \uparrow \rightarrow \text{CD7}$ to CD0 hold time	t RDH	Vs rising edge of CRE	0			ns
		Earlier than rising edge of \overline{CCS}				
$\overline{\text{CRE}} \uparrow \rightarrow \text{CA5}$ to CA0 hold time	t FRAH	Vs rising edge of CRE	-27			ns
$\overline{CRE} \uparrow \to \overline{CCS} \uparrow \text{ hold time}$	t FRCH	Vs rising edge of CRE	-27			ns
$\overline{\text{CCS}} \uparrow \rightarrow \text{CD7}$ to CD0 hold time	t CDRH	Vs rising edge of \overline{CCS}	0			ns
CD7 to CD0 high-Z delay time	tcdzd	Vs rising edge of \overline{CRE} or \overline{CCS}			12	ns
CWE pulse width	tww		150			ns
CA5 to CA0 $\rightarrow \overline{\text{CWE}} \downarrow$ delay time	tawd	Vs CA5 to CA0	-28			ns
$\overline{\text{CCS}} {\downarrow} \rightarrow \overline{\text{CWE}} {\downarrow}$ delay time	tcwp	Vs falling edge of CCS	-20			ns
$\overline{\text{CWE}} {\downarrow} \rightarrow \text{CD7}$ to CD0 delay time	twdd	Vs falling edge of CWE			30	ns
		Until data fixed				
$\overline{\text{CWE}}^{\uparrow} \rightarrow \text{CD7}$ to CD0 hold time	twdн	Vs rising edge of CWE	-7			ns
$\overline{\text{CWE}}^{\uparrow} \rightarrow \text{CA5}$ to CA0 hold time	tғwaн	Vs rising edge of CWE	-27			ns
$\overline{\text{CWE}}^{\uparrow} \rightarrow \overline{\text{CCS}}^{\uparrow}$ hold time	tғwcн	Vs rising edge of CWE	-27			ns
$\overline{\text{CCS}} \uparrow \rightarrow \text{CD7}$ to CD0 hold time	tсоwн	Vs rising edge of CCS	0			ns
CRE/CWE recovery time	tcac		25			ns
Access cycle after other device	tccyc		200			ns

Fixed wait mode (Read cycle)

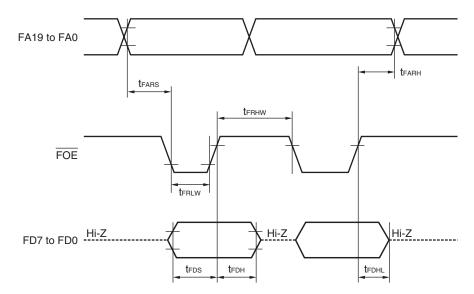
Fixed wait mode (Write cycle)

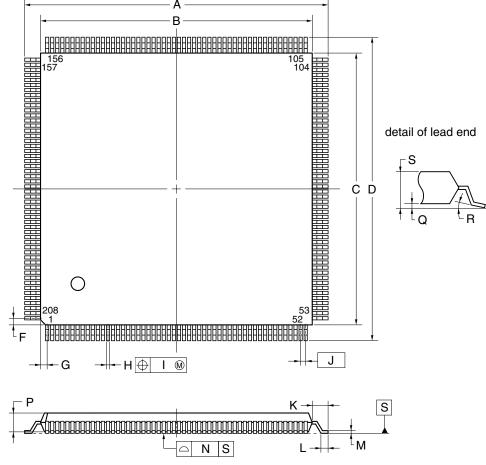




(10) Serial bus interface

(a) Serial bus interface


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
$\overline{\text{CCS}} \rightarrow \text{CSCLK}$ delay time	tcscк	Vs falling edge of \overline{CCS}	10			ns
$\overline{\text{CCS}} \rightarrow \text{CSDI}$ delay time	tcspi	Vs falling edge of \overline{CCS}	10			ns
CSDI setup time	tcsps	Vs rising edge of CSCLK	10			ns
CSDI hold time	tcsdh	Vs rising edge of CSCLK	10			ns
CSDO hold time	tcspнo	Vs falling edge of CSCLK	0			ns
CSDO delay time	tcspd	Vs falling edge of CSCLK			15	ns
$\mbox{CSCLK} \rightarrow \overline{\mbox{CCS}}$ hold time	tccks	Vs rising edge of CSCLK	75			ns
CCS high-level width	tcsнw		125			ns
CSCLK cycle time	tсксус		100			ns
CSCLK high-level width	tcscнw		40			ns
CSCLK high-level width	tcscLw		40			ns


(b) Instruction ROM interface

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Address setup time	t FARS	Vs falling edge of FOE	0			ns
Address hold time	t FARH	Vs rising edge of FOE	5			ns
FOE low-level width	tfrlw		70		225	ns
FOE high-level width	ternw		24			ns
Data setup time	trds	Vs rising edge of FOE	25			ns
Data hold time	t FDH	Vs rising edge of FOE	0			ns
Data high-Z output time	t FDHL	Vs rising edge of FOE			60	ns

7. PACKAGE DRAWING

208-PIN PLASTIC QFP (FINE PITCH) (28x28)

NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	30.6±0.2
В	28.0±0.2
С	28.0±0.2
D	30.6±0.2
F	1.25
G	1.25
Н	$0.22\substack{+0.05 \\ -0.04}$
I	0.10
J	0.5 (T.P.)
к	1.3±0.2
L	0.5±0.2
М	$0.17\substack{+0.03 \\ -0.07}$
Ν	0.10
Р	3.2±0.1
Q	0.4±0.1
R	5°±5°
S	3.8 MAX.

P208GD-50-LML,MML,SML,WML-7

8. RECOMMENDED SOLDERING CONDITIONS

The μ PD61051, 61052 should be soldered and mounted under the following recommended conditions.

For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales representative.

For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Table 8-1. Surface-Mounted Soldering Conditions

μPD61051GD-LML:	208-pin plastic QFP (Fine pitch) (28×28)
µPD61051GD-LML-A ^{Note1} :	208-pin plastic QFP (Fine pitch) (28×28)
μPD61052GD-LML:	208-pin plastic QFP (Fine pitch) (28×28)
µPD61052GD-LML-A ^{Note1} :	208-pin plastic QFP (Fine pitch) (28×28)

	Soldering Method	Soldering Conditions	Recommended Condition Symbol
	Infrared reflow	Package peak temperature: 235°C	IR35-207-3
		Time: 30 sec. max. (at 210°C or higher)	
		Count: Three times or fewer	
*		Exposure limit: 7 days Note2 (After that, prebake at 125°C for 20 to 72 hours)	
	VPS	Package peak temperature: 215°C	VP15-207-3
		Time: 40 sec. max. (at 200°C or higher)	
		Count: Three times or fewer	
*		Exposure limit: 7 days ^{Note2} (After that, prebake at 125°C for 20 to 72 hours)	
	Partial heating	Pin temperature: 300°C max.	_
		Time: 3 sec. max. (per pin row)	

Notes 1. Lead-free product

2. After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use two or more soldering methods in combination (except for partial heating method).

NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

[MEMO]

Dolby is a trademark of Dolby Laboratories.

- The information in this document is current as of November, 2003. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).