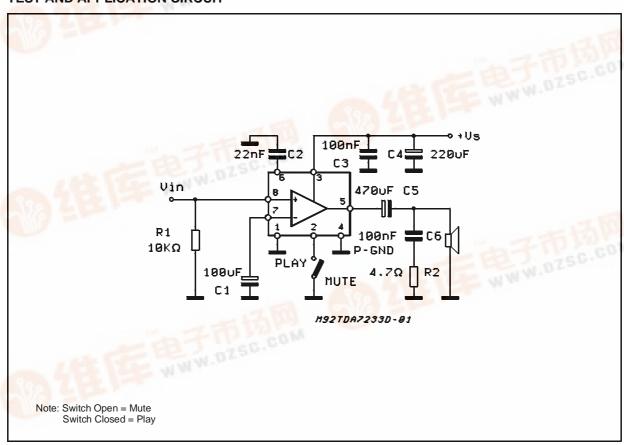


TDA7233 TDA7233D

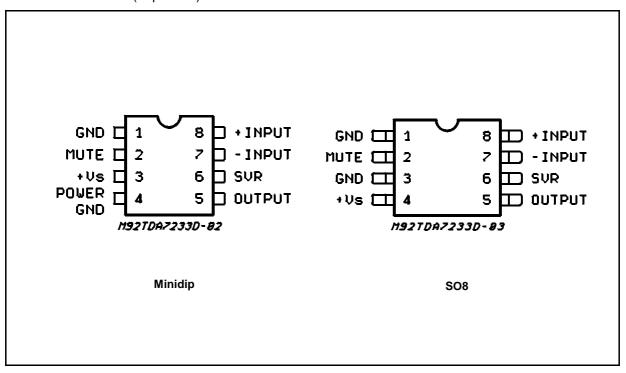
1W AUDIO AMPLIFIER WITH MUTE


- OPERATING VOLTAGE 1.8 TO 15V
- EXTERNAL MUTE OR POWER DOWN FUNCTION
- IMPROVED SUPPLY VOLTAGE REJECTION
- LOW QUIESCENT CURRENT
- HIGH POWER CAPABILITY
- LOW CROSSOVER DISTORTION

DESCRIPTION

The TDA7233/D is a monolithic integrated circuit in 8 pin Minidip or SO8 package, intended for use as class AB power amplifier with a wide range of supply voltage from 1.8V to 15V in portable players, cordless telephones and Cellular Radios.

TEST AND APPLICATION CIRCUIT



TDA7233 - TDA7233D

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	16	V
lo	Output Peak Current	1	Α
P _{tot}	Total Power Dissipation at T _{amb} = 50°C	1	W
T_{stg}, T_{j}	Storage and Junction Temperature	-40 to 150	°C

PIN CONNECTIONS (Top views)

THERMAL DATA

2/7

Symbol	Parameter	SO8	Minidip	Unit	
R _{th i-amb}	Thermal Resistance Junction-ambient	Max.	200	100	°C/W

 $\mathcal{L}_{\overline{2}}$

ELECTRICAL CHARACTERISTICS ($V_s = 6 \text{ V}$, $T_{amb} = 25 \text{ }^{\circ}\text{C}$, unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Voltage		1.8		15	V
Vo	Quiescent Out Voltage			2.7		V
		$V_s = 3 V$ $V_s = 9 V$		1.2 4.2		V
I _d	Quiescent Drain Current	MUTE HIGH		3.6	9	mA
		MUTE LOW		0.4		
I _b	Input Bias Current			100		nA
Po	Output Power	$\begin{array}{lll} d = 10 \; \% & f = 1 \; \text{KHz} \\ V_s = 12 \; V & R_L = 8 \; \Omega \\ V_s = 9 \; V & R_L = 4 \; \Omega \\ V_s = 9 \; V & R_L = 8 \; \Omega \\ V_s = 6 \; V & R_L = 8 \; \Omega \\ V_s = 6 \; V & R_L = 4 \; \Omega \\ V_s = 3 \; V & R_L = 4 \; \Omega \\ V_s = 3 \; V & R_L = 8 \; \Omega \end{array}$		1.9 1.6 1 0.4 0.7 110 70		W W W W W mW
d	Distortion	$P_0 = 0.5 W$ $f = 1 \text{ kHz}$ $R_L = 8 \Omega$ $V_S = 9 V$		0.3		%
Gv	Closed Loop Voltage Gain	f = 1 kHz		39		dB
R _{IN}	Input Resistance	f = 1 kHz	100			ΚΩ
e _N	Total Input Noise $(R_s = 10 \text{ k}\Omega)$	B = Curve A		2		μV
		B = 22 Hz to 22 kHz		3		
SVR	Supply Voltage Rejection	$f = 100 \text{ Hz}, R_g = 10 \text{ K}\Omega$		45		dB
	MUTE Attenuation	V _o = 1 V f = 100 Hz to 10 kHz		70		dB
	MUTE Threshold			0.6		V
I _M	MUTE Current	V _S = 15V		0.4		mA

Figure 1: Output Power vs. Supply Voltage

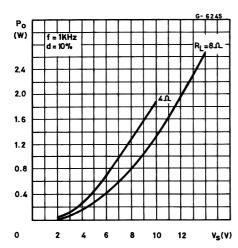
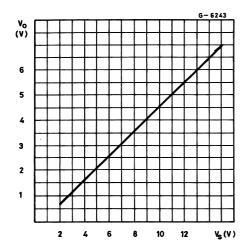



Figure 3: DC Output Voltage vs. Supply Voltage

Figure 5: Total Dissipated Power vs. Supply Voltage

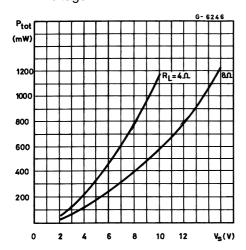


Figure 2: Supply Voltage Rejection vs. Frequency

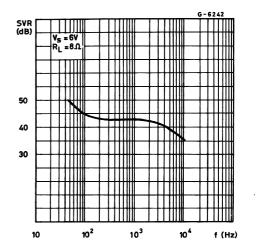
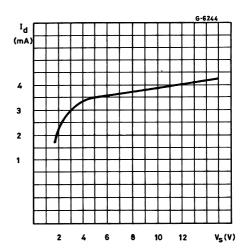
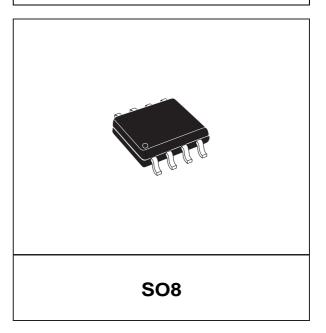
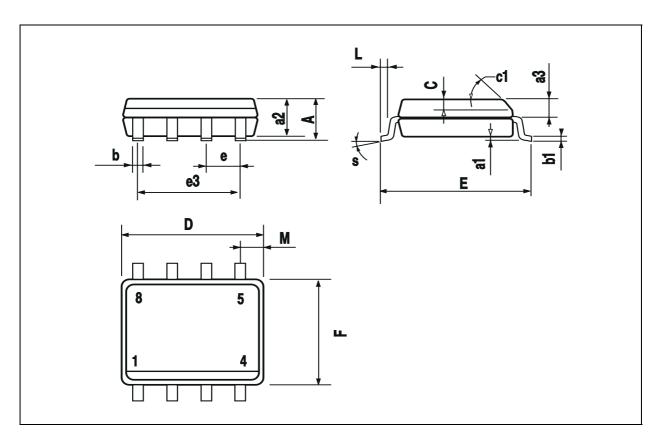



Figure 4: Quiescent Current vs. Supply Voltage

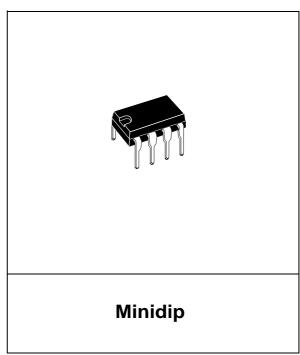


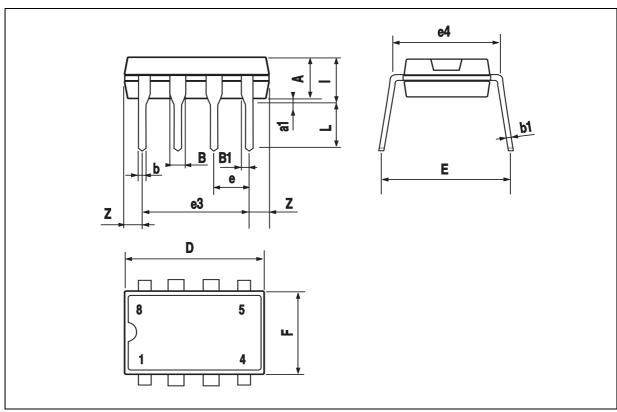

4

DIM.		mm inch				
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.069
a1	0.1		0.25	0.004		0.010
a2			1.65			0.065
a3	0.65		0.85	0.026		0.033
b	0.35		0.48	0.014		0.019
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.020
c1			45° ((typ.)		
D (1)	4.8		5.0	0.189		0.197
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
е3		3.81			0.150	
F (1)	3.8		4.0	0.15		0.157
L	0.4		1.27	0.016		0.050
М			0.6			0.024
S	8° (max.)					

(1) D and F do not include mold flash or protrusions. Mold flash or potrusions shall not exceed 0.15mm (.006inch).

OUTLINE AND MECHANICAL DATA





TDA7233 - TDA7233D

DIM.	mm			inch			
DIW.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α		3.32			0.131		
a1	0.51			0.020			
В	1.15		1.65	0.045		0.065	
b	0.356		0.55	0.014		0.022	
b1	0.204		0.304	0.008		0.012	
D			10.92			0.430	
Е	7.95		9.75	0.313		0.384	
е		2.54			0.100		
e3		7.62			0.300		
e4		7.62			0.300		
F			6.6			0.260	
I			5.08			0.200	
L	3.18		3.81	0.125		0.150	
Z			1.52			0.060	

OUTLINE AND MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners

© 2003 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com

