

TDA7241B

20W BRIDGE AMPLIFIER FOR CAR RADIO

- VERY LOW STAND-BY CURRENT
- GAIN = 32dB
- OUTPUT PROTECTED AGAINST SHORT CIRCUITS TO GROUND AND ACROSS LOAD
- COMPACT HEPTAWATT PACKAGE
- DUMP TRANSIENT
- THERMAL SHUTDOWN
- LOUDSPEAKER PROTECTION
- HIGH CURRENT CAPABILITY
- LOW DISTORTION / LOW NOISE

DESCRIPTION

The TDA7241B is a 20W bridge audio amplifier IC designed specially for car radio applications. Thanks to the low external part count and compact Heptawatt 7-pin power package the TDA7241B occupies little space on the printed circuit board.

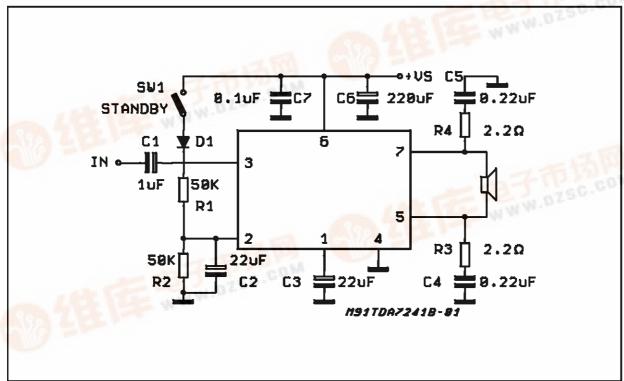
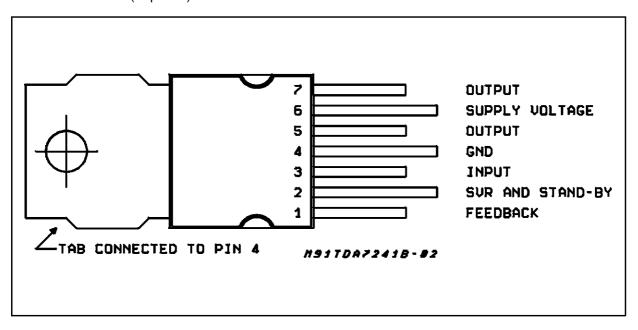

Reliable operation is guaranteed by a compre-

Figure 1: Test and Appliication Circuit


hensive array of on-chip protection features.

These include protection against AC and DC output short circuits (to ground and across the load), load dump transients, and junction overtemperature. Additionally, the TDA7241B protects the loudspeaker when one output is short-circuited to ground.

PIN CONNECTION (Top view)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Operating Supply Voltage	18	٧
Vs	DC Supply Voltage	28	V
Vs	Peak Supply Voltage (t = 50ms)	40	V
lo	Peak Output Current (non repetitive t = 0.1ms)	4.5	Α
lo	Peak Output Current (repetitive f ≥ 10Hz)	3.5	Α
P _{tot}	Power Dissipation at T _{case} = 85°C	16	W
T_{stg}, T_{j}	Storage and Junction Temperature	-40 to 150	°C

THERMAL DATA

Symbol	Description			Unit
R _{th j-case}	Thermal Resistance Junction-case		4	°C/W

ELECTRICAL CHARACTERISTICS (Refer to the circuit of Fig. 1; $V_S = 14.4V$; R_{th} (heatsink) = $4^{\circ}C/W$, $T_{amb} = 25^{\circ}C$, unless otherwise specified

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Range				18	V
Ι _d	Total Quiescent Current	$R_L = 4\Omega$			80	mA
Vos	Output Offset Voltage				100	mV
Po	Output Power	$\begin{array}{c} R_L = 2\Omega \\ f = 1 \text{KHz} d = 10\% \\ R_L = 4\Omega \\ R_L = 8\Omega \end{array}$	18	26 20 12		W
d	Distortion $ \begin{array}{c} R_L = 4\Omega \qquad \qquad f = 1 \text{KHz} \\ P_O = 50 \text{mW to } 12 \text{W} \end{array} $			0.1	0.5	%
		$R_L = 8\Omega$ f = 1KHz $P_O = 50$ mW to 6W		0.05		%
G_V	Voltage Gain	f = 1KHz	31	32	33	dB
SVR	Supply Voltage Rejection	$f = 100Hz$ $R_g = 10K\Omega$	40	50		dB
En	Total Input Noise	$B = Curve A$ $R_g = 10K\Omega$		2		μV
		B = 22Hz to 22KHz $R_S = 10K\Omega$		3	10	mV
η	Efficiency	$R_L = 4\Omega$ $f = 1KHz$ $P_O = 20W$		65		%
I _{sb}	Stand-by Current				100	μΑ
R_i	Input Resistance	f = 1KHz	70			ΚΩ
Vi	Input Sensitivity	f = 1KHz $P_O = 2W$ $R_L = 4\Omega$		70		mV
f_L	Low Frequency Roll Off (-3dB)	$P_O = 15W$ $R_L = 4\Omega$		30		Hz
f _H	High Frequency Roll Off (-3dB)	$PO = 15W$ $R_L = 4\Omega$	25			KHz
As	Stand-by Attenuation	$V_O = 2Vrms$	70	90		dB
V _{TH} (pin.2)	Stand-by Threshold				1	V
T_{sd}	Thermal Shutdown Junction Temp.			150		°C

(*) B = Curve (**) B = 22Hz to 22KHz

Figure 2: P.C. Board and Component Layout of the Circuit of Fig. 1 (1:1 scale).

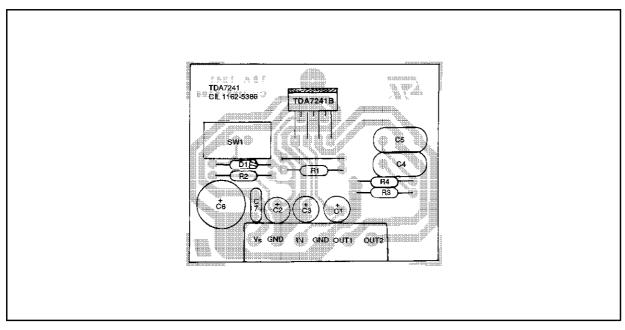


Figure 3: Output Power vs. Supply Voltage

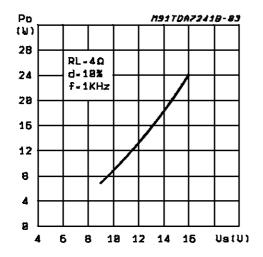


Figure 5: Distortion vs. Output Power

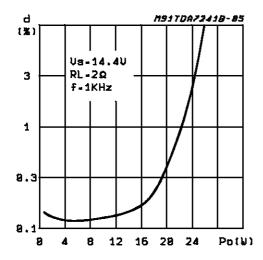


Figure 7: Distortion vs. Output Power

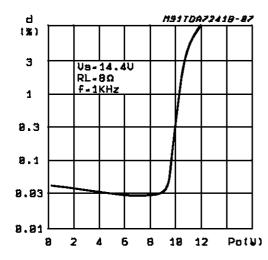


Figure 4: Output Power vs. Supply Voltage

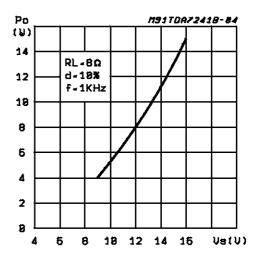
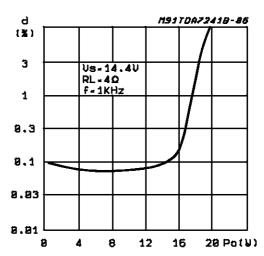
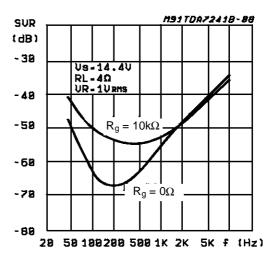
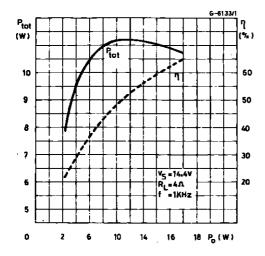


Figure 6: Distortion vs. Output Power

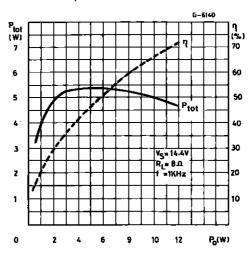

Figure 8: SVR vs. Frequency

Figure 9: Power Dissipation and Efficiency vs. Output Power

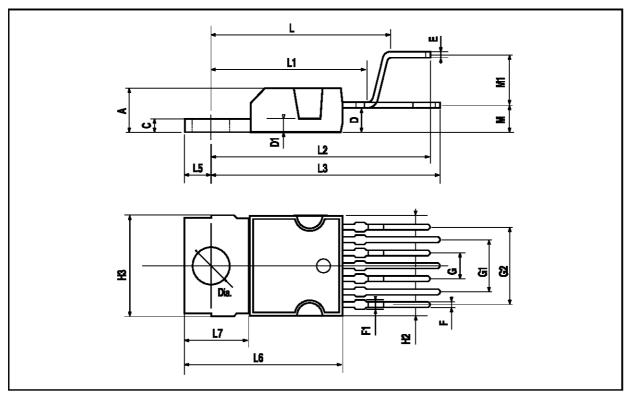


Figure 10: Power Dissipation and Efficiency vs. Output Power

HEPTAWATT PACKAGE MECHANICAL DATA

		mm			inch	
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			4.8			0.189
С			1.37			0.054
D	2.4		2.8	0.094		0.110
D1	1.2		1.35	0.047		0.053
E	0.35		0.55	0.014		0.022
F	0.6		0.8	0.024		0.031
F1			0.9			0.035
G	2.41	2.54	2.67	0.095	0.100	0.105
G1	4.91	5.08	5.21	0.193	0.200	0.205
G2	7.49	7.62	7.8	0.295	0.300	0.307
H2			10.4			0.409
Н3	10.05		10.4	0.396		0.409
L		16.97			0.668	
L1		14.92			0.587	
L2		21.54			0.848	
L3		22.62			0.891	
L5	2.6		3	0.102		0.118
L6	15.1		15.8	0.594		0.622
L7	6		6.6	0.236		0.260
М		2.8			0.110	
M1		5.08			0.200	
Dia	3.65		3.85	0.144		0.152

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1997 SGS-THOMSON Microelectronics - All Rights Reserved HEPTAWATT $^{\text{TM}}$ is a Trademark of SGS-THOMSON Microelectronics

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

