查询74LVT16952DGGRE4供应商

捷多邦,专业PCESN54LV.7216952 3.3-V ABT 16-BIT REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS SCBS151D - MAY 1992 - REVISED AUGUST 1996

 State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V 	SN54LVT16952 WD PACKAGE SN74LVT16952 DGG OR DL PACKAGE
Operation and Low-Static Power Dissipation	
 Members of the Texas Instruments Widebus[™] Family 	10EAB 1 56 10EBA 1CLKAB 2 55 1CLKBA 1CLKENAB 3 54 1CLKENBA
 Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC}) 	GND 4 53 GND 1A1 5 52 1B1
 Support Unregulated Battery Operation Down to 2.7 V 	1A2 6 51 1B2 V _{CC} 7 50 V _{CC}
 Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C 	1A3 [8 49] 1B3 1A4 [9 48] 1B4
 ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model 	1A5 10 47 1B5 GND 11 46 GND 1A6 12 45 1B6
(C = 200 pF, R = 0)	1A7 [13 44] 1B7 1A8 [14 43] 1B8
Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17	2A1 [15 42] 2B1 2A2 [16 41] 2B2
 Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors 	2A3 [17 40] 2B3 GND [18 39] GND
for External Pullup Resistors Support Live Insertion 	2A4 🛛 19 38 🖸 2B4
 Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise 	2A5 20 37 2B5 2A6 21 36 2B6
 Flow-Through Architecture Optimizes PCB Layout 	V _{CC} 22 35 V _{CC} 2A7 23 34 287
Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages and 380-mil	2A8 24 33 2B8 GND 25 32 GND 2CLKENAB 26 31 2CLKENBA 2CLKAB 27 30 2CLKBA
Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings	20EAB [27 30] 20EBA 20EAB [28 29] 20EBA

description

The 'LVT16952 are 16-bit registered transceivers designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment. These devices can be used as two 8-bit transceivers or one 16-bit transceiver. Data on the A or B bus is stored in the registers on the low-to-high transition of the clock (CLKAB or CLKBA) input provided that the clock-enable (CLKENAB or CLKENBA) input is low. Taking the output-enable (OEAB or OEBA) input low accesses the data on either port.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74LVT16952 is available in TI's shrink small-outline (DL) and thin shrink small-outline (DGG) packages, which provide twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

lidebus is a trademark of Texas Instruments Incorporated.

SN54LVT16952, SN74LVT16952 3.3-V ABT 16-BIT REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS SCBS151D – MAY 1992 – REVISED AUGUST 1996

36631310 - MAT 1992 - REVISED A06031 19

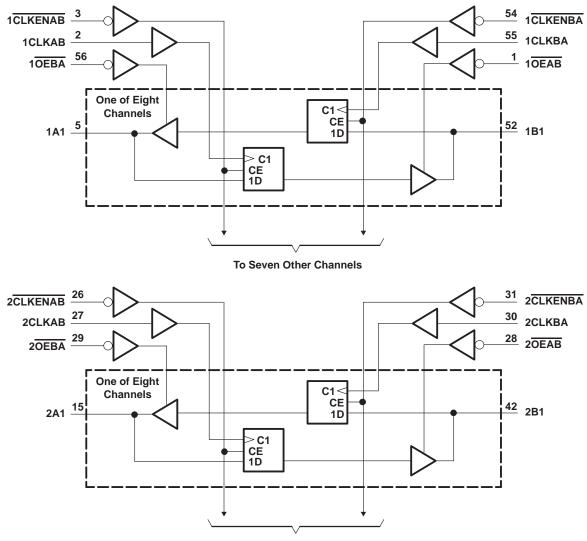
description (continued)

The SN54LVT16952 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74LVT16952 is characterized for operation from -40° C to 85° C.

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SCBS151D - MAY 1992 - REVISED AUGUST 1996


FUNCTION TABLE[†]

	OUTPUT			
CLKENAB	CLKAB	OEAB	Α	В
Н	Х	L	Х	в ₀ ‡
Х	L	L	Х	в ₀ ‡ в ₀ ‡
L	\uparrow	L	L	L
L	\uparrow	L	Н	н
Х	Х	Н	Х	Z

[†] A-to-B data flow is shown; B-to-A data flow is similar but uses CLKENBA, CLKBA, and OEBA.

Level of B before the indicated steady-state input conditions were established

logic diagram (positive logic)

To Seven Other Channels

SCBS151D - MAY 1992 - REVISED AUGUST 1996

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	
Input voltage range, V _I (see Note 1) –0	
Voltage range applied to any output in the high state or power-off state, V _O (see Note 1)0	.5 V to 7 V
Current into any output in the low state, I _O : SN54LVT16952	96 mA
SN74LVT16952	128 mA
Current into any output in the high state, I _O (see Note 2): SN54LVT16952	48 mA
SN74LVT16952	
Input clamp current, I _{IK} (V _I < 0)	<i>–</i> 50 mA
Output clamp current, I_{OK} (V _O < 0)	–50 mA
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 3): DGG package	1 W
DL package	
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 2. This current flows only when the output is in the high state and $V_O > V_{CC}$.
 - 3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the *Package Thermal Considerations* application note in the *ABT Advanced BiCMOS Technology Data Book*.

recommended operating conditions (see Note 4)

			SN54LV	T16952	SN74LV	T16952	UNIT
			MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage		2.7	3.6	2.7	3.6	V
VIH	High-level input voltage	2		2		V	
VIL	Low-level input voltage		0.8		0.8	V	
VI	Input voltage			5.5		5.5	V
ЮН	High-level output current			-24		-32	mA
IOL	Low-level output current		48		64	mA	
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
Т _А	Operating free-air temperature		-55	125	-40	85	°C

NOTE 4: Unused control inputs must be held high or low to prevent them from floating.

SCBS151D - MAY 1992 - REVISED AUGUST 1996

DADAMETER	TEST CONDITIONS				54LVT16	952	SN74LVT16952				
PARAMETER	'	MIN	TYP†	MAX	MIN	TYP†	MAX	UNI			
VIK	V _{CC} = 2.7 V,	I _I = -18 mA			-1.2			-1.2	V		
	$V_{CC} = MIN \text{ to } MAX^{\ddagger},$	I _{OH} = -100 μA		V _{CC} -0	.2		VCC-0.	2			
	V _{CC} = 2.7 V,	I _{OH} = –8 mA		2.4			2.4			V	
VOH	V _{CC} = 3 V	I _{OH} = -24 mA		2						v	
	VCC = 3 V	I _{OH} = -32 mA					2				
	V _{CC} = 2.7 V	I _{OL} = 100 μA				0.2			0.2		
	VCC = 2.7 V	I _{OL} = 24 mA				0.5			0.5		
Vo		I _{OL} = 16 mA				0.4			0.4	v	
VOL	$\lambda = 2 \lambda $	I _{OL} = 32 mA				0.5			0.5	V	
	V _{CC} = 3 V	I _{OL} = 48 mA				0.55					
		I _{OL} = 64 mA							0.55		
	V _{CC} = 3.6 V,	$V_I = V_{CC} \text{ or } GND$	Control			±1			±1		
	$V_{CC} = 0 \text{ or MAX}^{\ddagger},$	V _I = 5.5 V	inputs			10			10		
lj	V _{CC} = 3.6 V	V _I = 5.5 V				100			20	μA	
		$V_I = V_{CC}$	A or B ports§			1			1		
		$V_{I} = 0$				-5			-5		
loff	$V_{CC} = 0,$	$V_{I} \text{ or } V_{O} = 0 \text{ to } 4.5 \text{ V}$							±100	μΑ	
ha in	V a a - 2 V	VI = 0.8 V	A or P porto	75			75				
ll(hold)	V _{CC} = 3 V	V _I = 2 V	A or B ports	-75			-75			μA	
IOZH	V _{CC} = 3.6 V,	$V_{O} = 3 V$				1			1	μΑ	
IOZL	V _{CC} = 3.6 V,	$V_{O} = 0.5 V$				-1			-1	μΑ	
			Outputs high			0.12			0.12		
	V _{CC} = 3.6 V,	$I_{O} = 0,$	Outputs low			5				mA	
lcc	$V_I = V_{CC}$ or GND	Outputs disabled			0.12			0.12			
$\Delta I_{CC}\P$	$V_{CC} = 3 V$ to 3.6 V, One input at $V_{CC} - 0.6 V$, Other inputs at V_{CC} or GND					0.2			0.2	mA	
Ci	V _I = 3 V or 0				4			4		pF	
Cio	V _O = 3 V or 0				13			13		pF	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

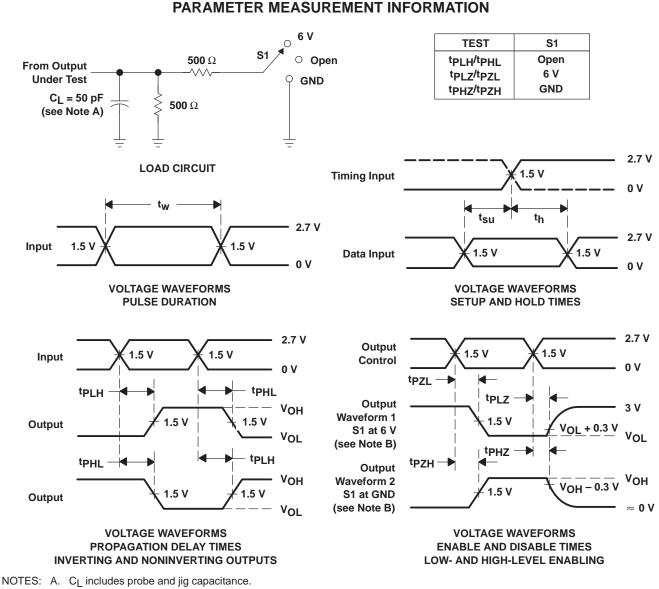
[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. [‡] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $\$ Unused pins at V_CC or GND

I This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SN54LVT16952, SN74LVT16952 3.3-V ABT 16-BIT REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS SCBS151D - MAY 1992 - REVISED AUGUST 1996

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)


			SN54LVT16952					SN74LVT16952			
				V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V		3.3 V 3 V	V _{CC} = 2.7 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency		0	150	0	150	0	150	0	150	MHz
	W Pulse duration	CLKEN high	3.3		3.3		3.3		3.3		-
tw		CLK high or low	3.3		3.3		3.3		3.3		ns
	Setup time	A or B before CLK	2.6		3.3		2.1		2.9		
t _{su}		CLKEN before CLK	1.2		1.6		1.2		1.6		ns
	t _h Hold time	A or B after CLK	0.7		0.7		0.7		0.7		-
th Hold lime		CLKEN after CLK	1.4		1.5		1.4		1.5		ns

switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

			SN54LVT16952				SN74LVT16952					
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V			V _{CC} = 2.7 V		UNIT
			MIN	MAX	MIN	MAX	MIN	TYP†	MAX	MIN	MAX	
fmax			150		150		150			150		MHz
^t PLH	CLKBA or	A or B	1.6	5.7		7.4	2	3.4	5.8		7.1	ns
^t PHL	CLKAB	AUB	2	6		7	2	3.4	5.8		6.9	115
^t PZH	OEBA or	A or B	1	5		7.3	1	2.7	5.6		6.7	ns
tPZL	OEAB	AUB	1.2	5.2		5.9	1.2	2.7	6.5		8	115
^t PHZ	OEBA or	A or B	1.8	6.7		7.3	2.3	3.9	6.3		6.9	ns
^t PLZ	OEAB	AUB	1.2	5.8		6	2.2	3.9	5.1		5.3	115

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

SCBS151D - MAY 1992 - REVISED AUGUST 1996

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_Q = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.

C. All highlights are supplied by generators having the following characteristics. Find \geq 10 M

 $\mathsf{D}.\;\;\mathsf{The}\;\mathsf{outputs}\;\mathsf{are}\;\mathsf{measured}\;\mathsf{one}\;\mathsf{at}\;\mathsf{a}\;\mathsf{time}\;\mathsf{with}\;\mathsf{one}\;\mathsf{transition}\;\mathsf{per}\;\mathsf{measurement}.$

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
74LVT16952DGGRE4	ACTIVE	TSSOP	DGG	56		TBD	Call TI	Call TI
SN74LVT16952DGGR	ACTIVE	TSSOP	DGG	56	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
SN74LVT16952DL	ACTIVE	SSOP	DL	56	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVT16952DLR	ACTIVE	SSOP	DL	56	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVT16952DLRG4	ACTIVE	SSOP	DL	56	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

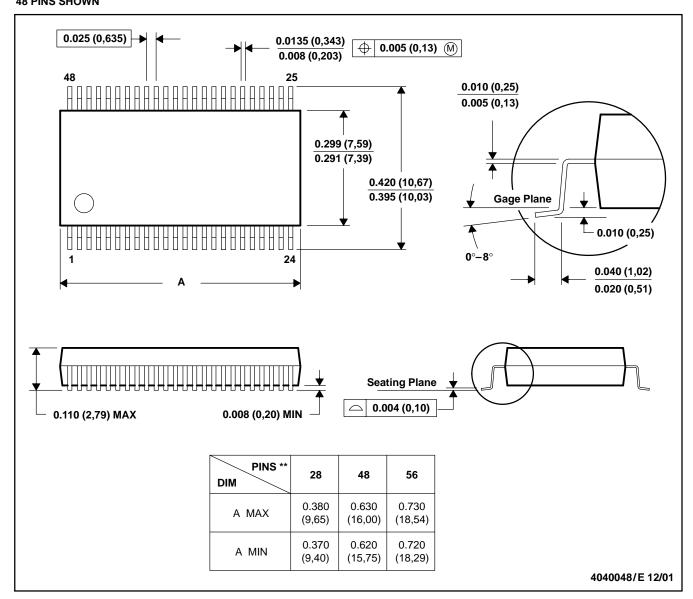
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

MECHANICAL DATA

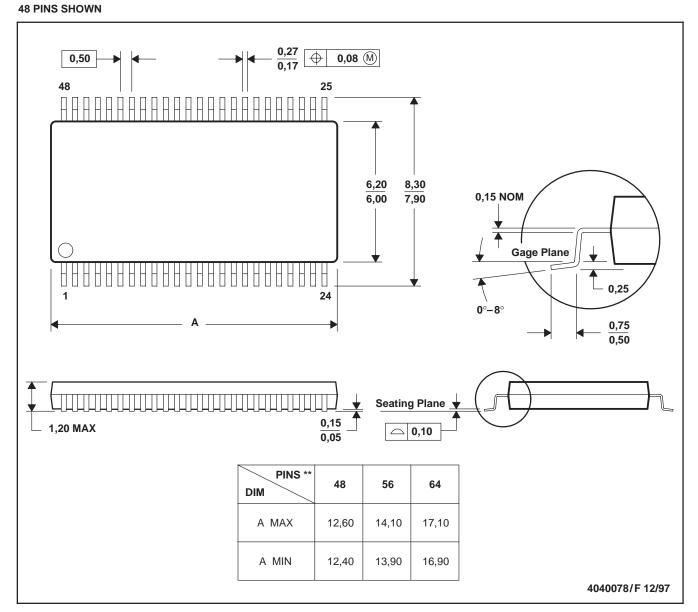
MSSO001C - JANUARY 1995 - REVISED DECEMBER 2001

PLASTIC SMALL-OUTLINE PACKAGE

DL (R-PDSO-G**) 48 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118



MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

PLASTIC SMALL-OUTLINE PACKAGE

DGG (R-PDSO-G**)

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated