CMOS LSI CHIP FOR CAMCORDER ON－SCREEN CHARACTER DISPLAY （12 ROWS $\times 24$ COLUMNS）

The μ PD6461， 6462 are CMOS LSI chips designed to provide on－screen character display for camcorders．When combined with a microcontroller，the μ PD6461， 6462 control the display of the characters displayed in the viewfinder（count， time，date，etc．）and the recording of characters onto video tape（time，date，etc．）．

Each character is created using 12 （width）$\times 18$（height）dots．Kanji characters and graphic symbols can also be displayed by using two or more characters．The μ PD6461， 6462 are compatible with color viewfinders and can output character signals to three channels，the RGB channel for the color viewfinder and the $\mathrm{V}_{\mathrm{C} 1}$ and $\mathrm{V}_{\mathrm{c} 2}$ channels for the recording system and monitor terminal．

The μ PD6461， 6462 also have a power－on clear function and video RAM batch clear command，enabling the number of operations assigned to the microcontroller to be reduced．

FEATURES

－Maximum number of characters： 12 rows $\times 24$ columns（ 288 characters）
－Number of character patterns ： $256(\mu \mathrm{PD} 6461) / 128$（ $\mu \mathrm{PD} 6462$ ）（stored in ROM）．Each pattern can be changed by specifying a mask code option．
－Character size ：One dot per line or one dot per two lines（field）
－Number of character colors ： 8
－Background ：No background，minimum background，or overall background can be selected for the entire screen，together with rimming ON／OFF function．Any one of 8 different colors is selectable as the background color and together with the rim color（black or white） selectable per screen．
－Dot matrix ：Each character consists of 12 （width）$\times 18$（height）dots．There is no gap between adjacent characters．
－Blinking ：Blinking can be turned on／off for each character．The blinking ratio is $1: 1$ ．The blinking frequency can be selected from approx． $1 \mathrm{~Hz}, 2 \mathrm{~Hz}$ ，and 0.5 Hz for the entire screen．
－Reversed characters
：Specified characters can be displayed in reverse video．
－Character signal output
：Character signals can be output to three channels．Output mode（1）（RGB＋BLK，VC1
 be selected by specifying a mask option．For output mode 1，three output formats are available for the $\mathrm{V}_{\mathrm{C} 1}$ and V_{c} channels（options A, B ，and C ）．
－Clearing of video RAM ：Video RAM batch clear command and power－on clear function
－Interface with a microcontroller ：8－bit serial input supporting variable word length（LSB first or MSB first can be selected by specifying a mask option．）
－Supply voltage ：Low－voltage operation possible（supply voltage range： 2.7 to 5.5 V ）

The information in this document is subject to change without notice．

ORDERING INFORMATION

Part number	Package
μ PD6461GS-xxx	20-pin plastic shrink SOP $(300$ mil $)$
μ PD6461GT-xxx	24-pin plastic SOP $(375$ mil $)$
μ PD6462GS-xxx	20-pin plastic shrink SOP $(300$ mil $)$

Remarks 1. $x x x$ is a ROM code suffix.
2. NEC's standard models are the μ PD6461GS-101/102, μ PD6462GS-001. For the details of the character generator ROM, refer to 5. CHARACTER PATTERNS.
μ PD6461GS-101: MSB first/Specified in three-line units/RGB+3BLK/Option B/LC oscillation μ PD6461GS-102: MSB first/Specified in three-line units/RGB+Vc1+Vc2/Option B/LC oscillation μ PD6462GS-001: MSB first/Specified in three-line units/RGB+Vc1+Vc2/Option C/LC oscillation

BLOCK DIAGRAM

Remark Signals in () are set by a mask option (RGB + RGB compatible blanking).

PIN CONFIGURATION (TOP VIEW)

20-pin plastic shrink SOP (300 mil)
μ PD6461GS-xxx
μ PD6462GS-xxx

24-pin plastic SOP (375 mil) μ PD6461GT-xxx

Remarks 1. $x x x$ indicates a ROM code suffix.
2. Signals in () are set by a mask option (RGB + RGB compatible blanking).

Bblk	Blanking B
BLK1, BL	Blanking Output 1, 2
$\overline{\text { CKout }}$	Clock Output
CLK	Clock Input
$\overline{\mathrm{CS}}$	Chip Select
DATA	Data Input
Gblk	Blanking G
GND	Ground
Hsync	Horizontal Synchronous Signal Input
N.C.	No Connection
OSCin	Oscillator Input
OSCout	Oscillator Output
$\overline{\text { PCL }}$	Power-on Clear
Rblk	Blanking R
TEST	Test
VB	Character Signal Output
Vblk	Blanking Signal Output for $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{G}}, \mathrm{V}_{\mathrm{B}}$
$\mathrm{V}_{\mathrm{c} 1}, \mathrm{~V}_{\text {c2 }}$	Character Signal Output 1, 2
Vdd	Power Supply
VG	Character Signal Output
VR	: Character Signal Output
$\overline{\text { Vsync }}$: Vertical Synchronous Signal Input

PIN FUNCTIONS

Pin No. Note 1	Symbol ${ }^{\text {Note }} 2$	Function ${ }^{\text {Note }} 2$	Description
1	CLK	Clock input	Input pin for the data read clock. The data input to the DATA pin is read at rising edges of the clock.
2	$\overline{\mathrm{CS}}$	Chip select input	Serial transfer is accepted when this pin is low.
3 (4)	DATA	Serial data input	Input pin for control data. Data is read in synchronization with the clock input to the CLK pin.
4 (5)	$\overline{P C L}$	Power-on clear	Pin used for the power-on clear function. After power-on, set this pin from low to high to initialize the IC.
5 (6)	Vdo	Power supply	Power supply pin
6 (7)	$\overline{\text { CKout }}$	Clock output	N-ch open-drain output pin used to check the oscillation frequency
$\begin{aligned} & 7 \text { (8) } \\ & 8 \text { (9) } \end{aligned}$	$\begin{aligned} & \text { OSCout } \\ & \text { OSCIN } \end{aligned}$	LC oscillator input/ output OSCin: External clock input	Input and output pins for the oscillator for generating a dot clock. Connect the oscillation coil and capacitors to these pins. (When an external clock input is selected by specifying a mask option, input an external clock (synchronized with Hsync) to the OSCin pin. Leave the OSCout pin open.)
9 (10)	TEST	Test pin	Pin used for testing the IC. Usually, connect this pin to ground. The IC cannot enter test mode while this pin is connected to ground.
10 (11)	GND	Ground pin	Connect this pin to the system ground.
11 (14)	BLK1	Blanking signal output 1	Pin used to output the blanking signal for the video signal output from the $\mathrm{V}_{\mathrm{C} 1}$ pin. The blanking signal is high active. (When RGB compatible blanking has been selected by specifying a mask option, this pin outputs the logical OR of Rвцк, Gвцк, and Bвцк.)
12 (15)	V ${ }_{\text {1 }}$	Character signal output 1	Pin used to output a high-active character signal. (When RGB compatible blanking has been selected by specifying a mask option, this pin outputs the logical $O R$ of V_{R}, V_{G}, and $V_{B .}$.)
13 (16)	$\begin{aligned} & \text { BLK2 } \\ & \text { (Rвцк) } \end{aligned}$	Blanking signal output 2 (blanking R)	Pin used to output the blanking signal for the video signal output from the $\mathrm{V}_{\mathrm{c} 2}$ pin. The blanking signal is high active. (This pin outputs the blanking signal for the video signal output from the V_{R} pin. The blanking signal is high active.)
14 (17)	$\begin{gathered} \mathrm{V}_{\mathrm{c} 2} \\ (\mathrm{G} в \text { (k) } \end{gathered}$	Character signal output 2 (blanking G)	Pin used to output a high-active character signal. (This pin outputs the blanking signal for the video signal output from the V_{G} pin. The blanking signal is high active.)
15 (18)	$\begin{aligned} & \text { Vвlк } \\ & \text { (Bblk) } \end{aligned}$	Blanking signal output (blanking B)	Pin used to output the blanking signal for the video signals output from the V_{R}, V_{G}, and V_{B} pins. The blanking signal is high active. (This pin outputs the blanking signal for the video signal output from the V_{B} pin. The blanking signal is high active.)
$\begin{aligned} & \hline 16(19) \\ & 17(20) \\ & 18(21) \\ & \hline \end{aligned}$	$\begin{aligned} & V_{R} \\ & V_{G} \\ & V_{B} \end{aligned}$	Character signal output	Pins used to output high-active character signals.
19 (23)	$\overline{\text { Vsync }}$	Vertical synchronizing signal input	Input a low-active vertical synchronizing signal to this pin.
20 (24)	Hsync	Horizontal synchronizing signal input	Input a low-active horizontal synchronizing signal to this pin.
(3, 12, 13, 22)	N.C.	No connection	Vacant pin

Notes 1. Pin numbers indicated in () are that of the μ PD6461GT-xxx.
2. Signals in () are set by a mask option (RGB + RGB compatible blanking).

CONTENTS

1. MASK CODE OPTIONS 8
1.1 MASK CODE OPTIONS 8
1.2 HOW TO SELECT MASK OPTIONS 9
1.3 APPLICATION BLOCK DIAGRAMS 10
1.4 DISPLAY IN RGB+VC1+Vc2 MODE 11
1.4.1 Character Signal Output When Option A is Selected 14
1.4.2 Character Signal Output When Option B is Selected 15
1.4.3 Character Signal Output When Option C is Selected 16
1.4.4 Display of Vc2-Specified Characters 17
1.5 OUTPUTTING BACKGROUND 18
2. COMMANDS 19
2.1 COMMAND FORMAT 19
2.2 COMMANDS AND THEIR BITS 19
2.3 POWER-ON CLEAR FUNCTION 21
3. COMMAND DETAILS 22
3.1 VIDEO RAM BATCH CLEAR COMMAND 22
3.2 CHARACTER DISPLAY CONTROL COMMAND 23
3.3 BACKGROUND/RIM COLOR CONTROL COMMAND 24
3.4 3-CHANNEL INDEPENDENT DISPLAY ON/OFF COMMAND 25
3.5 CHARACTER REVERSE ON/OFF COMMAND 26
3.6 CHARACTER DISPLAY POSITION CONTROL COMMAND 28
3.7 WRITE ADDRESS CONTROL COMMAND 30
3.8 OUTPUT PIN CONTROL COMMAND 31
3.9 CHARACTER SIZE CONTROL COMMAND 32
3.10 3-CHANNEL INDEPENDENT BACKGROUND CONTROL COMMAND 33
3.11 TEST MODE COMMAND 35
3.12 DISPLAYED CHARACTER CONTROL COMMAND 35
4. COMMAND TRANSFER 38
4.1 1-BYTE COMMANDS 38
4.2 2-BYTE COMMANDS 38
4.3 2-BYTE CONTINUOUS COMMAND 38
4.4 CONTINUOUS INPUT OF COMMAND 39
4.4.1 When End Code is Not Used 39
4.4.2 When End Code is Used 39
5. CHARACTER PATTERNS 40
6. ELECTRICAL CHARACTERISTICS 50
7. APPLICATION CIRCUIT EXAMPLE 54
8. PACKAGE DRAWINGS 55
9. RECOMMENDED SOLDERING CONDITIONS 57

1. MASK CODE OPTIONS

1.1 MASK CODE OPTIONS

The μ PD6461, μ PD6462 provide mask options for selecting the following items:

(1) Data transfer

Select the command transfer format.
(2) Vertical display start position

Select the units used for specifying the vertical display start position of the character display area. In three-line units, the vertical display start position can be set more finely than in nine-line units.
(3) Pin selection

Select the pins used to output character signals. In $R G B+V_{c 1}+V_{c 2}$ mode, character signals are output from the V_{R}, $V_{G}, V_{b}, V_{b l K,} V_{c 1}, B L K 1, V_{c 2}$, and BLK2 pins. In RGB+3BLK mode, character signals are output from the V_{R}, V_{G}, V_{b}, Rblк, Gblк, Bblк, Vc1, and BLK1 pins.

When displaying colored characters in a color viewfinder, select $R G B+V_{c 1}+V_{c 2}$ mode. When assigning a separate character signal for each color, select RGB+3BLK mode.
(4) Output distribution format

Select the format to be used to distribute character signals to the $\mathrm{V}_{\mathrm{c} 1}$ and $\mathrm{V}_{\mathrm{c} 2}$ channels when $\mathrm{RGB}+\mathrm{V}_{\mathrm{c} 1}+\mathrm{V}_{\mathrm{c} 2}$ mode is selected. (When RGB+3BLK mode is selected, select option A as the output distribution format. Options B and C are invalid.)

When an on-screen IC is used in a camcorder, some information is displayed in the viewfinder and recorded onto video tape (such as a date and title). Other information, however, need only be displayed in the viewfinder (battery or focus alarm and tape count). The μ PD6461, 6462 can distribute such information to different output channels in units of rows or half rows. You can select option A, option B, and option C as the output distribution format (only when $\mathrm{RGB}+\mathrm{V}_{\mathrm{c} 1+}+\mathrm{V}_{\mathrm{c} 2}$ mode is selected).
(5) Dot clock

Select the dot clock to be used to display characters. When an external clock input is selected, refer to EXTERNAL CLOCK INPUT in 6. ELECTRICAL CHARACTERISTICS.

1.2 HOW TO SELECT MASK OPTIONS

To select mask options, use the option setting command (OC) of the Character Pattern Editor, a tool designed for editing character pattern data.

Activate the Character Pattern Editor, then display the following setting menu:

OC (COMMAND INPUT)		
OPTION DATA (0---LSB FAST	1---MSB FAST)	(1)
OPTION DATA (0---V:9H	, 1---V:3H)	
OPTION DATA (0---RGB+3BLK, 1---RGB+Vc1+Vc2) : (3)		
OPTION DATA (0---OUTPUT 20, 1---OUTPUT 21) : (4)		
OPTION DATA (0---OUTPUT 10, 1---OUTPUT 11)		
OPTION DATA (0---EXT CLK	, 1---LC	... (6)
OPTION DATA (0---LC	, 1---EXT CLK) (7)

Actually, the above menu is displayed one line at a time. Once you have selected an option, the next line is displayed.
Select 0 or 1 for lines (1), (2), (3), (6), and (7), according to the setting to be made. For the dot clock, however, make the same settings (different values) for lines (6) and (7). For example, when selecting LC oscillation, select "LC" for both lines (1 for (6) and 0 for (7)). Don't select external clock input for lines (6) and/or (7).

When selecting the output distribution format, select the values on lines (4) and (5) as follows:

	(4)	(5)
Option A	1(OUTPUT 21)	0(OUTPUT 10)
Option B	0(OUTPUT 20)	0(OUTPUT 10)
Option C	1(OUTPUT 21)	1(OUTPUT 11)

The settings are valid only when $R G B+V_{c 1}+V_{c 2}$ mode has been selected. Select option $A(1,0)$ when $R G B+3 B L K$ mode has been selected.

The following table lists the correspondence between the command bits and the lines of the setting menu. Specify 0 or 1 for each bit.

D7	D6	D5	D4	D3	D2	D1	D0
0	(1)	(2)	(3)	(4)	(5)	(6)	(7)

Command OD displays the result of the selection, as a hexadecimal number.
Example: When the mask options are selected as follows:

Mask option	Bit	Command
MSB first	D6	1
Specification in three-line units	D5	1
RGB+3BLK	D4	0
Option A (only option A can be specified in RGB+3BLK mode)	D3	1
	D2	0
LC oscillation	D1	1
	D0	0

The command bits are set as follows:

D7	D6	D5	D4	D3	D2	D1	D0
0	1	1	0	1	0	1	0

\rightarrow Command OD displays 6AH.

1.3 APPLICATION BLOCK DIAGRAMS

Example of application to a camcorder (1) (in $\mathrm{RGB}+\mathrm{V}_{\mathrm{C} 1+}+\mathrm{V}_{\mathrm{c} 2}$ mode)
(The $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{G}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{blk}}, \mathrm{V}_{\mathrm{C} 1}, \mathrm{BLK} 1, \mathrm{~V}_{\mathrm{c} 2}$, and BLK2 pins are used.)

Example of application to a camcorder (2) (in RGB+3BLK mode for RGB compatible blanking)
(The $\mathrm{V}_{\mathrm{r}, \mathrm{V}} \mathrm{V}, \mathrm{V}_{\mathrm{b}}$, Rblk, Gblk, and Bblk pins are used.) $^{\text {a }}$

1.4 DISPLAY IN RGB+Vc1+Vc2 MODE

The μ PD6461, 6462 provide three options, A, B, and C , for the output distribution format. This section describes how character signals are output when each option is selected. Output is controlled with the output pin control command (refer to 3.8 OUTPUT PIN CONTROL COMMAND for details).

Output pin control command for MSB-first transfer (Command bits are input starting from the most significant bit (MSB), D15.)
(This command is a 2-byte command. 16 bits must be input for each command, even for continuous input.)
(MSB)

D15	D 14	D 13	D 12	D 11	D 10	D 9	D 8	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
1	0	0	1	1	1	0	0	$\mathrm{~V}_{\mathrm{c} 2}$	$\mathrm{~V}_{\mathrm{C} 1}$	0	0	AR3	AR2	AR1	AR0

Option A	Output pin control bits			
	V ${ }^{2}$	V 0_{1}	Output from each pin	
	0	0	$\mathrm{V}_{\text {c1 }}$: Outputs a specified row.	row. Vcz: Fixed to low level.
	0	1	$\mathrm{V}_{\mathrm{c} 1}$: Fixed to low level. V_{c}	$\mathrm{cc} 2: ~_{\text {: Outputs a specified row. }}^{\text {der }}$

Option B	Output pin control bits		
	$\mathrm{V}_{\mathrm{C} 2}$	$\mathrm{~V}_{\mathrm{C} 1}$	Output from each pin
	0	$\mathrm{~V}_{\mathrm{c} 1}:$ Outputs all rows. $\mathrm{V}_{\mathrm{C} 2}:$ Fixed to low level.	
0	1	$\mathrm{~V}_{\mathrm{c} 1}:$ Outputs all rows. $\mathrm{V}_{\mathrm{c} 2}$: Outputs a specified row.	

Option C	Output pin control bits		
	V 21	V 0_{1}	Output from each pin
	0	0	$\mathrm{V}_{\text {c1 }}$: Outputs columns 0 to 23. V $\mathrm{c}_{\text {c2: }}$ Fixed to low level.
	0	1	Vc1: Outputs columns 0 to 11. Vc2: Outputs columns 12 to 23.
	1	0	Vc1: Outputs columns 12 to 23. V $\mathrm{V}_{\text {c2: }}$ Outputs columns 0 to 11.
	1	1	$\mathrm{V}_{\mathrm{c} 1}$: Fixed to low level. $\mathrm{V}_{\text {cz: }}$: Outputs columns 0 to 23.

- Row specification

You can specify whether the $\mathrm{V}_{\mathrm{c} 1}$ or $\mathrm{V}_{\mathrm{c} 2}$ pin is used to output the character signals for each row (or each 12 columns).

- Output pin control

The signals output from the $\mathrm{V}_{\mathrm{c} 1}$ and $\mathrm{V}_{\mathrm{c} 2}$ pins depend on whether option A, B, or C is selected (the corresponding blanking signals are output in the same way).

Option A output

Output pin control bits			
$V_{c 2}$	$V_{c 1}$	Output from each pin	
0	0	$V_{c 1}:$ Outputs the specified row. $V_{c 2}$: Fixed to low level.	(1)
0	1	$V_{c 1}:$ Fixed to low level. $V_{c 2}$: Outputs specified row.	(2)

	Output channel	Character signal	Background signal (if specified)
For case (1) above	$\mathrm{V}_{\text {c1 }}$ channel	Outputs the logical OR of the character signals at the V_{R}, V_{G}, and V_{B} pins (for the specified rows), excluding those characters for which the V c2 channel has been specified.	Outputs a background signal for areas other than those for which the $\mathrm{V}_{\mathrm{c} 2}$ channel has been specified.
	V 62 channel	Fixed to low level (for the specified rows)	Outputs a background signal for those the areas for which the Vc2 channel has been specified.
For case (2) above	V ${ }_{\text {c1 }}$ channel	Fixed to low level (for the specified rows)	Outputs a background signal for areas other than those for which the $\mathrm{V}_{\mathrm{c} 2}$ channel has been specified.
	V C 2 channel	Outputs those characters for which the $\mathrm{V}_{\mathrm{c} 2}$ channel has been specified (for the specified rows).	Outputs a background signal for those the areas for which the $\mathrm{V}_{\mathrm{C} 2}$ channel has been specified.

Option B output

Output pin control bits			
$\mathrm{V}_{\mathrm{c} 2}$	$\mathrm{~V}_{\mathrm{c} 1}$	Output from each pin	
0	0	$\mathrm{~V}_{\mathrm{c} 1}$: Outputs all rows. $\mathrm{V}_{\mathrm{c} 2}$: Fixed to low level.	(1)
0	1	$\mathrm{~V}_{\mathrm{c} 1}$: Outputs all rows. $\mathrm{V}_{\mathrm{c} 2}$: Outputs a specified row.	(2)

Σ	Output channel	Character signal	Background signal (if specified)
For case (1) above	$\mathrm{V}_{\text {c1 }}$ channel	Outputs the logical OR of the character signals at the $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{G}}$, and V_{B} pins (for all rows), excluding those characters for which the $\mathrm{V}_{\mathrm{c} 2}$ channel has been specified.	Outputs a background signal for areas other than those for which the $\mathrm{V}_{\mathrm{c} 2}$ channel has been specified.
	V C 2 channel	Fixed to low level (for the specified rows)	Outputs a background signal for those areas for which the $\mathrm{V}_{\mathrm{c} 2}$ channel has been specified.
For case (2) above	$\mathrm{V}_{\mathrm{C} 1}$ channel	Outputs the logical OR of the character signals at the $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{G}}$, and V_{B} pins (for all rows), excluding those characters for which the $\mathrm{V}_{\mathrm{c} 2}$ channel has been specified.	Outputs a background signal for areas other than those for which the $\mathrm{V}_{\mathrm{c} 2}$ channel has been specified.
	V C 2 channel	Outputs the characters for which the Vc2 channel is specified (for the specified rows).	Outputs a background signal for those areas for which the Vc2 channel has been specified.

Option C output

Output pin control bits			
$V_{c 2}$	$V_{c 1}$	Output from each pin	(1)
0	0	$V_{c 1}:$ Outputs columns 0 to $23 . V_{c 2}$: Fixed to low level.	(2)
0	1	$V_{c 1}:$ Outputs columns 0 to $11 . V_{c 2}:$ Outputs columns 12 to 23.	(3)
1	0	$V_{c 1}:$ Outputs columns 12 to $23 . V_{c 2}:$ Outputs columns 0 to 11.	(4)
1	1	$V_{c 1}:$ Fixed to low level. $V_{c 2}:$ Outputs columns 0 to 23.	

	Output channel	Character signal	Background signal (if specified)
For case (1) above	$V_{C 1}$ channel	Outputs the logical OR of the character signals at the $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{G}}$, and V_{B} pins (for columns 0 to 23 in the specified rows), excluding those characters for which the $\mathrm{V}_{\mathrm{c} 2}$ channel has specified.	Outputs a background signal for areas other than those for which the $\mathrm{V}_{\mathrm{c} 2}$ channel has been specified.
	$\mathrm{V}_{\mathrm{C} 2}$ channel	Fixed to low level (for the specified rows)	Outputs a background signal for those areas for which the Vo2 channel has been specified.
For case (2) above	$V_{C 1}$ channel	Outputs the logical OR of the character signals at the $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{G}}$, and V_{B} pins (for columns 0 to 11 of the specified rows), excluding those characters for which the $\mathrm{V}_{\mathrm{c} 2}$ channel has been specified.	Outputs a background signal for areas other than those for which the $\mathrm{V}_{\mathrm{c} 2}$ channel has been specified.
	$\mathrm{V}_{\mathrm{C} 2}$ channel	Outputs the characters for which the Vo2 channel has been specified (for columns 12 to 23 of the specified rows).	Outputs a background signal for those areas for which the $\mathrm{V}_{\mathrm{c} 2}$ channel has been specified.
For case (3) above	$\mathrm{V}_{C 1}$ channel	Outputs the logical OR of the character signals at the $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{G}}$, and V_{B} pins (for columns 12 to 23 of the specified rows), excluding those characters for which the $\mathrm{V}_{\mathrm{c} 2}$ channel has been specified.	Outputs a background signal for areas other than those for which the $\mathrm{V}_{\mathrm{c} 2}$ channel has been specified.
	$V_{C 2}$ channel	Outputs the characters for which the $\mathrm{V}_{\mathrm{c} 2}$ channel has been specified (for columns 0 to 11 of the specified rows).	Outputs a background signal for those areas for which the $\mathrm{V}_{\mathrm{c} 2}$ channel has been specified.
For case (4) above	$V_{C 1}$ channel	Fixed to low level (for the specified rows)	Outputs a background signal for areas other than those for which the V C 2 channel has been specified.
	$V_{C 2}$ channel	Outputs the characters for which the Vo2 channel has been specified (for columns 0 to 23 in the specified rows).	Outputs a background signal for those areas for which the $\mathrm{V}_{\mathrm{c} 2}$ channel has been specified.

The RGB and $V_{c 1}$ channels do not output character signals for characters for which the $\mathrm{V}_{\mathrm{c} 2}$ channel has been specified. Background signals are output separately as listed above.

In addition, the μ PD6461, 6462, when set to $\mathrm{RGB}+\mathrm{V}_{\mathrm{c} 1+\mathrm{V} \text { c2 }}$ mode, provide the following output control:

- Independent on/off control of character display for each channel (3-channel independent display on/off command)
- Independent control of the background for each channel (3-channel independent background control command)

1.4.1 Character Signal Output When Option A is Selected

Option A

The $\mathrm{V}_{\mathrm{c} 1}$ bit of the output pin control command can be used to specify whether the characters of each row are output to the $\mathrm{V}_{\mathrm{c} 1}$ channel. Each character can be specified to be output to the $\mathrm{V}_{\mathrm{c} 2}$ channel, and the $\mathrm{V}_{\mathrm{c} 1}$ channel outputs only characters for which the $V_{c 2}$ channel in the rows for which the $V_{c 1}$ bit is set to 1 . Characters for which the $V_{c 2}$ channel is specified are not output to the RGB or $\mathrm{V}_{\mathrm{C} 1}$ channel.

Display example (when the $\mathrm{V}_{\mathrm{c} 2}$ channel is used for information to be recorded)

Display in viewfinder
(RGB output and Vc2 output)

Output example with mask code option A specified

Characters output via RGB channel
(colored characters)

REC	
	TAPE
	BATT
	$1 / 1000$

- The RGB channel does not output the characters for which the Vor channel has been specified.

Characters output via	V
(specified rows)	

REC	
	TAPE
	$1 / 1000$

- The $\mathrm{V}_{\mathrm{c} 1}$ channel outputs the characters in the rows for which the $V_{c 1}$ bit is set to 0 , excluding the characters for which the V_{c} channel is specified.
- Rows for which the $\mathrm{V}_{\mathrm{c} 1}$ bit is set to 1 are not output (the $\mathrm{V}_{\mathrm{c} 1}$ pin is fixed to low level).

Characters output via $\mathrm{V}_{\mathrm{c} 2}$ channel (specified characters of specified rows)

YOKOHAMA
BAY BRIDGE
AM 11:30
1991. 2.22

- Rows for which the $\mathrm{V}_{\mathrm{c} 1}$ bit is set to 0 are not output (the Vc2 pin is fixed to low level).
- The V C 2 channel outputs only those characters for which the $\mathrm{V}_{\mathrm{C} 2}$ channel has been specified in the rows for which the $\mathrm{V}_{\mathrm{C} 1}$ bit is set to 1 .

1.4.2 Character Signal Output When Option B is Selected

Option B

The $\mathrm{V}_{\mathrm{c} 1}$ channel outputs characters of all rows regardless of setting of the $\mathrm{V}_{\mathrm{c} 1}$ and $\mathrm{V}_{\mathrm{c} 2}$ bits. Each character can be specified to be output to the $V_{c 2}$ channel, and the $V_{c 2}$ channel outputs only characters for which the $V_{c 2}$ channel in the rows for which the $\mathrm{V}_{\mathrm{c} 1}$ bit is set to 1 . Characters for which the $\mathrm{V}_{\mathrm{c} 2}$ channel is specified are not output to the RGB or $\mathrm{V}_{\mathrm{c} 1}$ channel.

Display example (when the $\mathrm{V}_{\mathrm{c} 2}$ channel is used for information to be recorded)

Output example with mask code option B specified

Characters output via RGB channel (colored characters)

- The RGB channel does not output the characters for which the $\mathrm{V}_{\mathrm{C} 2}$ channel has been specified.

Characters output via Vc1 channel
(all rows)
REC
BAPE

- The $\mathrm{V}_{\mathrm{c} 1}$ channel outputs the characters of all rows regardless of the setting of the $\mathrm{V}_{\mathrm{C} 1}$ bit, excluding the characters for which the $\mathrm{V}_{\mathrm{c} 2}$ channel is specified.

Characters output via Vc2 channel (specified characters of specified rows)

- The V V 2 channel outputs only those characters for which the $\mathrm{V}_{\mathrm{c} 2}$ channel has been specified in those rows for which the $\mathrm{V}_{\mathrm{c} 1}$ bit has been set to 1 .
- The V C 2 channel outputs no characters in those rows for which the $\mathrm{V}_{\mathrm{C} 1}$ bit has been set to 0 .

1.4.3 Character Signal Output When Option C is Selected

Option C

The $\mathrm{V}_{\mathrm{C} 1}$ and $\mathrm{V}_{\mathrm{c} 2}$ bits of the output pin control command can be used to specify whether the characters in columns 0 to 11 of each row and those in columns 12 to 23 are output to the $\mathrm{V}_{\mathrm{c} 1}$ channel or to the $\mathrm{V}_{\mathrm{c} 2}$ channel.

Display example

Display in viewfinder

Output example with mask code option C specified

Characters output via RGB channel
(colored characters)

	TAPE
	BATT
	$1 / 1000$
REC	

- The RGB channel does not output the characters for which the Vc2 channel has been specified.
Characters output via V(1) channel
(specified rows)

	TAPE
	BATT
	$1 / 1000$
REC	

- In the case of setting V_{c} bit to 0 , the $\mathrm{V}_{\mathrm{C} 1}$ channel outputs the characters of columns 0 to 23 in specified rows for which the $\mathrm{V}_{\mathrm{c} 1}$ bit is set to 0 , or the characters of columns 0 to 11 in specified rows for which the $\mathrm{V}_{\mathrm{C} 1}$ bit is set to 1 , excluding the characters for which the Vc2 channel specified.
- In the case of setting Vc2 bit to 1 , the $\mathrm{V}_{\mathrm{c} 1}$ channel outputs the characters of columns 12 to 23 in specified rows for which the $\mathrm{V}_{\mathrm{C} 1}$ bit is set to 0 , and the rows for which the $\mathrm{V}_{\mathrm{C} 1}$ bit is set to 1 are not output (the $\mathrm{V}_{\mathrm{c} 1}$ pin is fixed to low level), excluding the characters for which the V C 2 channel specified.

Characters output via Vc2 channel (specified characters)

YOKOHAMA
BAY BRIDGE
AM 11:30
1991. 2.22

- In the case of setting $\mathrm{V}_{\mathrm{c} 1}$ bit to 0 , the Vc2 channel outputs the characters of columns 0 to 11 in specified rows for which the Vc2 bit is set to 1, and the rows for which the $\mathrm{V}_{\mathrm{c} 2}$ bit is set to 0 are not output (the V_{cz} pin is fixed to low level).
- In the case of setting $\mathrm{V}_{\mathrm{c} 1}$ bit to 1 , the Vo2 channel outputs the characters of columns 12 to 23 in specified rows for which the $\mathrm{V}_{\mathrm{c} 2}$ bit is set to 0 , or the characters of columns 0 to 23 in specified rows for which the V_{c} bit is set to 1 .

1.4.4 Display of Vc2-Specified Characters

When the displayed character control command specifies the $\mathrm{V}_{\mathrm{c} 2}$ channel for a character, that character is not output to the RGB or $\mathrm{V}_{\mathrm{C} 1}$ channel (display for the RGB and $\mathrm{V}_{\mathrm{C} 1}$ channels is usually the same as when display-off data is written ${ }^{\text {Note }}$). If background display (overall/minimum) is specified for the RGB or $\mathrm{V}_{\mathrm{C} 1}$ channel, no background is displayed for those characters for which the V_{c} channel has been specified.

Note In some cases, the display will differ slightly from the display-off data.

Vc2-speci- fied charac-- (1) ter area	Solid data		
Solid (3) data (3)	Display- off (4) data	Solid data	
Display- off (5) data	Solid data		

Solid data: Character for which all 12×18 dots are filled

- When display-off data is displayed for the $R G B, V_{c 1}$, or $V_{c 2}$ channel

If a character adjacent to the display-off data is rimmed or has a background, the rim or background encroaches into the area for the displayoff data by one dot (minimum size). (The rim encroaches only at the filled dots at the left or right edge of the rimmed character.)

- Display of Vc2-specified character area for the RGB or Vc1 channel

If a character adjacent to a Vc2-specified character is rimmed, the rim encroaches into the area for the $\mathrm{V}_{\mathrm{c} 2}$-specified character by one dot (minimum size). If the adjacent character has a background, however, the background does not encroach into the Vc2-specified character area.

- Display of $\mathrm{V}_{\mathrm{c} 2}$-specified character area for the V_{c} channel

If a rimmed $\mathrm{V}_{\mathrm{c} 2}$-specified character is adjacent to another $\mathrm{V}_{\mathrm{c} 2}$-specified character, the rim encroaches into the area for the latter Vc2-specified character. The background does not encroach into the adjacent area (The rim encroaches only at the filled dots on the left or right edge of the rimmed character).

- When a Vc2-specified character area exists at the right or left edge of the entire display area
(The figure shows an area at the left edge. The case of an area at the right edge is similar).

Encroachment of rim or background
(with a width of one dot for the minimum character size)

Encroachment of rim	Encroachment of background
$(1)-(5)$	$(2)-(5)$

Background does not encroach into the Vc2-specified character area.

1.5 OUTPUTTING BACKGROUND

The figures below show the screen display when minimum background or overall background is specified for each output channel in $\mathrm{RGB}+\mathrm{V}_{\mathrm{c} 1}+\mathrm{V}_{\mathrm{c} 2}$ mode.
(1) Minimum background

(2) Overall background

Remarks 1. The above figures are only examples. Actually, the background can be controlled independently for each output channel (only in RGB+Vc1+Vc2 mode), for example, by applying background (overall/minimum) for the RGB channel but not for the other channels.
2. No background is applied to the $\mathrm{V}_{\mathrm{c} 2}$-specified areas for the RGB or $\mathrm{V}_{\mathrm{c} 1}$ channel. If a character adjacent to a $\mathrm{V}_{\mathrm{c} 2}$-specified character is rimmed, the rim encroaches into the area for the $\mathrm{V}_{\mathrm{c} 2}$-specified character by one dot (minimum size) only at the filled dots at the left or right edge of the area of the rimmed character, in the same way as for display-off data. The background, however, does not encroach into the adjacent area.

2. COMMANDS

2.1 COMMAND FORMAT

Control commands are serially input in 8-bit units with a variable word length. There are three types of commands: 1byte commands consisting of eight bits including an instruction and data, 2-byte commands consisting of sixteen bits including an instruction and data, and a 2-byte continuous command which can be input in an abbreviated format. Commands are input with the MSB first or LSB first according to the specified mask option.

2.2 COMMANDS AND THEIR BITS

(1) For MSB first

1-byte commands
(MSB)

Function	D7	D6	D5	D4	D3	D2	D1	D0
Video RAM batch clear	0	0	0	0	0	0	0	0
Character display control	0	0	0	1	D0	LC	BL1	BL0
Background/rim color control	0	0	1	0	R	G	B	BFC
3-channel independent display on/off	0	1	1	1	0	DOA	DOB	DOC
Character reverse on/off	0	0	1	1	1	0	0	BCRE

2-byte commands

Function	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Character display position control	1	0	0	0	0	0	V4	V3	V2	V1	V0	H4	H3	H2	H1	H0
Write address control	1	0	0	0	1	0	0	AR3	AR2	AR1	AR0	AC4	AC3	AC2	AC1	AC0
Output pin control	1	0	0	1	1	1	0	0	V 2	Vc1	0	0	AR3	AR2	AR1	AR0
Character size control	1	0	0	1	1	0	0	0	0	S	0	0	AR3	AR2	AR1	AR0
3-channel independent background control	1	0	1	1	0	0	1	BA1	BA0	BFA	BB1	BB0	BFB	BC1	BC0	BFC
Test modeNote	1	0	1	1	0	0	0	T8	T7	T6	T5	T4	T3	T2	T1	T0

Note Not to be used

2-byte continuous command

(MSB)																
Function D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3	D2	D1	D0													
Displayed character control	1	1	RV	R	G	B	BL	VC2	C7	C6	C5	C4	C3	C2	C1	C0

Note C7 bit is "don't care" at the μ PD6462. However, this data sheet explains the μ PD6462 with " 0 " in the C7 bit.

(2) For LSB first

1-byte commands

(LSB)

Function	D0	D1	D2	D3	D4	D5	D6	D7
Video RAM batch clear	0	0	0	0	0	0	0	0
Character display control	BL0	BL1	LC	DO	1	0	0	0
Background/rim color control	BFC	B	G	R	0	1	0	0
3-channel independent display on/off	DOC	DOB	DOA	0	1	1	1	0
Character reverse on/off	BCRE	0	0	1	1	1	0	0

2-byte commands

Function	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
Character display position control	V3	V4	0	0	0	0	0	1	H0	H1	H2	H3	H4	V0	V1	V2
Write address control	AR3	0	0	1	0	0	0	1	AC0	AC1	AC2	AC3	AR4	AR0	AR1	AR2
Output pin control	0	0	1	1	1	0	0	1	AR0	AR1	AR2	AR3	0	0	VC1	VC2
Character size control	0	0	0	1	1	0	0	1	AR0	AR1	AR2	AR3	0	0	S	0
3-channel independent background control	BA1	1	0	0	1	1	0	1	BFC	BC0	BC1	BFB	BB0	BB1	BFA	BA0
Test mode ${ }^{\text {Note }}$	T8	0	0	0	1	1	0	1	T0	T1	T2	T3	T4	T5	T6	T7

Note Not to be used

2-byte continuous command
(LSB)

Function	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
Displayed character control	V 2	BL	B	G	R	RV	1	1	C0	C1	C2	C3	C4	C5	C6	C7

Note C7 bit is "don't care" at the μ PD6462. However, this data sheet explains the μ PD6462 with " 0 " in the C7 bit.

2.3 POWER-ON CLEAR FUNCTION

The internal state of the IC is unstable immediately after the power is turned on. It is therefore necessary to keep the $\overline{\mathrm{PCL}}$ pin low for the time shown below to allow the system to initialize. This power-on clear places the system in the following state:

- Test mode is not specified.
- All character data in video RAM (12 rows $\times 24$ columns) is cleared (to display-off data (FEH: μ PD6461/7EH: μ PD6462)) and blinking is turned off.
- The video RAM write address is (row 0 , column 0).
- The character size is single (minimum) for all rows.
- The output distribution format is set to the default (the $\mathrm{V}_{\mathrm{c} 1}$ and V_{c} bits are set to 0).
- Display is turned off and LC oscillation is turned on.

The time required for power-on clear is calculated as follows. No commands must be input during this time.

```
Time required for power-on clear = tpclLNote +{Time required for clearing video RAM}
    = 10( }\mu\textrm{s})+{10(\mu\textrm{s})+12/\mathrm{ fosc (MHz) }\times288
    fosc(MHz) : LC oscillation frequency or external clock frequency
```

Note Refer to POWER-ON CLEAR SPECIFICATIONS in 6. ELECTRICAL CHARACTERISTICS.

A dot clock input (to the OSCin pin) is necessary to clear video RAM. Input a dot clock when an external clock input is selected.

3. COMMAND DETAILS

3.1 VIDEO RAM BATCH CLEAR COMMAND

This command clears the entire video RAM by means of a single operation (the bit configuration is the same as for MSBfirst and LSB-first transfer).
(MSB)

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0

The video RAM batch clear command places the system in the following state:

- All character data in video RAM (12 rows $\times 24$ columns) is cleared (to display-off data (FEH: μ PD6461/7EH: μ PD6462)) and blinking is turned off.
- The video RAM write address is (row 0, column 0).
- The character size is single (minimum) for all rows.
- The output distribution format is set to the default (the $\mathrm{V}_{\mathrm{c} 1}$ and $\mathrm{V}_{\mathrm{c} 2}$ bits are set to 0).
- Display is turned off and LC oscillation is turned on.

The time required for clearing video RAM is calculated as follows. No command must be input while the video RAM is being cleared.

Time required to clear video RAM $=10(\mu \mathrm{~s})+12 /$ fosc $(\mathrm{MHz}) \times 288$
fosc(MHz) : LC oscillation frequency or external clock frequency

A dot clock input (to the OSCin pin) is necessary to clear the video RAM. Input a dot clock when external clock input is selected.

Remark Power-on clear using the $\overline{\text { PCL }}$ pin is hardware reset, initializing the IC, including clearing the video RAM and releasing test mode. The video RAM batch clear command, in contrast, performs software reset by initializing the IC without first releasing test mode.

3.2 CHARACTER DISPLAY CONTROL COMMAND

This command turns on/off character display, LC oscillation, and the blinking of characters.
(1) For MSB-first transfer (Command bits are input starting from the MSB (D7).)
(MSB)

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	DO	LC	BL1	BL0

Blinking control bits		
BL1	BL0	Function
0	0	Turns off blinking.
0	1	Turns on 2 Hz blinking.
1	0	Turns on 1 Hz blinking.
1	1	Turns on 0.5 Hz blinking.

	LC oscillation control bit	
LC	Function	
0	Turns off LC oscillator.	
1	Turns on LC oscillator.	

Character display on/off control bit	
DO	Function
0	Turns off character display.
1	Turns on character display.

(2) For LSB-first transfer (Command bits are input starting from the LSB (D0). The function of each bit is the same as that for MSB-first transfer.)
(LSB)

D0	D1	D2	D3	D4	D5	D6	D7
BL0	BL1	LC	DO	1	0	0	0

- Blinking control bits

These bits are used to turn on or off the blinking of characters for which blinking has been enabled with the displayed character control command. The blinking ratio is $1: 1$, one of three blinking frequencies being selectable for the entire screen.

- LC oscillation control bit

This bit is used to turn the oscillator on or off. You can stop the oscillator when no character is being displayed, thus reducing the power consumption.

While the oscillator is stopped, it is not possible to write to video RAM. Turn on the oscillator before attempting to write to video RAM.

Cautions 1. When using LC oscillation (LC oscillation control bit =1): When character display is turned on, the oscillation is synchronized with Hsync, stopping when Hsync goes low. When character display is turned off, oscillation continues regardless of the state of $\overline{\text { Hsync}}$.
2. When using an external clock (LC oscillation control bit $=1$): While the oscillator is turned on, clock pulses are supplied to the IC internal circuit. While the oscillator is turned off, no clock pulses are supplied.

- Character display on/off control bit

This bit is used to turn character display on or off. Character display is turned on or off upon the detection of a falling edge of $\overline{H s y n c}$.

3.3 BACKGROUND/RIM COLOR CONTROL COMMAND

This command specifies the color of the background or rim when overall background, minimum background, or rimming is specified.
(1) For MSB-first transfer (Command bits are input starting from the MSB (D7).)
(MSB)

D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	R	G	B	BFC

Rim color specification bit	
BFC	Color
0	Black
1	White

Background color specification bits			
R	G	B	Color
0	0	0	Black
0	0	1	Blue
0	1	0	Green
0	1	1	Cyan
1	0	0	Red
1	0	1	Magenta
1	1	0	Yellow
1	1	1	White

(2) For LSB-first transfer (Command bits are input starting from the LSB (D0). The function of each bit is the same as that for MSB-first transfer.)
(LSB)

D0	D1	D2	D3	D4	D5	D6	D7
BFC	B	G	R	0	1	0	0

- Rim color specification bit

This bit is used to specify the color (white or black) of the rim added to all characters displayed on the screen (only for the RGB channel). When rimming is specified for the $\mathrm{V}_{\mathrm{C} 1}$ or $\mathrm{V}_{\mathrm{C} 2}$ channel, the rim color is always black.

- Background color specification bits

These bits are used to specify one of eight colors to be used for the background of the entire screen (only for the RGB channel). When background (overall/minimum) is specified for the $\mathrm{V}_{\mathrm{C} 1}$ or $\mathrm{V}_{\mathrm{C} 2}$ channel, the background color is always black.

3.4 3-CHANNEL INDEPENDENT DISPLAY ON/OFF COMMAND

This command turns character display on or off independently for each of the three channels.
(1) For MSB-first transfer (Command bits are input starting from the MSB (D7).)

(2) For LSB-first transfer (Command bits are input starting from the LSB (D0). The function of each bit is the same as that for MSB-first transfer.)
(LSB)

D0	D1	D2	D3	D4	D5	D6	D7
DOC	DOB	DOA	0	1	1	1	0

3.5 CHARACTER REVERSE ON/OFF COMMAND

This command specifies whether all characters displayed on the screen are reversed.
(1) For MSB-first transfer (Command bits are input starting from the MSB (D7).)

(MSB)							
D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	1	1	0	0	BCRE

Control bit		Function
BCRE	0	Does not reverse characters.
	1	Reverses characters.

(2) For LSB-first transfer (Command bits are input starting from the LSB (D0). The function of each bit is the same as that for MSB-first transfer.)
(LSB)

D0	D1	D2	D3	D4	D5	D6	D7
BCRE	0	0	1	1	1	0	0

Each character is reversed only when reversing of the character is enabled with the displayed character control command.

- Example of reversed character (uppercase letter "I")

Remark When the character is not reversed, one of eight colors can be selected for the background color for the RGB channel. For the $\mathrm{V}_{\mathrm{C} 1}$ and $\mathrm{V}_{\mathrm{C} 2}$ channels, which can display only white or black, the background is always black (characters are white).
When characters are rseversed for the $\mathrm{V}_{\mathrm{c} 1}$ or $\mathrm{V}_{\mathrm{c} 2}$ channel, the display is as follows:

- Example of reversed character for $\mathrm{V}_{\mathrm{c} 1}$ or $\mathrm{V}_{\mathrm{c} 2}$ channel (uppercase letter "I")

When not reversed

When reversed

- Rimming of reversed character

For an ordinary character

When not reversed

When reversed

Character color when not reversed

For a solid character (character pattern 18H ($\mu \mathrm{PD} 6461$)/1FH ($\mu \mathrm{PD} 6462$): Refer to 5. CHARACTER PATTERNS)

When not reversed

Character color

When reversed

Display-off data does not change when reversed. When blank data is reversed, it becomes a solid character for which the character color is initially set. The character color can be set only for the RGB channel. It is always white (black when reversed) for the $\mathrm{V}_{\mathrm{C} 1}$ and V_{c} channels.

3.6 CHARACTER DISPLAY POSITION CONTROL COMMAND

This command specifies the character display start position with one of 32 steps in 12-dot units for the horizontal direction, and one of 32 steps in three-line units for the vertical direction (this command is a 2-byte command, requiring 16 bits for each command even when continuously input).
(1) For MSB-first transfer (Command bits are input starting from the MSB (D15).)

Remarks fosc: LC oscillation frequency or external input clock

Control bits for vertical display start position					
V4	V3	V2	V1	V0	Start position
0	0	0	0	0	$3 \mathrm{H} \times 0+1 \mathrm{H} \quad(9 \mathrm{H} \times 0+1 \mathrm{H})$ from rising edge of $\overline{\mathrm{Vsync}}$
0	0	0	0	1	$3 \mathrm{H} \times 1+1 \mathrm{H} \quad(9 \mathrm{H} \times 1+1 \mathrm{H})$ from rising edge of Vsync
$\approx \approx \approx \approx \approx \approx$					
1	1	1	1	1	$3 \mathrm{H} \times 31+1 \mathrm{H} \quad(9 \mathrm{H} \times 31+1 \mathrm{H})$ from rising edge of $\overline{\mathrm{Vsync}}$

Remarks 1. H: Line
2. () shows when units of nine lines are selected by specifying a mask option.
(2) For LSB-first transfer (Command bits are input starting from the LSB (D0). The function of each bit is the same as that for MSB-first transfer.)
(LSB)

D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
V3	V4	0	0	0	0	0	1	H0	H1	H2	H3	H4	V0	V1	V2

- Control bits for the horizontal display start position

These bits are used to specify the horizontal display start position (timing) as one of 32 steps in units of 12 dots (12/fosc (MHz)). Settable positions are based on the rising edge of the horizontal synchronizing signal input to the $\overline{H s y n c}$ pin. The 32 positions are calculated by adding 12 dots, one to 32 times, to the position equivalent to 16 clock pulses (16/fosc (MHz)) from the rising edge (fosc (MHz): LC oscillation frequency or external input clock frequency).

- Control bits for the vertical display start position

These bits are used to specify the vertical display start position as one of 32 steps in units of three lines (or 32 steps in units of nine lines when specified with a mask option). The minimum settable position is three lines from a rising edge of the vertical synchronizing signal input to the $\overline{\mathrm{Vsync}}$ pin.

$\mathrm{A}: 3 \mathrm{H} \times\left(2^{4} \mathrm{~V} 4+2^{3} \mathrm{~V} 3+2^{2} \mathrm{~V} 2+2^{1} \mathrm{~V} 1+2^{0} \mathrm{~V} 0\right)+1 \mathrm{H}$
$\frac{3 \mathrm{H}}{\mathrm{L}} \times\left(2^{4} \mathrm{~V} 4+2^{3} \mathrm{~V} 3+2^{2} \mathrm{~V} 2+2^{1} \mathrm{~V} 1+2^{0} \mathrm{~V} 0\right)+1 \mathrm{H}$
$\quad 9 \mathrm{H}$ when units of nine lines are selected by specifying a mask option
B : $\frac{12}{\text { fosc }(\mathrm{MHz})} \times\left(2^{4} \mathrm{H} 4+2^{3} \mathrm{H} 3+2^{2} \mathrm{H} 2+2^{1} \mathrm{H} 1+2^{0} \mathrm{H} 0+1\right)+\frac{4}{\text { fosc }(\mathrm{MHz})}$
fosc: LC oscillation frequency or external input clock frequency H : Line

3.7 WRITE ADDRESS CONTROL COMMAND

This command specifies the address at which a character is written in the display area (video RAM) of 12 rows $\times 24$ columns (this command is a 2-byte command, requiring 16 bits for each command, even when continuously input).
(1) For MSB-first transfer (Command bits are input starting from the MSB (D15).)

(2) For LSB-first transfer (Command bits are input starting from the LSB (D0). The function of each bit is the same as that for MSB-first transfer.)
(LSB)

| D0 | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10 | D11 | D12 | D13 | D14 | D15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AR3 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | AC0 | AC1 | AC2 | AC3 | AR4 | AR0 | AR1 | AR2 |

- Column write address specification bits

The display area has 24 columns. These bits are used to specify the column in which a character is to be written.

- Row write address specification bits

The display area has 12 rows. These bits are used to specify the row in which a character is to be written.

3.8 OUTPUT PIN CONTROL COMMAND

This command distributes character signals to the $\mathrm{V}_{\mathrm{C} 1}$ and $\mathrm{V}_{\mathrm{c} 2}$ channels (this command is a 2-byte command, requiring 16 bits for each command, even when continuously input). The μ PD6461, 6462 support a mask option for selecting one of three formats for the output distribution format for the $\mathrm{V}_{\mathrm{C} 1}$ and $\mathrm{V}_{\mathrm{C} 2}$ channels.
(1) For MSB-first transfer (Command bits are input starting from the MSB (D15).)
(MSB)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	1	1	1	0	0	$\mathrm{~V}_{\mathrm{c} 2}$	$\mathrm{~V}_{\mathrm{c} 1}$	0	0	AR3	AR2	AR1	AR0

Row specification bits				
AR3	AR2	AR1	AR0	Function
0	0	0	0	Specifies row 0 .
0	0	0	1	Specifies row 1.
-				
1	0	1	1	Specifies row 11.
Other values are invalid.				

Option A	Output pin control bits		
	$\mathrm{V}_{\mathrm{c} 2}$	$\mathrm{~V}_{\mathrm{c} 1}$	Output from each pin
	0	$\mathrm{~V}_{\mathrm{c} 1}$: Outputs a specified row. $\mathrm{V}_{\mathrm{c} 2}$: Fixed to low level.	
0	1	$\mathrm{~V}_{\mathrm{c} 1}$: Fixed to low level. $\mathrm{V}_{\mathrm{c} 2}$: Outputs a specified row.	

Option B	Output pin control bits		
	$\mathrm{V}_{\mathrm{c} 2}$	$\mathrm{~V}_{\mathrm{c} 1}$	
0	0	$\mathrm{~V}_{\mathrm{c} 1}$: Outputs all rows. $\mathrm{V}_{\mathrm{c} 2}$: Fixed to low level.	
0	1	$\mathrm{~V}_{\mathrm{c} 1}:$ Outputs all rows. $\mathrm{V}_{\mathrm{c} 2}$: Outputs a specified row.	

Option C	Output pin control bits		
	Vc2	VC1	Output from each pin
	0	0	$\mathrm{V}_{\text {c1: }}$: Outputs columns 0 to 23. Vc2: Fixed to low level.
	0	1	V $\mathrm{ci}^{\text {: }}$ Outputs columns 0 to 11. Vcz: Outputs columns 12 to 23.
	1	0	Vci: Outputs columns 12 to 23. Vcz: Outputs columns 0 to 11.
	1	1	$\mathrm{V}_{\mathrm{c} 1}$: Fixed to low level. $\mathrm{V}_{\mathrm{c} 2}$: Outputs columns 0 to 23.

(2) For LSB-first transfer (Command bits are input starting from the LSB (D0). The function of each bit is the same as that for MSB-first transfer.)
(LSB)

D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
0	0	1	1	1	0	0	1	AR0	AR1	AR2	AR3	0	0	V $_{C 1}$	VC2

- Row specification bits

Output distribution to the $\mathrm{V}_{\mathrm{C} 1}$ and $\mathrm{V}_{\mathrm{c} 2}$ pins is specified for each row (or for 12 columns). These bits are used to specify the row.

- Output pin control bits

These bits are used to distribute character output signals to the $\mathrm{V}_{\mathrm{C} 1}$ and $\mathrm{V}_{\mathrm{c} 2}$ pins depending on whether option A, B, or C has been selected by specifying a mask option (the corresponding blanking signals are output likewise).

3.9 CHARACTER SIZE CONTROL COMMAND

This command specifies the character size (height and width at one time) for each row (this command is a 2-byte command, requiring 16 bits for each command, even when continuously input).
(1) For MSB-first transfer (Command bits are input starting from the MSB (D15).)
(MSB)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	1	1	0	0	0	0	S	0	0	AR3	AR2	AR1	AR0

(2) For LSB-first transfer (Command bits are input starting from the LSB (D0). The function of each bit is the same as that for MSB-first transfer.)

(LSB) (MSB)															
D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
0	0	0	1	1	0	0	1	AR0	AR1	AR2	AR3	0	0	S	0

- Row specification bits

The character size is specified for each row. These bits are used to specify the row.

- Character size specification bit

This bit is used to select either of two supported sizes.

3.10 3-CHANNEL INDEPENDENT BACKGROUND CONTROL COMMAND

This command specifies the background for each of the three output channels (this command is a 2-byte command, requiring 16 bits for each command, even when continuously input).
(1) For MSB-first transfer (Command bits are input starting from the MSB (D15).)
(MSB)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	1	0	0	1	BA1	BA0	BFA	BB1	BB0	BFB	BC1	BC0	BFC

VC1 output

Background control bits for $V_{C 1}$ channel		
BB1	BB0	Background
0	0	No background
0	1	Minimum background
1	0	Not to be set
1	1	Overall background

RGB output	Rimming control bit for $\mathrm{V}_{\mathrm{c} 1}$ channel	
	BFB	Function
	0	Does not rim characters.
	1	Rims characters.
	Background control bits for RGB channel	
	BA1 BA0	Background
	0 0	No background
	0×1	Minimum background
	10	Not to be set
	$1 \quad 1$	Overall background
	Rimming control bit for RGB channel	
	BFA	Function
	0	Does not rim characters.
	1	Rims characters.

(2) For LSB-first transfer (Command bits are input starting from the LSB (D0). The function of each bit is the same as that for MSB-first transfer.)
(LSB)

D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
BA1	1	0	0	1	1	0	1	BFC	BC0	BC1	BFB	BB0	BB1	BFA	BA0

- Rimming control bit

This bit is used to specify whether all characters displayed on the screen are rimmed.

Rimming: Whenever there is a dot at the right or left edge of the display area for a character, rimming of the dot will encroach into the adjacent character display area. For dots at the top or bottom edge, however, no rim is added either above the top edge or below the bottom edge, that is, rimming does not encroach into the character display area above or below. Other dots are rimmed as shown below.

Example

The width of a rim is always 1 t (minimum dot) regardless of the character size.

- Background control bits

These bits are used to select no background, minimum background, or overall background as the background type. The background color is specified with the background/rim color control command.

No background: Outputs only character data.
Minimum background: Adds a background of an area that is wider than the character display area by a minimum of one dot at each side.

Overall background: Adds a background over the entire screen.

- Background and rimming in $\mathrm{RGB}+\mathrm{V}_{\mathrm{C} 1}+\mathrm{V}_{\mathrm{c} 2}$ mode

Characters for which the $V_{c 2}$ channel is specified with the displayed character control command are not output to the RGB or $\mathrm{V}_{\mathrm{c} 1}$ channel. When background (minimum/overall) is specified for the RGB or $\mathrm{V}_{\mathrm{C} 1}$ channel, no background is added to the areas for the $\mathrm{V}_{\mathrm{c} 2}$-specified characters. By contrast for the V_{c} channel, a background is added only to those areas for Vc_{c}-specified characters. (Refer to 1.4 DISPLAY IN RGB+ $\mathrm{V}_{c 1}+\mathrm{Vc}_{\mathrm{c}}$ MODE and 1.4.4 Display of Vc2-Specified Characters for details of the display of $\mathrm{V}_{\mathrm{C} 2}$-specified character areas for the RGB or $\mathrm{V}_{\mathrm{C} 1}$ channel.)

When RGB+3BLK (RGB compatible blanking) mode is selected, only the background control bits for the RGB channel are valid. Those for the $\mathrm{V}_{\mathrm{c} 1}$ and V_{c} channels are invalid (In RGB+3BLK mode, no pin outputs a signal for the $V_{C 2}$ channel. The $V_{C 1}$ pin is used to output the logical $O R$ of the R, G, and B outputs.).

3.11 TEST MODE COMMAND

This command is used only to test the IC. Usually, do not input this command. The system cannot enter test mode while the TEST pin (pin 9) is connected to ground.
(1) For MSB-first transfer (Command bits are input starting from the MSB (D15).)
(MSB)

| D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 1 | 0 | 0 | 0 | T8 | T7 | T6 | T5 | T4 | T3 | T2 | T1 | T0 |

(2) For LSB-first transfer (Command bits are input starting from the LSB (D0). The function of each bit is the same as that for MSB-first transfer.)
(LSB)

D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
T8	0	0	0	1	1	0	1	T0	T1	T2	T3	T4	T5	T6	T7

3.12 DISPLAYED CHARACTER CONTROL COMMAND

This command specifies the attributes of each character, including the character pattern, color, and whether it is blinked. When inputting this command, ensure that LC oscillator is turned on (if the LC oscillator is turned off, it is not possible to write to video RAM).

This command is a 2-byte continuous command. When continuously writing characters with the same attributes (except for a pattern), you need input only the eight low-order bits (D0 to D7) of the command for the second and subsequent characters. In this case, the write column address is automatically incremented (After a character has been written into column 23, the next character is automatically written into left-most column 0 of the next row. When a character is written into column 23 of row 11, the next character is automatically written into column 0 of row 0 .).

(1) For MSB-first transfer (Command bits are input starting from the MSB (D15).)

(MSB)															
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
1	1	RV	R	G	B	BL	$\mathrm{V}_{\mathrm{c} 2}$	C 7 Note	C 6	C 5	C 4	C 3	C 2	C 1	C 0

Blinking control bit	
BL	Function
0	Disables blinking.
1	Enables blinking.

Character color specification bits			
R	G	B	Color
0	0	0	Black
0	0	1	Blue
0	1	0	Green
0	1	1	Cyan
1	0	0	Red
1	0	1	Magenta
1	1	0	Yellow
1	1	1	White

Reversing control bit	
RV	Function
0	Disables reversing.
1	Enables reversing.

Note C 7 bit is "don't care" at the μ PD6462. However, this data sheet explains the μ PD6462 with " 0 " in the C 7 bit.
(2) For LSB-first transfer (Command bits are input starting from the LSB (D0). The function of each bit is the same as that for MSB-first transfer.)
(LSB)

1010	(MSB)														
D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
VC2	BL	B	G	R	RV	1	1	C0	C1	C2	C3	C4	C5	C6	C7

- Character pattern specification bits

These bits are used to specify the address of the character pattern to be used. Address FEH (μ PD6461)/7EH (μ PD6462) indicates display-off data and address FFH (μ PD6461)/7FH (μ PD6462) indicates the end code for secondbyte continuous input. The design of each character pattern can be modified by specifying a mask code option (except for addresses FEH and FFH (μ PD6461)/7EH and 7FH (μ PD6462)).

- Vc2 channel specification bit

This bit is used to specify whether each character is output to the $\mathrm{V}_{\mathrm{c} 2}$ channel. Characters for which the $\mathrm{V}_{\mathrm{c} 2}$ channel is specified are not output to the RGB or $\mathrm{V}_{\mathrm{C} 1}$ channel (This bit is invalid in RGB+3BLK mode).

- Blinking control bit

This bit is used to enable or disable blinking for each character. Blinking of characters is turned on/off for the entire screen with the character display control command (refer to 3.2 CHARACTER DISPLAY CONTROL COMMAND).

- Character color specification bits

These bits are used to specify the color of each character (These bits are valid only for the RGB channel. Only a single color can be used for the $\mathrm{V}_{\mathrm{C} 1}$ and $\mathrm{V}_{\mathrm{C} 2}$ channels).

- Reversing control bit

This bit is used to enable or disable reversing for each character. The characters of the entire screen are reversed with the character reverse on/off command (refer to 3.5 CHARACTER REVERSE ON/OFF COMMAND).

4. COMMAND TRANSFER

4.1 1-BYTE COMMANDS

4.2 2-BYTE COMMANDS

When inputting a 2-byte command, keep the $\overline{\mathrm{CS}}$ signal low between the first and second bytes of the command.

4.3 2-BYTE CONTINUOUS COMMAND

The 2-byte continuous command is used to write characters to video RAM. When continuously writing characters for which the specifications for the color, blinking, reversing, and V_{c} channel are the same, transfer the first byte of the first command then continuously transfer only the second bytes (character pattern addresses) of the commands.

When changing any part of the first byte, end continuous input (by setting the $\overline{C S}$ signal to high or transferring the end code for second-byte continuous input) then transfer the newly modified first byte.

4.4 CONTINUOUS INPUT OF COMMAND

Transfer each of the 1-byte, 2-byte, and 2-byte successive commands from a microcontroller to the μ PD6461, 6462 as follows.

To transfer a 1-byte or 2-byte command, or a 2-byte successive command with blinking data changed after a 2byte successive command has been transferred, either make $\overline{\mathrm{CS}}$ high once, or transfer 2-byte successive command end code (FFH: μ PD6461/7FH: μ PD6462) at the end of the 2-byte successive command. In the latter case, it is not necessary to make $\overline{\mathrm{CS}}$ high.

4.4.1 When End Code is Not Used

Example 1-byte command \rightarrow 2-byte successive command \rightarrow 1-byte command

4.4.2 When End Code is Used

Example 1-byte command \rightarrow 2-byte successive command \rightarrow 1-byte command

Remark By using the 2-byte successive command end code, the $\overline{\mathrm{CS}}$ pin may remain low. However, it is recommended to make $\overline{\mathrm{CS}}$ pin high to improve the noise immunity.

5. CHARACTER PATTERNS

The μ PD6461, 6462 can display $256(\mu$ PD6461)/128 (μ PD6462) character patterns, including alphanumerics, Kanji characters, and symbols, which are stored in the character generator ROM. Each pattern in the character generator ROM can be modified by specifying a mask code option. However, the display-off data at character address FEH (μ PD6461)/ 7EH (μ PD6462) and end code for second-byte continuous input at FFH (μ PD6461)/7FH (μ PD6462) cannot be modified. No character pattern can be stored at these addresses.

When none of the 12×18 dots are filled for a character pattern at addresses 00 H to $\mathrm{FDH}(\mu \mathrm{PD} 6461) / 00 \mathrm{H}$ to 7 DH (μ PD6462), the character pattern is called blank data. Character address FEH (μ PD6461)/7EH (μ PD6462) contains displayoff data. Blank data and display-off data are represented in the same way (with no dots filled) in character patterns shown on the following pages, but they are different as follows:

Table 5-1 The Differences between Blank Data and Display-off Data

Character data	Display of character area in each background mode		
	No background	Minimum background	Overall background
Blank data	Displays image.	Displays background.	Displays background.
Display-off data	Displays image.	Displays image only (without background).	Displays image only (without background).

You cannot specify display-off data for addresses other than FEH (μ PD6461)/7EH (μ PD6462) when using a mask code option. Blank data, however, can be specified at any address from 00H to FDH (μ PD6461)/00H to 7DH (μ PD6462) (address FFH (μ PD6461)/7FH (μ PD6462) cannot be used because it contains the end code for second-byte continuous input).

The character patterns of the μ PD6461GS-101/102, μ PD6462GS-001 (NEC's standard model) are shown on the following pages.
μ PD6461GS-101/102 Character Patterns
00 H

01H

09H

12H

1AH

24H

26H

Hex
29H

AOH
A1H
A2H
A3H
A4H

A7H

AEH

AFH

B6H

B7H

Notes 1. Blank data

2. Display-off data (fixed at this address)
3. End code for second-byte continuous input (fixed at this address)
μ PD6462GS-001 Character Patterns

30 H

31H

32H | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |

34 H

35H

36H

37H

38 H

3EH

3FH

41H

45H

48 H

4BH

4DH

Notes 1. Blank data
2. Display-off data (fixed at this address)
3. End code for second-byte continuous input (fixed at this address)

6. ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	$\mu \mathrm{PD} 6461 \mathrm{GS}$, 6462GS	$\mu \mathrm{PD} 6461 \mathrm{GT}$	Unit
Supply voltage	VDD	7		V
Input pin voltage	Vin	-0.3 to $V_{D D}+0.3$		V
Output pin voltage	Vout	-0.3 to $V_{\text {dD }}+0.3$		V
Operating ambient temperature	TA	-20 to +75		${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-40 to +125		${ }^{\circ} \mathrm{C}$
Permissible package power dissipation ($\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$)	PD	180	320	mW
Output current	lo	± 5		mA

Caution Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The parameters apply independently. The device should be operated within the limits specified under DC and AC Characteristics.

RECOMMENDED OPERATING RANGES

Parameter	Symbol	Conditions	Min.	Typ.	Max.
Unit					
Supply voltage	$V_{D D}$		2.7		5.5
Oscillation frequency (LC oscillation)	fosc	$V_{D D}=2.7$ to 5.5 V	6.0		8.0
Oscillation frequency (external clock)	fosc	$V_{D D}=2.7$ to 5.5 V	MHz		
Operating temperature	TA_{A}		4.0		8.0

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-20$ to $+75^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Supply voltage	VDD		2.7	5.0	5.5	V
Supply current 1	IDD	$\mathrm{fosc}=8.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		5.0	10.0	mA
Supply current 2	IDD	fosc $=8.0 \mathrm{MHz}, \mathrm{V}$ DD $=3.0 \mathrm{~V}$		3.0	6.0	mA
Control input high level voltage	V CIH	DATA, CLK, $\overline{C S}, \overline{\text { PCL }}$	0.7 VDD			V
Control input low level voltage	Vcil				0.3 Vdo	V
Synchronizing signal input high level voltage	VISH	$\overline{\text { Hsync, }} \overline{\text { Vsync }}$	0.48 VDD			V
Synchronizing signal input low level voltage	VISL				0.16VDD	V
Signal output high level voltage	Vosh	$\begin{aligned} & \text { losL }=-1 \mathrm{~mA}(\mathrm{~V} D \mathrm{DD}=5 \mathrm{~V}) /-0.5 \mathrm{~mA} \\ & (\mathrm{~V} D \mathrm{D}=3 \mathrm{~V}) \end{aligned}$	0.9VDD			V
Signal output low level voltage	VosL	$\begin{aligned} & \text { losL }=1 \mathrm{~mA}(\mathrm{VDD}=5 \mathrm{~V}) / 0.5 \mathrm{~mA} \\ & (\mathrm{VDD}=3 \mathrm{~V}) \end{aligned}$			$0.1 \mathrm{VDD}^{\text {d }}$	V
Oscillation output low level voltage	Vost	$\begin{aligned} & \overline{\text { CKOUT }} \\ & \text { lost }=-0.5 \mathrm{~mA}(\mathrm{VDD}=5 \mathrm{~V}) \end{aligned}$			0.1VDD	V

Remark Signal input : DATA, CLK, $\overline{\mathrm{CS}}, \overline{\mathrm{PCL}}, \overline{\text { Hsync }}, \overline{\text { Vsync }}$

() : Set by a mask option

RECOMMENDED OPERATING TIMINGS ($\mathrm{T}_{\mathrm{A}}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to 5.5 V)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Setup time	tset		200			ns
Hold time	thold		200			ns
Minimum low level width of clock	tckl		400			ns
Minimum high level width of clock	tckн		400			ns
Clock cycle	tтck		1.0			$\mu \mathrm{~s}$
$\overline{\mathrm{CS}}$ setup time	tcss		400			ns
$\overline{\mathrm{CS}}$ hold time	tcsh		400			ns
Delay from CLK \uparrow to $\overline{\mathrm{CS}} \uparrow$	tockcs		400			ns
Minimum low level width of $\overline{\text { Hsync }}$	thwL		4			$\mu \mathrm{~s}$
Minimum low level width of $\overline{\overline{V s y n c}}$	tvwL		4			$\mu \mathrm{~s}$

POWER-ON CLEAR SPECIFICATIONS

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
$\overline{\text { PCL pin low level hold time }}$	tpcLL		10			$\mu \mathrm{~s}$

EXTERNAL CLOCK INPUT

Timing for external clock input (valid when selected with mask option)

Parameter	Symbol	Conditions	Min.	Typ.	Max.
Time from external clock fall to synchro- nizing signal rise	tc-н		30		
Time from synchronizing signal rise to external clock fall	th-c		30		
ts (rising slew rate)					

Note 10% of the external clock cycle
Example: When the external clock frequency is 8 MHz
Clock cycle $=125 \mathrm{~ns}$
The maximum slew rate is 10% of 125 ns , giving 12.5 ns .

Remarks 1. Keep the external clock in phase with the rising edges of $\overline{\text { Hsync.}}$
2. Design the input of $\overline{H s y n c}$ so that noise of more than 100 ns is suppressed.
3. When using an external clock, leave the OSCout pin open.

CHARACTER AND BLK SIGNAL OUTPUT

Character and BLK signals are output in synchronization with the falling edges of the dot clock.

OUTPUT TIMINGS ($\mathrm{T}_{\mathrm{A}}=-20$ to $+75^{\circ} \mathrm{C}$, pins: V , V_{G}, V_{b}, $\mathrm{V}_{\mathrm{blk}}, \mathrm{V}_{\mathrm{c} 1}$, BLK1, $\mathrm{V}_{\mathrm{c} 2}$, BLK2, (Rblk, Gblk, Bblk))
Pins in parentheses are selected by specifying a mask option.
\star

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Output delay of character/BLK signal	CDL	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V , output load capacity $=10 \mathrm{pF}$	10	18	30	ns
Output delay of character/BLK signal	CDL	$V_{D D}=2.7$ to 3.3 V , output load capacity $=10 \mathrm{pF}$	15	35	80	ns
Rise time of character/BLK signal	CUS	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V , output load capacity $=10 \mathrm{pF}$	2		10	ns
Rise time of character/BLK signal	CUS	$V_{D D}=2.7$ to 3.3 V , output load capacity $=10 \mathrm{pF}$	4		25	ns
Fall time of character/BLK signal	CDS	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V , output load capacity $=10 \mathrm{pF}$	2		10	ns
Fall time of character/BLK signal	CDS	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 3.3 V , output load capacity $=10 \mathrm{pF}$	4		25	ns
Time equivalent to minimum dot	DTW	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V , output load capacity $=10 \mathrm{pF}$	(1 /Oscillation frequency) $\pm 5^{\text {Note }}$			ns
Time equivalent to minimum dot	DTW	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 3.3 V , output load capacity $=10 \mathrm{pF}$	(1 /Oscillation frequency) $\pm 5^{\text {Note }}$			ns

Note Min.: (1/fosc) - 5 ns, Max.: (1/fosc) + 5 ns
fosc: Frequency of LC oscillation or external input clock.

TIMING FOR CONTINUOUS COMMAND INPUT

When inputting commands continuously, the following timing requirements must be observed:
$\left(T_{A}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{V} D=2.7$ to 5.5 V)

Parameter	Symbol	Conditions		Min.	Typ.	Max.	Unit
Continuous command input timing 1	T1	For all commands		2.0			$\mu \mathrm{S}$
Continuous command input timing 2	T2	For VRAM write commands	Whendisplay is turned on	$\begin{gathered} 2 \mu \mathrm{~s}+(21 / \mathrm{fosc}) \\ \times \mathrm{S}+\mathrm{thwL} \end{gathered}$			$\mu \mathrm{s}$
			When display is turned off	$\begin{gathered} 2 \mu \mathrm{~s}+(12 / \text { fosc }) \\ \times \mathrm{S} \end{gathered}$			$\mu \mathrm{s}$

fosc: Frequency of LC oscillation or external input clock (MHz), S: Character size (single (minimum) or double), thwl: $\overline{H s y n c}$ width. Commands other than VRAM write commands may not comply with T2 provided the control clock cycle satisfies the specifications.

7. APPLICATION CIRCUIT EXAMPLE

Notes 1. CR constant must be satisfied with Power-ON Clear Specification (refer to 6. ELECTRICAL CHARACTERISTICS).
2. This circuit can reduce the number of external components and facilitates the adjustment of oscillation frequency, using LC module (part number: Q285NCIS-11181, manufactured by Toko, Inc.)
3. Connect these pins as follows when inputting external clock:

OSCin pin: external clock input, OSCout pin: open
4. Signals in () are set by a mask option ($R G B+R G B$ compatible blanking).

Remarks 1. The number in the parentheses indicates the pin number of the μ PD6461GT-xxx.
2. With the μ PD6461GT-xxx, influence by noise via lead frame can be surpressed by connecting the N.C. pins $(3,12,13,22)$ to GND.

8. PACKAGE DRAWINGS

20 PIN PLASTIC SHRINK SOP (300 mil)

detail of lead end

ITEM	MILLIMETERS	INCHES
A	6.7 ± 0.3	$0.264_{-0.013}^{+0.012}$
B	0.575 MAX.	0.023 MAX.
C	0.65 (T.P.)	0.026 (T.P.)
D	$0.32_{-0.07}^{+0.08}$	$0.013_{-0.004}^{+0.003}$
E	0.125 ± 0.075	$0.005^{ \pm 0.003}$
F	2.0 MAX.	0.079 MAX.
G	1.7 ± 0.1	$0.067_{-0.005}^{+0.004}$
H	8.1 ± 0.3	0.319 ± 0.012
I	6.1 ± 0.2	0.240 ± 0.008
J	1.0 ± 0.2	$0.039_{-0.008}^{+0.009}$
K	$0.15_{-0.05}^{+0.10}$	$0.006_{-0.002}^{+0.004}$
L	0.5 ± 0.2	$0.020_{-0.009}^{+0.008}$
M	0.12	0.005
N	0.10	0.004
P	$3^{\circ}{ }_{-3^{\circ}}^{\circ}$	$3^{\circ}+7^{\circ}$
		P20GM-65-300B-3

24 PIN PLASTIC SOP (375 mil)

detail of lead end

NOTE

1. Controlling dimention - millimeter.
2. Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

9. RECOMMENDED SOLDERING CONDITIONS

When soldering these products, it is highly recommended to observe the conditions as shown below. If other soldering processes are used, or if the soldering is performed under different conditions, please make sure to consult with our sales offices.

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).

Surface Mount Devices

```
\muPD6461GS-xxx: 20-pin plastic shrink SOP (300 mil)
\muPD6461GT-xxx: 24-pin plastic SOP (375 mil)
\muPD6462GS-xxx: 20-pin plastic shrink SOP (300 mil)
```

Process	Conditions	Symbol
Infrared ray reflow	Peak temperature: $235^{\circ} \mathrm{C}$ or below (Package surface temperature), Reflow time: 30 seconds or less (at $210^{\circ} \mathrm{C}$ or higher), Maximum number of reflow processes: 2 times.	IR35-00-2
Vapor phase soldering	Peak temperature: $215^{\circ} \mathrm{C}$ or below (Package surface temperature), Reflow time: 40 seconds or less (at $200{ }^{\circ} \mathrm{C}$ or higher), Maximum number of reflow processes: 2 times.	VP15-00-2
Wave soldering	Solder temperature: $260{ }^{\circ} \mathrm{C}$ or below, Flow time: 10 seconds or less, Maximum number of flow processes: 1 time, Pre-heating temperature: $120{ }^{\circ} \mathrm{C}$ or below (Package surface temperature).	WS60-00-1
Partial heating method	Pin temperature: $300{ }^{\circ} \mathrm{C}$ or below, Heat time: 3 seconds or less (Per each side of the device).	

Caution Apply only one kind of soldering condition to a device, except for "partial heating method", or the device will be damaged by heat stress.

NEC μ PD6461, 6462
[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VdD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

[MEMO]

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

