捷多邦，专业PCB打样工厂，24小时加急出货

MC74VHC1GT66

Advance Information Analog Switch

The MC74VHC1GT66 is an advanced high speed CMOS bilateral analog switch fabricated with silicon gate CMOS technology．It achieves high speed propagation delays and low ON resistances while maintaining CMOS low power dissipation．This bilateral switch controls analog and digital voltages that may vary across the full power－supply range（from V_{CC} to GND）．

The MC74VHC1GT66 is compatible in function to a single gate of the very High Speed CMOS MC74VHCT4066．The device has been designed so that the ON resistances $\left(\mathrm{R}_{\mathrm{ON}}\right)$ are much lower and more linear over input voltage than RON of the metal－gate CMOS or High Speed CMOS analog switches．

The ON／OFF Control input is compatible with TTL－type input thresholds allowing the device to be used as a logic－level translator from 3．0V CMOS logic to 5.0 V CMOS logic or from 1.8 V CMOS logic to 3.0 V CMOS logic while operating at the high－voltage power supply．The input protection circuitry on this device allows overvoltage tolerance on the input，which provides protection when voltages of up to 7 V are applied，regardless of the supply voltage．This allows the MC74VHC1GT66 to be used to interface 5 V circuits to 3 V circuits．
－Low Power Dissipation： $\mathrm{I} C \mathrm{C}=2 \mu \mathrm{~A}(\operatorname{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
－Diode Protection Provided on Inputs and Outputs
－Improved Linearity and Lower ON Resistance over Input Voltage
－Pin and Function Compatible with Other Standard Logic Families
－Latchup Performance Exceeds 300 mA
－ESD Performance： $\mathrm{HBM}>2000 \mathrm{~V} ; \mathrm{MM}>200 \mathrm{~V}, \mathrm{CDM}>1500 \mathrm{~V}$

5－Lead SOT－353 Pinout（Top View）

LOGIC SYMBOL

ON Semiconductor
Formerly a Division of Motorola http：／／onsemi．com

SC－88A／SOT－353
DF SUFFIX
CASE 419A
MARKING DIAGRAM

Pin 1
$d=$ Date Code

PIN ASSIGNMENT	
1	IN／OUT X_{A}
2	OUT／IN Y_{A}
3	GND
4	ON／OFF CONTROL
5	VCC

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet．
FUNCTION TABLE

On／Off Control Input	State of Analog Switch
L	Off
H	On

．dZSC．com

ABSOLUTE MAXIMUM RATINGS

Characteristics	Symbol	Value	Unit
DC Supply Voltage	V_{CC}	-0.5 to +7.0	V
Digital Input Voltage	V_{IN}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Analog Output Voltage	V_{IS}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Digital Input Diode Current	I_{IK}	-20	mA
DC Supply Current, V_{CC} and GND	I_{CC}	+25	mA
Power dissipation in still air, SC-88A \dagger	P_{D}	200	mW
Lead temperature, 1 mm from case for 10 s	$\mathrm{~T}_{\mathrm{L}}$	260	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\mathrm{Stg}}$	-65 to +150	${ }^{\circ} \mathrm{C}$

\dagger Derating - SC-88A Package: $-3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	V_{CC}	4.5	5.5	V
Digital Input Voltage	$\mathrm{V}_{\text {IN }}$	GND	V_{CC}	V
Analog Input Voltage	VIS	GND	V_{CC}	V
Static or Dynamic Voltage Across Switch	VIO*		1.2	V
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	-55	+85	${ }^{\circ} \mathrm{C}$
Input Rise and Fall Time ON/OFF Control Input $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$	$\mathrm{tr}_{\mathrm{r}}, \mathrm{tf}_{f}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 100 \\ 20 \end{gathered}$	ns/V

* For voltage drops across the switch greater than 1.2 V (switch on), excessive V_{CC} current may be drawn; i.e. the current out of the switch may contain both $V_{\text {CC }}$ and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
V_{IH}	Minimum High-Level Input Voltage ON/OFF Control Input	RON = Per Spec	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2.0 \\ & 2.0 \end{aligned}$			$\begin{aligned} & 1.2 \\ & 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 1.2 \\ & 2.0 \\ & 2.0 \end{aligned}$		V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage ON/OFF Control Input	RON = Per Spec	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$			$\begin{gathered} 0.53 \\ 0.8 \\ 0.8 \end{gathered}$		$\begin{gathered} 0.53 \\ 0.8 \\ 0.8 \end{gathered}$		$\begin{gathered} 0.53 \\ 0.8 \\ 0.8 \end{gathered}$	V
In	Maximum Input Leakage Current ON/OFF Control Input	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	$\begin{aligned} & 0 \text { to } \\ & 5.5 \end{aligned}$			± 0.1		± 1.0		± 1.0	$\mu \mathrm{A}$
ICC	Maximum Quiescent Supply Current	$\begin{aligned} & V_{I N}=V_{C C} \text { or } G N D \\ & V_{I O}=0 V \end{aligned}$	5.5			2.0		20		40	$\mu \mathrm{A}$
ICCT	Quiescent Supply Current	ON/OFF Control at 3.4 V	5.5			1.35		1.5		1.65	mA
RON	Maximum "ON" Resistance	$\begin{array}{\|l} \hline V_{I N}=V_{I H} \\ V_{I S}=V_{C C} \text { or GND } \\ \left\|l_{I S}\right\| \leq 10 \mathrm{~mA} \text { (Figure 1) } \\ \hline \end{array}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 30 \\ & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \\ & 20 \end{aligned}$		$\begin{aligned} & 70 \\ & 40 \\ & 35 \end{aligned}$		$\begin{aligned} & 100 \\ & 50 \\ & 45 \end{aligned}$	Ω
		Endpoints $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}$ $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\mathrm{CC}}$ or GND \mid IIS $\mid \leq 10 \mathrm{~mA}$ (Figure 1)	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{gathered} 25 \\ 12 \\ 8 \end{gathered}$	$\begin{aligned} & 50 \\ & 20 \\ & 15 \end{aligned}$		$\begin{aligned} & 65 \\ & 26 \\ & 23 \end{aligned}$		$\begin{aligned} & 90 \\ & 40 \\ & 32 \end{aligned}$	Ω
IOFF	Maximum Off-Channel Leakage Current	$\begin{array}{\|l} \hline V_{\text {IN }}=V_{I L} \\ V_{I S}=V_{C C} \text { or GND } \\ \text { Switch Off (Figure 2) } \end{array}$	5.5			0.1		0.5		1.0	$\mu \mathrm{A}$
ION	Maximum On-Channel Leakage Current	$\begin{aligned} & \hline V_{I N}=V_{I H} \\ & V_{I S}=V_{C C} \text { or GND } \\ & \text { Switch On (Figure 3) } \\ & \hline \end{aligned}$	5.5			0.1		0.5		1.0	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS ($C_{\text {load }}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \text { tPLH, } \\ & \text { tPHL } \end{aligned}$	Maximum Propogation Delay, Input X to Y	$\mathrm{Y}_{\mathrm{A}}=\text { Open }$ Figure 4	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		1 0 0 0	5 2 1 1		6 3 1 1		$\begin{aligned} & 7 \\ & 4 \\ & 2 \\ & 1 \end{aligned}$	ns
$\begin{aligned} & \text { tplz, } \\ & \text { tpH7 } \end{aligned}$	Maximum Propogation Delay, ON/OFF Control to Analog Output	$R_{L}=1000 \Omega$ Figure 5	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		15 8 6 4	$\begin{gathered} 35 \\ 15 \\ 10 \\ 7 \end{gathered}$		$\begin{gathered} 46 \\ 20 \\ 13 \\ 9 \end{gathered}$		$\begin{aligned} & 57 \\ & 25 \\ & 17 \\ & 11 \end{aligned}$	ns
$\begin{aligned} & \text { tPZL, } \\ & \text { tPZH } \end{aligned}$	Maximum Propogation Delay, ON/OFF Control to Analog Output	$\mathrm{R}_{\mathrm{L}}=1000 \Omega$ Figure 5	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		15 8 6 4	$\begin{gathered} 35 \\ 15 \\ 10 \\ 7 \end{gathered}$		$\begin{gathered} 46 \\ 20 \\ 13 \\ 9 \end{gathered}$		$\begin{aligned} & 57 \\ & 25 \\ & 17 \\ & 11 \end{aligned}$	ns
$\mathrm{CIN}_{\text {N }}$	Maximum Input Capacitance	ON/OFF Control Input	0.0		3	10		10		10	pF
		Contol Input = GND Analog I/O Feedthrough	5.0		4 4	$\begin{aligned} & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	

CPD	Power Dissipation Capacitance (Note NO TAG)	Typical @ $\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathbf{V} \mathbf{C C}=\mathbf{5 . 0 V}$	
	18	pF	

1. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation: $\operatorname{ICC}(O P R)=C_{P D} \cdot \mathrm{~V}_{\mathrm{CC}} \cdot \mathrm{fin}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} . \mathrm{C}_{\mathrm{PD}}$ is used to determine the no-load dynamic
power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

MC74VHC1GT66

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Symbol	Parameter	Test Conditions	Vcc	$\begin{aligned} & \text { Limit } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	Unit
BW	Maximum On-Channel Bandwidth or Minimum Frequency Response Figure 7	$\mathrm{f}_{\text {in }}=1 \mathrm{MHz}$ Sine Wave Adjust $f_{\text {in }}$ voltage to obtain 0 dBm at V_{OS} Increase $f_{i n}=$ frequency until $d B$ meter reads $-3 d B$ $R_{L}=50 \Omega, C_{L}=10 \mathrm{pF}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 150 \\ & 175 \\ & 200 \end{aligned}$	MHz
$\mathrm{ISO}_{\text {off }}$	Off-Channel Feedthrough Isolation Figure 8	$\mathrm{f}_{\text {in }}=$ Sine Wave Adjust $f_{\text {in }}$ voltage to obtain 0 dBm at $\mathrm{V}_{\text {IS }}$ $\begin{aligned} & \mathrm{f}_{\text {in }}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{f}_{\text {in }}=1.0 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{aligned}$	3.0 4.5 5.5 3.0 4.5 5.5	-50 -50 -50 -40 -40 -40	dB
NOISE ${ }_{\text {feed }}$	Feedthrough Noise Control to Switch Figure 9	$\mathrm{V}_{\text {in }} \leq 1 \mathrm{MHz}$ Square Wave ($\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2 \mathrm{~ns}$) Adjust R_{L} at setup so that $I_{S}=0 \mathrm{~A}$ $R_{L}=600 \Omega, C_{L}=50 \mathrm{pF}$ $R_{L}=50 \Omega, C_{L}=10 \mathrm{pF}$	3.0 4.5 5.5 3.0 4.5 5.5	$\begin{gathered} 45 \\ 60 \\ 130 \\ \hline 25 \\ 30 \\ 60 \end{gathered}$	mV PP
THD	Total Harmonic Distortion Figure 10	$\mathrm{f}_{\mathrm{in}}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ THD $=$ THD Measured - THD $_{\text {Source }}$ $\mathrm{V}_{\text {IS }}=3.0 \mathrm{~V}$ PP sine wave $\mathrm{V}_{\text {IS }}=4.0 \mathrm{~V}$ PP sine wave $\mathrm{V}_{\text {IS }}=5.0 \mathrm{~V}$ PP sine wave	$\begin{aligned} & 3.3 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.10 \\ & 0.06 \end{aligned}$	\%

1. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\mathrm{I} C \mathrm{C}(\mathrm{OPR})=\mathrm{CPD}_{\mathrm{P}} \cdot \mathrm{V}_{\mathrm{CC}} \cdot \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}}$. C_{PD} is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \cdot \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\text {in }}+\mathrm{I}_{\mathrm{CC}} \cdot \mathrm{V}_{\mathrm{CC}}$.

MC74VHC1GT66

Figure 1. On Resistance Test Set-Up

Figure 3. Maximum On-Channel Leakage Current Test Set-Up

Figure 5. Propagation Delay Output Enable/Disable Test Set-Up

Figure 2. Maximum Off-Channel Leakage Current Test Set-Up

Figure 4. Propagation Delay Test Set-Up

Figure 6. Power Dissipation Capacitance Test Set-Up

MC74VHC1GT66

Figure 7. Maximum On-Channel Bandwidth Test Set-Up

Figure 8. Off-Channel Feedthrough Isolation Test Set-Up

Figure 9. Feedthrough Noise, ON/OFF Control to Analog Out, Test Set-Up

Figure 11. Propagation Delay, Analog In to Analog Out Waveforms

Figure 12. Propagation Delay, ON/OFF Control

MC74VHC1GT66

DEVICE ORDERING INFORMATION

	Device Nomenclature						Package Type	Tape and Reel Size
Device Order Number	Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape \& Reel Suffix		
MC74VHC1GT66DFT1	MC	74	VHC1G	T66	DF	T1	$\begin{aligned} & \text { SC-88A / } \\ & \text { SOT-353 } \end{aligned}$	7-Inch/3000 Unit

PACKAGE DIMENSIONS

SC-88A / SOT-353
DF SUFFIX
5-LEAD PACKAGE
CASE 419A-01
ISSUE B

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: MM.

DIM	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
A	0.071	0.087	1.80	2.20	
B	0.045	0.053	1.15	1.35	
C	0.031	0.043	0.80	1.10	
D	0.004	0.012	0.10		0.30
G	0.026 BSC		0.65		BSC
H	-	0.004	-	0.10	
J	0.004	0.010	0.10		0.25
K	0.004	0.012	0.10		0.30
N	0.008		REF	0.20	
REF					
S	0.079	0.087	2.00		2.20
V	0.012	0.016	0.30	0.40	

MC74VHC1GT66

Figure 13. Carrier Tape Specifications

EMBOSSED CARRIER DIMENSIONS (See Notes 1 and 2)

Tape Size	$\begin{aligned} & B_{1} \\ & \operatorname{Max} \end{aligned}$	D	D_{1}	E	F	K	P	P_{0}	P_{2}	R	T	W
8 mm	$\begin{aligned} & 4.35 \mathrm{~mm} \\ & \left(0.171^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 1.5+0.1 / \\ -0.0 \mathrm{~mm} \\ (0.059 \\ +0.004 / \\ -0.010) \end{gathered}$		$\begin{gathered} 1.75 \\ \pm 0.1 \mathrm{~mm} \\ (0.069 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 3.5 \\ \pm 0.5 \mathrm{~mm} \\ (1.38 \\ \left. \pm 0.002^{\prime \prime}\right) \end{gathered}$	$\begin{aligned} & 2.4 \mathrm{~mm} \\ & \left(0.094^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 4.0 \\ \pm 0.10 \mathrm{~mm} \\ (0.157 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 4.0 \\ \pm 0.1 \mathrm{~mm} \\ (0.156 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 2.0 \\ \pm 0.1 \mathrm{~mm} \\ (0.079 \\ \left. \pm 0.002^{\prime \prime}\right) \end{gathered}$	$\begin{aligned} & 25 \mathrm{~mm} \\ & \left(0.98^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 0.3 \\ \pm 0.05 \mathrm{~mm} \\ (0.01 \\ +0.0038 / \\ \left.-0.0002^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 8.0 \\ \pm 0.3 \mathrm{~mm} \\ (0.315 \\ \left. \pm 0.012^{\prime \prime}\right) \end{gathered}$

1. Metric Dimensions Govern-English are in parentheses for reference only.
2. A_{0}, B_{0}, and K_{0} are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to 0.50 mm max. The component cannot rotate more than 10° within the determined cavity

Figure 14. Reel Dimensions

REEL DIMENSIONS

Tape Size	A Max	G	t Max
8 mm	330 mm $\left(13^{\prime \prime}\right)$	$8.400 \mathrm{~mm},+1.5 \mathrm{~mm},-0.0$ $\left(0.33^{\prime \prime},+0.059^{\prime \prime},-0.00\right)$	14.4 mm $\left(0.56^{\prime \prime}\right)$

Figure 15. Reel Winding Direction

MC74VHC1GT66

Figure 16. Tape Ends for Finished Goods

Figure 17. Reel Configuration

MC74VHC1GT66
Notes

ON Semiconductor and \square are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

USA/EUROPE Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line*: 303-675-2167
800-344-3810 Toll Free USA/Canada
*To receive a Fax of our publications
N. America Technical Support: 800-282-9855 Toll Free USA/Canada

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support
Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549
Phone: 81-3-5487-8345
Email: r14153@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

