查询SN74LVC1G18YZPR供应商

捷多邦,专业PCB打样工厂,24小时加急**SN**74LVC1G18 1-OF-2 NONINVERTING DEMULTIPLEXER WITH 3-STATE DESELECTED OUTPUT SCES406G – JULY 2002 – REVISED SEPTEMBER 2003

DBV OR DCK PACKAGE

(TOP VIEW)

YEA, YEP, YZA, OR YZP PACKAGE (BOTTOM VIEW)

3

02 50

S

A 3

GND

GND

YO

Vcc

Vcc

5

- Available in the Texas Instruments NanoStar[™] and NanoFree[™] Packages
- Supports 5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 3.4 ns at 3.3 V
- Low Power Consumption, 10-μA Max I_{CC}
- ±24-mA Output Drive at 3.3 V
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at V_{CC} = 3.3 V, T_A = 25° C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 >2 V at V_{CC} = 3.3 V, T_A = 25°C
- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

This noninverting demultiplexer is designed for 1.65-V to 5.5-V V_{CC} operation.

The SN74LVC1G18 is a 1-of-2 noninverting demultiplexer with a 3-state output. This device buffers the data on input A and passes it to either output Y0 or Y1, depending on whether the state of the select (S) input is low or high, respectively.

TA	PACKAGET	ORDERABLE PART NUMBER	TOP-SIDE MARKING [‡]	
1 14 50	NanoStar™ – WCSP (DSBGA) 0.17-mm Small Bump – YEA		SN74LVC1G18YEAR	
21215	lanoFree™ – WCSP (DSBGA) .17-mm Small Bump – YZA (Pb-free)		SN74LVC1G18YZAR	
–40°C to 85°C	NanoStar™ – WCSP (DSBGA) 0.23-mm Large Bump – YEP	- Reel of 3000	SN74LVC1G18YEPR	CJ_
	NanoFree™ – WCSP (DSBGA) 0.23-mm Large Bump – YZP (Pb-free)	100	SN74LVC1G18YZPR	50.00
	SOT (SOT-23) – DBV	Reel of 3000	SN74LVC1G18DBVR	C18_
	SOT (SC-70) – DCK	Reel of 3000	SN74LVC1G18DCKR	CJ_

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

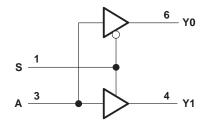
[‡]DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.

YEA/YZA,YEP/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition $(1 = \text{SnPb}, \bullet = \text{Pb-free}).$

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Star and NanoFree are trademarks of Texas Instruments.

SN74LVC1G18 1-OF-2 NONINVERTING DEMULTIPLEXER WITH 3-STATE DESELECTED OUTPUT SCES406G – JULY 2002 – REVISED SEPTEMBER 2003


description/ordering information (continued)

NanoStar[™] and NanoFree[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

FUNCTION TABLE							
INP	UTS	OUTI	PUTS				
S	Α	Y0	Y1				
L	L	L	Z				
L	Н	Н	Z				
н	L	Z	L				
н	Н	Z	Н				

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off state, V _O (see Note 1)	. –0.5 V to 6.5 V
Voltage range applied to any output in the high or low state, V_O (see Notes 1 and 2)0.5 V Input clamp current, I_{IK} ($V_I < 0$) Output clamp current, I_{OK} ($V_O < 0$) Continuous output current, I_O Continuous current through V_{CC} or GND Package thermal impedance, θ_{JA} (see Note 3): DBV package DCK package YEA/YZA package YEP/YZP package	50 mA 50 mA ±50 mA ±100 mA 165°C/W 259°C/W 143°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The value of V_{CC} is provided in the recommended operating conditions table.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

SN74LVC1G18 1-OF-2 NONINVERTING DEMULTIPLEXER WITH 3-STATE DESELECTED OUTPUT

SCES406G - JULY 2002 - REVISED SEPTEMBER 2003

			MIN	MAX	UNIT
\/	Supplyveltage	Operating	1.65	5.5	V
VCC	Supply voltage	Data retention only	1.5		v
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$		
M		V _{CC} = 2.3 V to 2.7 V	1.7		V
VIH	High-level input voltage	V _{CC} = 3 V to 3.6 V	2		V
		$V_{CC} = 4.5 V \text{ to } 5.5 V$	$0.7 \times V_{CC}$		
		V _{CC} = 1.65 V to 1.95 V		0.35×VCC	
		V_{CC} = 2.3 V to 2.7 V		0.7	
VIL Low-level input voltage	Low-level input voltage	$V_{CC} = 3 V \text{ to } 3.6 V$		0.8	V
		V _{CC} = 4.5 V to 5.5 V		$0.3 \times V_{CC}$	
VI	Input voltage	•	0	5.5	V
VO	Output voltage		0	V _{CC}	V
		V _{CC} = 1.65 V		-4	
		V _{CC} = 2.3 V		-8	
IOH	High-level output current			-16	mA
				-24	
		V _{CC} = 4.5 V		-32	
		V _{CC} = 1.65 V		4	
		V _{CC} = 2.3 V		8	
IOL	Low-level output current			16	mA
		V _{CC} = 3 V		24	
		V _{CC} = 4.5 V		32	
		V_{CC} = 1.8 V ± 0.15 V, 2.5 V ± 0.2 V	1	20	
$\Delta t/\Delta v$	Input transition rise or fall rate	V _{CC} = 3.3 V ± 0.3 V		10	ns/V
		$V_{CC} = 5 V \pm 0.5 V$	1	5	
TA	Operating free-air temperature		-40	85	°C

recommended operating conditions (see Note 4)

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74LVC1G18 1-OF-2 NONINVERTING DEMULTIPLEXER WITH 3-STATE DESELECTED OUTPUT SCES406G – JULY 2002 – REVISED SEPTEMBER 2003

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CON	DITIONS	VCC	MIN	TYP†	МАХ	UNIT
	I _{OH} = –100 μA		1.65 V to 5.5 V	V _{CC} -0.1			
	$I_{OH} = -4 \text{ mA}$		1.65 V	1.2			
	I _{OH} = -8 mA		2.3 V	1.9			
VOH	I _{OH} = -16 mA		2.1/	2.4			V
	I _{OH} = -24 mA		3 V	2.3			
	I _{OH} = -32 mA		4.5 V	3.8			
	I _{OL} = 100 μA		1.65 V to 5.5 V			0.1	
	I _{OL} = 4 mA					0.45	
I _{OL} = 8 mA			2.3 V			0.3	
VOL	I _{OL} = 16 mA	I _{OL} = 16 mA				0.4	V
	I _{OL} = 24 mA		3 V			0.55	
	I _{OL} = 32 mA		4.5 V			0.55	
lj	VI = 5.5 V or GND		0 to 5.5 V			±5	μΑ
loff	$V_{I} \text{ or } V_{O} = 5.5 \text{ V}$		0			±10	μΑ
I _{OZ}	$V_{O} = 0$ to 5.5 V		3.6 V			10	μΑ
ICC	VI = 5.5 V or GND,	IO = 0	1.65 V to 5.5 V			10	μΑ
ΔICC	One input at V _{CC} – 0.6 V,	Other inputs at V_{CC} or GND	3 V to 5.5 V			500	μΑ
Ci	$V_{I} = V_{CC}$ or GND		3.3 V		4		pF
Co	$V_{O} = V_{CC}$ or GND		3.3 V		6		pF

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}C$.

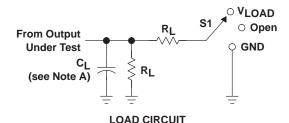
switching characteristics over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = ± 0.1		V _{CC} = ± 0.		V _{CC} = ± 0.		V _{CC} ± 0.		UNIT
		(001F01)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
^t pd	А	Y	2.3	8.4	1.1	4.2	1.1	3.4	0.8	2.7	ns

switching characteristics over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ or 50 pF (unless otherwise noted) (see Figure 2)

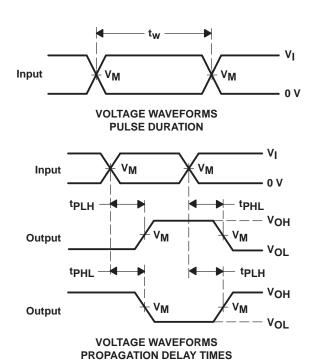
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = ± 0.1	: 1.8 V 15 V	V _{CC} = ± 0.	: 2.5 V 2 V	V _{CC} = ± 0.		V _{CC} : ± 0.	= 5 V 5 V	UNIT
		(001101)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
^t pd	A	Y	3.5	9.3	1.7	5	1.5	4.2	0.7	3.2	ns
ten	S	Y	3.6	10.2	1.7	5.6	1.5	4.6	0.9	3.4	ns
^t dis	S	Y	1.9	12.7	1	5.3	1.1	4.9	0.5	3.3	ns

operating characteristics, $T_A = 25^{\circ}C$


Γ	PARAMETER		TEST	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	V _{CC} = 5 V	UNIT
		FARAMETER	CONDITIONS	TYP	TYP	TYP	TYP	UNIT
Γ	C _{pd}	Power dissipation capacitance	f = 10 MHz	17	17	18	21	pF

SN74LVC1G18 **1-OF-2 NONINVERTING DEMULTIPLEXER** WITH 3-STATE DESELE TFD OI С SCES406G - JULY 2002 - REVISED SEPTEMBER 2003

٧ı



TEST	S1
^t PLH ^{/t} PHL	Open
tPLZ/tPZL	VLOAD
^t PHZ ^{/t} PZH	GND

	INF	PUTS			•	_	
Vcc	VI	t _r /t _f	VM	VLOAD	CL	RL	v_{Δ}
$\textbf{1.8 V} \pm \textbf{0.15 V}$	VCC	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	15 pF	1 Μ Ω	0.15 V
$\textbf{2.5 V} \pm \textbf{0.2 V}$	Vcc	≤2 ns	V _{CC} /2	2 × V _{CC}	15 pF	1 Μ Ω	0.15 V
3.3 V \pm 0.3 V	3 V	≤2.5 ns	1.5 V	6 V	15 pF	1 Μ Ω	0.3 V
5 V \pm 0.5 V	Vcc	≤2.5 ns	V _{CC} /2	2 × V _{CC}	15 pF	1 Μ Ω	0.3 V

Timing Input

0 V t_{su} th ٧I Data Input ٧M ٧M 0 V **VOLTAGE WAVEFORMS** SETUP AND HOLD TIMES ٧ı Output ٧M ٧M Control 0 V - ^tPLZ ^tPZL Output VLOAD/2 Waveform 1 S1 at V_{LOAD} ٧м VoL + VA (see Note B) VOL ^tPZH **t**PHZ Output VOH Waveform 2 $V_{OH} - V_{\Delta}$ ۷м S1 at GND ≈0 V (see Note B) **VOLTAGE WAVEFORMS**

٧M

ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω .
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpl 7 and tpH7 are the same as tdis.

INVERTING AND NONINVERTING OUTPUTS

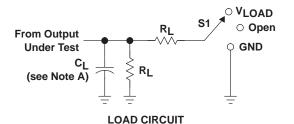

- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

SN74LVC1G18 1-OF-2 NONINVERTING DEMULTIPLEXER WITH 3-STATE DESELECTED OUTPUT SCES406G – JULY 2002 – REVISED SEPTEMBER 2003

PARAMETER MEASUREMENT INFORMATION

TEST	S1
^t PLH ^{/t} PHL	Open
tPLZ/tPZL	VLOAD
^t PHZ ^{/t} PZH	GND

٧ı

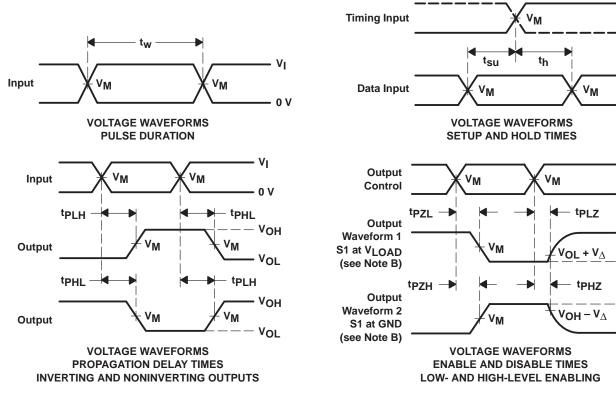
nν

٧ı

0 V

٧ı

0 V


VOL

VOH

≈0 V

VLOAD/2

INPUTS V_{Λ} Vcc ۷м VLOAD CL RL ٧ı t_r/t_f $1.8~V\pm0.15~V$ V_{CC} ≤2 ns V_{CC}/2 $2 \times V_{CC}$ 30 pF **1 k**Ω 0.15 V $\textbf{2.5 V} \pm \textbf{0.2 V}$ ≤2 ns V_{CC}/2 $2 \times V_{CC}$ 30 pF **500** Ω 0.15 V Vcc **500** Ω $\textbf{3.3 V} \pm \textbf{0.3 V}$ 3 V ≤2.5 ns 1.5 V 6 V 50 pF 0.3 V $5~V\pm0.5~V$ ≤2.5 ns 50 pF **500** Ω 0.3 V Vcc V_{CC}/2 $2 \times V_{CC}$

NOTES: A. C_L includes probe and jig capacitance.

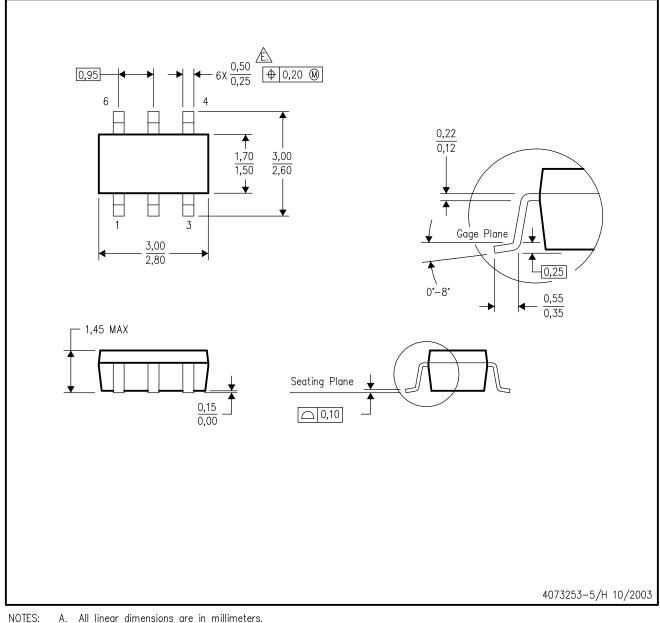

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω .
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

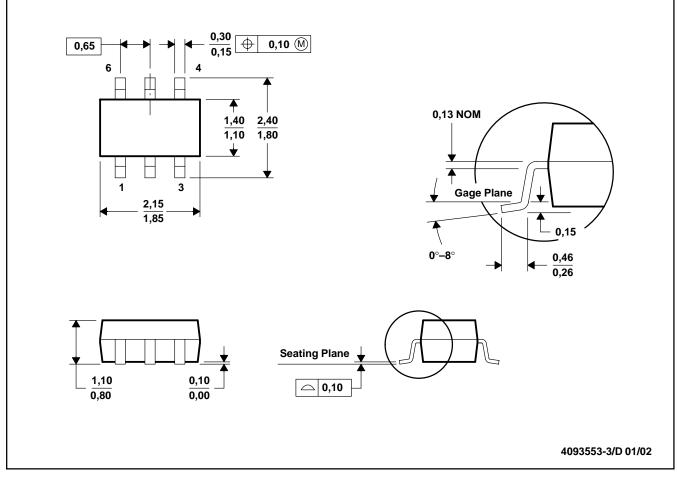
Figure 2. Load Circuit and Voltage Waveforms

DBV (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE

A. All linear dimensions are in millimeters.

- This drawing is subject to change without notice. Β.
- C. Body dimensions do not include mold flash or protrusion.D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- E Falls within JEDEC MO-178 Variation AB, except minimum lead width.

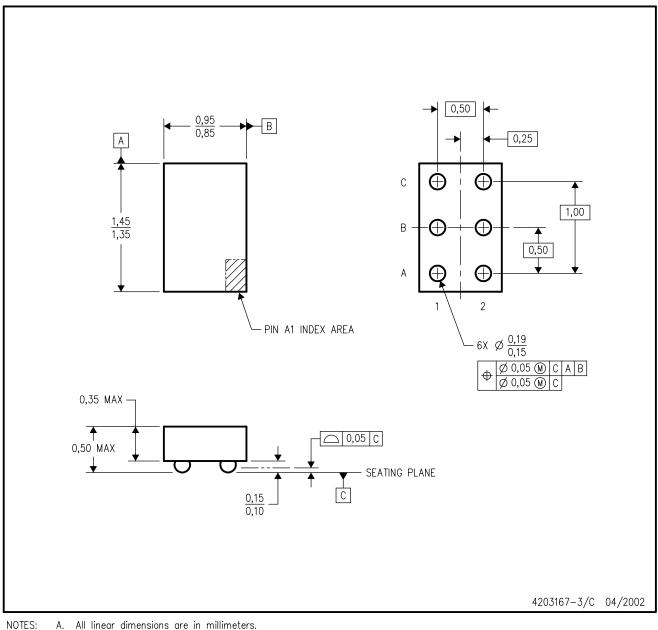


MECHANICAL DATA

MPDS114 - FEBRUARY 2002

DCK (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE

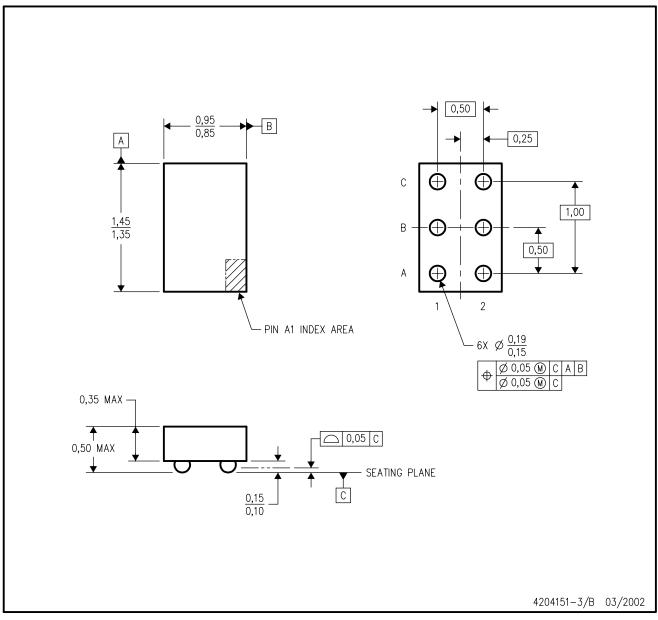

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-203

YEA (R-XBGA-N6)

DIE-SIZE BALL GRID ARRAY

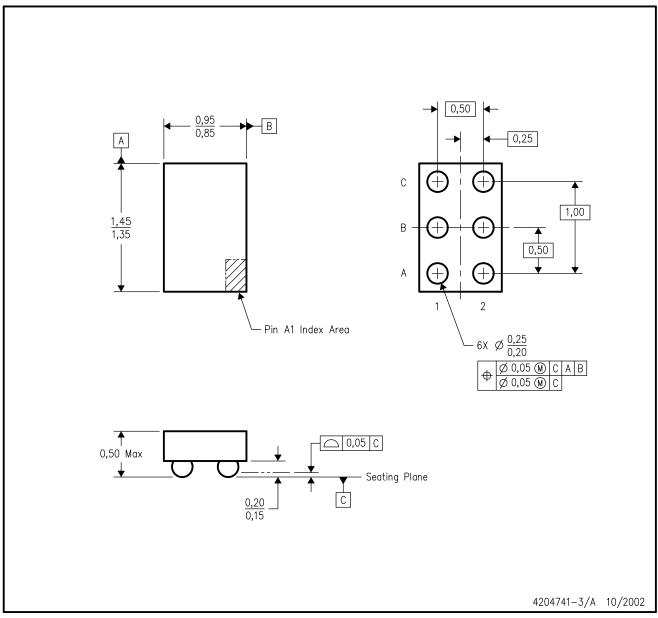
NOTES:


- This drawing is subject to change without notice. Β.
- C. NanoStar™ package configuration.
- D. Package complies to JEDEC MO-211 variation EA.
- E. This package is tin-lead (SnPb). Refer to the 6 YZA package (drawing 4204151) for lead-free.

NanoStar is a trademark of Texas Instruments.

YZA (R-XBGA-N6)

DIE-SIZE BALL GRID ARRAY

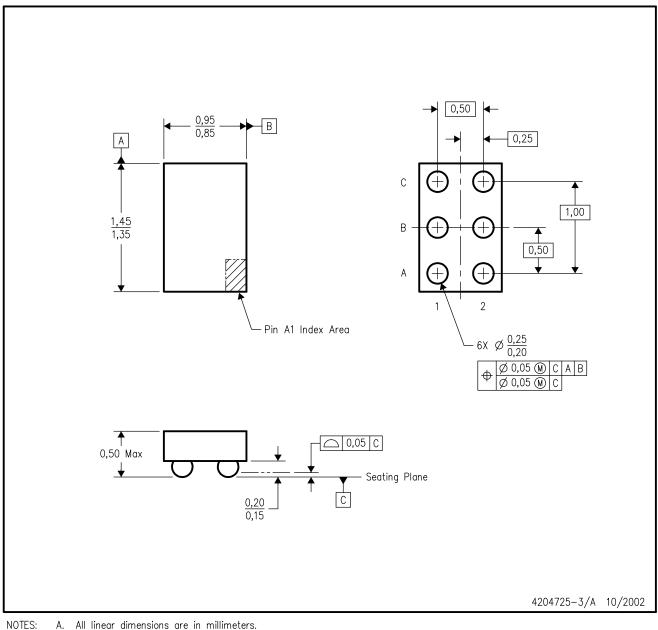

NOTES:

- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.
- D. Package complies to JEDEC MO-211 variation EA.
- E. This package is lead-free. Refer to the 6 YEA package (drawing 4203167) for tin-lead (SnPb).

NanoFree is a trademark of Texas Instruments.

YZP (R-XBGA-N6)

DIE-SIZE BALL GRID ARRAY


NOTES:

- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.
- D. This package is lead-free. Refer to the 6 YEP package (drawing 4204725) for tin-lead (SnPb).

NanoFree is a trademark of Texas Instruments.

YEP (R-XBGA-N6)

DIE-SIZE BALL GRID ARRAY

NOTES:

- This drawing is subject to change without notice. Β.
- C. NanoStar™ package configuration.
- D. This package is tin-lead (SnPb). Refer to the 6 YZP package (drawing 4204741) for lead-free.

NanoStar is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Post Office Box 655303 Dallas, Texas 75265

Texas Instruments

Copyright © 2003, Texas Instruments Incorporated