

TDA3190

NWW.DZSC.CO

COMPLETE TV SOUND CHANNEL

DIP16

(Plastic Package)

ORDER CODE : TDA3190

The TDA3190 is a monolithic integrated circuit in a 16-lead dual in-line plastic package. It performs all the functions needed for the TV sound channel :

- IF LIMITER AMPLIFIER
- ACTIVE LOW-PASS FILTER
- FM DETECTOR
- DC VOLUME CONTROL
- AF PREAMPLIFIER
- AF OUTPUT STAGE

DESCRIPTION

The TDA3190 can give an output power of 4.2 W (d = 10 %) into a 16 Ω load at V_S = 24 V, or 1.5 W (d = 10 %) into an 8 Ω load at V_S = 12 V. This performance, together with the FM-IF section characteristics of high sensitivity, high AM rejection and low distortion, enables the device to be used in almost every type of television receivers.

The device has no irradiation problems, hence no external screening is needed.

The TDA3190 is a pin to pin replacement of TDA1190Z.

PIN CONNECTIONS

TDA3190

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
Vs	Supply Voltage (pin 10)	28	V	
Vi	Input Signal Voltage (pin 1)	1	V]
Ιo	Output Peak Current (non-repetitive)	2	Α]
lo	Output Peak Current (repetitive)	1.5	Α	1
P _{tot}	Power Dissipation at $T_{pins} = 90 \degree C$ at $T_{amb} = 70 \degree C$ (free air)	4.3 1	W W	-01 TRI
T _{stg} , T _j	Storage and Junction Temperature	- 40 to 150	°C	31 00

THERMAL DATA

Symbol	Parameter	Value	Unit	
R _{th j} -pins	Thermal Resistance Junction-pins	Max	14	°C/W
R _{th j-amb}	Thermal Resistance Junction-ambient	Max	80*	°C/W

* Obtained with the GND pins soldered to printed circuit with minimized copper area.

ELECTRICAL CHARACTERISTICS

(refer to the test circuit, $V_S = 24V$, $T_{amb} = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Supply Voltage (Pin 14)		9		28	V
Vo	Quiescent Output Voltage (Pin11)	$V_{s} = 24V$ $V_{s} = 12V$	11 5.1	12 6	13 6.9	V V
l _d	Quiescent Drain Current	$\begin{array}{l} P_1 = 22k\Omega \\ V_s = 24V \\ V_s = 12V \end{array}$	11	22 19	45 40	mA mA

ELECTRICAL CHARACTERISTICS

(refer to the test circuit, $V_S = 24V$, $T_{amb} = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Po	Output Power	$\begin{array}{l} d = 10\%, f_m = 400 Hz, \\ f_o = 4.5 MHz, \Delta f = \pm 25 kHz \\ V_s = 24 V, R_L = 16 \Omega \\ V_s = 12 V, R_L = 8 \Omega \end{array}$		4.2 1.5		W W
		$\begin{array}{l} d = 2\%, f_m = 400 Hz, \\ f_o = 4.5 MHz, \Delta f = \pm 25 kHz \\ V_s = 24 V, R_L = 16 \Omega \\ V_s = 12 V, R_L = 8 \Omega \end{array}$		3.5 1.4		W W
Vi	Input Limiting Voltage (-3dB) atPin 1			40	100	μV
d	Distortion	$\begin{array}{l} P_{o} = 50 mW, f_{m} = 400 Hz, \\ f_{o} = 4.5 MHz, \Delta f = \pm 7.5 kHz \\ V_{s} = 24 V, R_{L} = 16 \Omega \\ V_{s} = 12 V, R_{L} = 8 \Omega \end{array}$		0.75 1		% %
В	Frequency Response of audio amplifier (-3dB)	$ \begin{array}{l} R_L = 16\Omega, \ C_8 = 120 p F \\ C_7 = 470 p F, \ P_1 = 22 k \Omega \\ R_f = 82 \Omega \\ R_f = 47 \Omega \end{array} $		70 to 1200 70 to 7000		Hz Hz
Vo	Recovered Audio Voltage (Pin16)	$\label{eq:Vi} \begin{array}{l} V_i \geq 1mV, \ f_o = 4.5MHz \\ f_m = 400Hz, \ \Delta f = \pm \ 7.5kHz, \ P_1 = 0 \end{array}$		120		mV
AMR	Ampliture Modulation Rejection	$V_i \ge 1mV, f_0 = 4.5MHz, f_m = 400Hz, \Delta_f = \pm 25kHz, m = 0.3$		55		dB
$\frac{S+N}{N}$	Signal to Noise Ratio	$\label{eq:VI} \begin{array}{l} V_I \geq 1mV, V_o = 4V, f_o = 4.5 MHz, \\ f_m = 400 Hz, \Delta f = \pm 25 kHz \end{array}$	50	65		dB
R ₃	External Feedback Resistance (betweenPins9and11)				25	kΩ
Ri	Input Resistance (Pin1)	$V_i = 1mV$, fo = 4.5MHz		30		kΩ
Ci	Input Capacitance (Pin1)			5		pF
SVR	Supply Voltage Rejection	$ \begin{array}{l} R_{L} = 16\Omega, \ f_{ripple} = 120Hz, \\ P_1 = 22k\Omega \end{array} $		46		dB
Av	DC Volume Control Attenuation	$P_1 = 12k\Omega$		90		dB

TYPICAL CIRCUIT

2/0

Figure 1 :

put Noise versus Input Signal (dB) (dB) 0dB Vo 0 0 10 -Z RL= co 1₀ = 4.5 MHz -20 1_m=400 Hz -4 ∆f=±25kHz -30 -6 $Q_0 = 60$ 11 -8 -40 -50 -10 -60 -12 N -70 -14 10² 103 104 10 V₁ (µV)

Figure 3 : Amplitude Modulation Rejection versus Input Signal

Figure 5: Recovered Audio Voltage versus Unloaded Q Factor of the Detector Coil

Relative Audio Output Voltage and Output Voltage and Output Voltage Attenuation versus DC Volume Control Resistance

Figure 4 : △AMR versus Tuning Frequency Change

3190-04.EPS

3190-06.EPS

3190-08.EPS

Figure 6 : Distortion versus Output Power

3190-09.EPS

Figure 9: Audio Amplifier Frequency Response

3190-10.EPS

3190-12.EPS

3190-14.EPS

Figure 11 : Supply Voltage Ripple Rejection versus Volume Control Attenuation

Figure 8 : Distortion versus Tuning Frequency Change

Figure 10 : Supply Voltage Ripple Rejection versus Ripple Frequency

Figure 12 : Output Power versus Supply Voltage

3190-15.EPS

Figure 15 : Quiescent Output Voltage (Pin 11) versus Supply Voltage

Figure 14 : Power Dissipation and Efficiency versus Output Power

APPLICATION INFORMATION

The electrical characteristics of the TDA3190 remain almost constant over the frequency range 4.5 to 6 MHz, therefore it can be used in all television standards (FM mod.). The TDA3190 has a high input impedance, so it can work with a ceramic filter or with a tuned circuit that provide the necessary input selectivity.

The value of the resistors connected to pin 9, determine the AC gain of the audio frequency amplifier. This enables the desired gain to be selected in relation to the frequency deviation at which the output stage of the AF amplifier, must enter into

Figure 16 : Typical Application Circuit

clipping.

Capacitor C8, connected between pins 10 and 11, determines the upper cutoff frequency of the audio bandwidth. To increase the bandwidth the values of C8 and C7 must be reduced, keeping the ratio C7/C8 as shown in the table of fig. 16.

The capacitor connected between pin 16 and ground, together with the internal resistor of 10 K Ω forms the de-emphasis network. The Boucherot cell eliminates the high frequency oscillations caused by the inductive load and the wires connecting the loudspeaker.

TDA3190

MOUNTING INSTRUCTION

The Rth j-amb of the TDA3190 can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board (fig. 18) or to an external heatsink (fig. 19).

The diagram of figure 20 shows the maximum dissipable power Ptot and the Rth j-amb as a function of the side "I" of two equal square copper areas

Figure 20 : Maximum Dissipable Power and Junction to Ambient Thermal Resistance versus Side "T"

3190-23.EPS

having a thickness of $35 \,\mu$ (1.4 mils).

During soldering the pins temperature must not exceed 260 °C and the soldering time must not be longer than 12 seconds.

The external heatsink or printed circuit copper area must be connected to electrical ground.

Figure 19 : External Heatsink Mounting Example

Figure 21 : Maximum Allowable Power Dissipation versus Ambient Temperature

3190-24.EPS

PACKAGE MECHANICAL DATA

16 PINS - PLASTIC DIP

Dimensions		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
i			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I²C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips I²C Patent. Rights to use these components in a I²C system, is granted provided that the system conforms to the I²C Standard Specifications as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.