SCBS684C - MARCH 1997 - REVISED APRIL 1999

- Members of the Texas Instruments
   Widebus™ Family
- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low Static-Power Dissipation
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V<sub>CC</sub>)
- Support Unregulated Battery Operation Down to 2.7 V
- Typical V<sub>OLP</sub> (Output Ground Bounce)
   0.8 V at V<sub>CC</sub> = 3.3 V, T<sub>A</sub> = 25°C
- I<sub>off</sub> and Power-Up 3-State Support Hot Insertion
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Distributed V<sub>CC</sub> and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Latch-Up Performance Exceeds 500 mA Per JESD 17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Package Options Include Plastic Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

SN54LVTH16240 . . . WD PACKAGE SN74LVTH16240 . . . DGG OR DL PACKAGE (TOP VIEW)

| 10E               | 1  | 48 | 20E               |
|-------------------|----|----|-------------------|
| 1Y1 [             | 2  | 47 | 1A1               |
| 1Y2 [             | 3  | 46 | 1A2               |
| GND [             | 4  | 45 | ] GND             |
| 1Y3 [             | 5  |    | 1A3               |
| 1Y4 [             | 6  | 43 | ] 1A4             |
| V <sub>CC</sub> [ | 7  | 42 | ] v <sub>cc</sub> |
| 2Y1 [             | 8  | 41 | 2A1               |
| 2Y2 [             | 9  | 40 | 2A2               |
| GND [             | 10 | 39 | GND               |
| 2Y3 [             | 11 | 38 | 2A3               |
| 2Y4               | 12 | 37 | 2A4               |
| 3Y1 [             | 13 | 36 | 3A1               |
| 3Y2 [             | 14 | 35 | 3A2               |
| GND [             | 15 | 34 | ] GND             |
| 3Y3 [             | 16 | 33 | 3A3               |
| 3Y4 [             | 17 | 32 | 3A4               |
| v <sub>cc</sub> [ |    | 31 | ] v <sub>cc</sub> |
| 4Y1 [             | 19 | 30 | ] 4A1             |
| 4Y2 [             | 20 | 29 | ] 4A2             |
| GND [             | 1  | 28 | ] GND             |
| 4Y3 [             |    |    | 4A3               |
| 4Y4               | 23 |    | 4A4               |
| 40E               | 24 | 25 | 3 <u>OE</u>       |
|                   |    |    |                   |

#### description

These 16-bit buffers/drivers are designed specifically for low-voltage (3.3-V) V<sub>CC</sub> operation, but with the capability to provide a TTL interface to a 5-V system environment.

The 'LVTH16240 devices are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The devices can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. The devices provide inverting outputs and symmetrical active-low output-enable (OE) inputs.

When  $V_{CC}$  is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V,  $\overline{OE}$  should be tied to  $V_{CC}$  through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

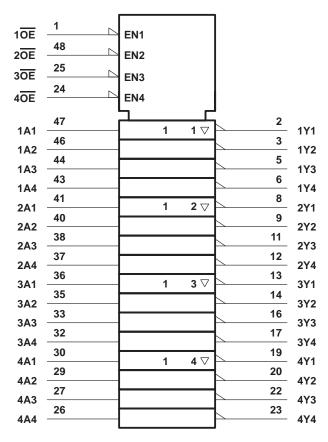
Widebus is a trademark of Texas Instruments Incorporated



SCBS684C - MARCH 1997 - REVISED APRIL 1999

#### description (continued)

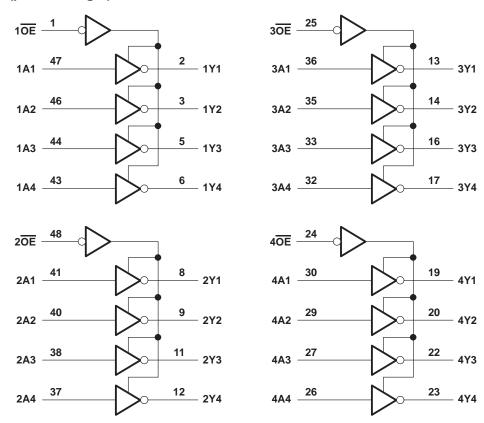
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.


These devices are fully specified for hot-insertion applications using  $I_{off}$  and power-up 3-state. The  $I_{off}$  circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

The SN54LVTH16240 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74LVTH16240 is characterized for operation from –40°C to 85°C.

FUNCTION TABLE (each 4-bit buffer)

| INP | JTS | OUTPUT |
|-----|-----|--------|
| OE  | Α   | Y      |
| L   | Н   | L      |
| L   | L   | Н      |
| Н   | Χ   | Z      |


## logic symbol†



<sup>&</sup>lt;sup>†</sup> This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.



## logic diagram (positive logic)



# absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

| Supply voltage range, V <sub>CC</sub>                                              |                                           |
|------------------------------------------------------------------------------------|-------------------------------------------|
| Input voltage range, V <sub>I</sub> (see Note 1)                                   | 0.5 V to 7 V                              |
| Voltage range applied to any output in the high-impedance                          |                                           |
| or power-off state, V <sub>O</sub> (see Note 1)                                    | $\dots$ . –0.5 V to 7 V                   |
| Voltage range applied to any output in the high state, V <sub>O</sub> (see Note 1) | $0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$ |
| Current into any output in the low state, IO: SN54LVTH16240                        | 96 mA                                     |
| SN74LVTH16240                                                                      |                                           |
| Current into any output in the high state, IO (see Note 2): SN54LVTH16240          | 48 mA                                     |
| SN74LVTH16240                                                                      | 64 mA                                     |
| Input clamp current, $I_{IK}$ ( $V_I < 0$ )                                        | –50 mA                                    |
| Output clamp current, I <sub>OK</sub> (V <sub>O</sub> < 0)                         | –50 mA                                    |
| Package thermal impedance, θ <sub>JA</sub> (see Note 3): DGG package               | 89°C/W                                    |
| DL package                                                                         |                                           |
| Storage temperature range, T <sub>stg</sub>                                        |                                           |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- 2. This current flows only when the output is in the high state and  $V_O > V_{CC}$ .
- 3. The package thermal impedance is calculated in accordance with JESD 51.



NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

SCBS684C - MARCH 1997 - REVISED APRIL 1999

## recommended operating conditions (see Note 4)

|                     |                                    | SN54LVTI        | H16240 | SN74LVTI | UNIT |     |      |
|---------------------|------------------------------------|-----------------|--------|----------|------|-----|------|
|                     |                                    |                 | MIN    | MAX      | MIN  | MAX | UNIT |
| Vcc                 | Supply voltage                     |                 | 2.7    | 3.6      | 2.7  | 3.6 | V    |
| VIH                 | High-level input voltage           |                 | 2      | , A      | 2    |     | V    |
| V <sub>IL</sub>     | Low-level input voltage            |                 |        | 0.8      |      | 0.8 | V    |
| VI                  | Input voltage                      |                 | 4      | 5.5      |      | 5.5 | V    |
| loн                 | High-level output current          |                 | 6      | -24      |      | -32 | mA   |
| loL                 | Low-level output current           |                 | 370    | 48       |      | 64  | mA   |
| Δt/Δν               | Input transition rise or fall rate | Outputs enabled | 60     | 10       |      | 10  | ns/V |
| Δt/ΔV <sub>CC</sub> | Power-up ramp rate                 |                 | 200    |          | 200  |     | μs/V |
| TA                  | Operating free-air temperature     |                 | -55    | 125      | -40  | 85  | °C   |

NOTE 4: All unused control inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCBS684C - MARCH 1997 - REVISED APRIL 1999

# electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER             |                                                                                                                 | TEST CONDITIONS                                                                 |                             | SN54                | 4LVTH1 | 6240  | SN74LVTH16240       |                  |            | UNIT |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------|---------------------|--------|-------|---------------------|------------------|------------|------|--|
| FAR                   | KAWIETEK                                                                                                        | TEST SONDITIONS                                                                 |                             |                     | TYP†   | MAX   | MIN                 | TYP <sup>†</sup> | MAX        | UNIT |  |
| VIK                   |                                                                                                                 | $V_{CC} = 2.7 \text{ V},$                                                       | $I_{I} = -18 \text{ mA}$    |                     |        | -1.2  |                     |                  | -1.2       | V    |  |
|                       |                                                                                                                 | $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V},$                                     | I <sub>OH</sub> = -100 μA   | V <sub>CC</sub> -0. | 2      |       | V <sub>CC</sub> -0. | .2               |            |      |  |
| Vон                   |                                                                                                                 | $V_{CC} = 2.7 \text{ V},$                                                       | $I_{OH} = -8 \text{ mA}$    | 2.4                 |        |       | 2.4                 |                  |            | V    |  |
| VOH                   |                                                                                                                 | V <sub>CC</sub> = 3 V                                                           | $I_{OH} = -24 \text{ mA}$   | 2                   |        |       |                     |                  |            | V    |  |
|                       |                                                                                                                 | VCC = 3 V                                                                       | $I_{OH} = -32 \text{ mA}$   |                     |        |       | 2                   | 2                |            |      |  |
|                       |                                                                                                                 | V <sub>CC</sub> = 2.7 V                                                         | I <sub>OL</sub> = 100 μA    |                     |        | 0.2   |                     |                  | 0.2        |      |  |
|                       |                                                                                                                 | VCC = 2.7 V                                                                     | $I_{OL} = 24 \text{ mA}$    |                     |        | 0.5   |                     |                  | 0.5        |      |  |
| VOL                   |                                                                                                                 |                                                                                 | I <sub>OL</sub> = 16 mA     |                     |        | 0.4   |                     |                  | 0.4        | V    |  |
| I VOL                 |                                                                                                                 | V <sub>CC</sub> = 3 V                                                           | $I_{OL} = 32 \text{ mA}$    |                     |        | 0.5   |                     |                  | 0.5        | V    |  |
|                       |                                                                                                                 | VCC = 3 V                                                                       | $I_{OL} = 48 \text{ mA}$    |                     |        | 0.55  |                     |                  |            |      |  |
|                       |                                                                                                                 |                                                                                 | $I_{OL} = 64 \text{ mA}$    |                     |        |       |                     |                  | 0.55       |      |  |
|                       |                                                                                                                 | $V_{CC} = 0 \text{ or } 3.6 \text{ V},$                                         | V <sub>I</sub> = 5.5 V      |                     |        | 10    |                     |                  | 10         |      |  |
| ۱                     | Control inputs                                                                                                  | $V_{CC} = 3.6 \text{ V},$                                                       | $V_I = V_{CC}$ or GND       |                     |        | ±1    |                     |                  | ±1         | μΑ   |  |
| l <sub>l</sub>        | Data innuta                                                                                                     | V <sub>CC</sub> = 3.6 V                                                         | $V_I = V_{CC}$              |                     | i i    | 1     |                     |                  | 1          | μΑ   |  |
|                       | Data inputs                                                                                                     | vCC = 3.0 v                                                                     | V <sub>I</sub> = 0          | <b>-5</b>           |        |       | -5                  |                  |            |      |  |
| I <sub>off</sub>      |                                                                                                                 | $V_{CC} = 0$ ,                                                                  | $V_I$ or $V_O = 0$ to 4.5 V |                     | 5      |       |                     |                  | ±100       | μΑ   |  |
|                       |                                                                                                                 | VCC = 3 V                                                                       | V <sub>I</sub> = 0.8 V      | 75                  | 20     |       | 75                  |                  |            |      |  |
| I <sub>I</sub> (hold) | Data inputs                                                                                                     | VCC = 3 V                                                                       | V <sub>I</sub> = 2 V        | -75                 | Ď.     |       | -75                 |                  |            | μА   |  |
| 'i(noid)              | Data inputs                                                                                                     | $V_{CC} = 3.6 \text{ V}^{\ddagger}, \qquad V_{I} = 0 \text{ to } 3.6 \text{ V}$ |                             | ų.                  |        |       | 500<br>-750         |                  |            | μ.   |  |
| lozh                  |                                                                                                                 | $V_{CC} = 3.6 \text{ V},$                                                       | V <sub>O</sub> = 3 V        |                     |        | 5     |                     |                  | 5          | μΑ   |  |
| lozL                  |                                                                                                                 | $V_{CC} = 3.6 \text{ V},$                                                       | $V_0 = 0.5 V$               |                     |        | -5    |                     |                  | <b>–</b> 5 | μΑ   |  |
| l <sub>OZPU</sub>     |                                                                                                                 | $\frac{V_{CC}}{OE} = 0$ to 1.5 V, $V_{O} = 0$                                   | 0.5 V to 3 V,               |                     |        | ±100* |                     |                  | ±100       | μΑ   |  |
| lozpd                 |                                                                                                                 | $V_{CC}$ = 1.5 V to 0, $V_{O}$ = 0.5 V to 3 V, OE = don't care                  |                             |                     |        | ±100* |                     |                  | ±100       | μΑ   |  |
|                       |                                                                                                                 | V <sub>CC</sub> = 3.6 V,                                                        | Outputs high                | 1                   |        | 0.19  |                     |                  | 0.19       |      |  |
| Icc                   |                                                                                                                 | $I_{O} = 0$ ,                                                                   | Outputs low                 |                     |        | 5     |                     |                  | 5          | mA   |  |
|                       |                                                                                                                 | $V_I = V_{CC}$ or GND                                                           | Outputs disabled            |                     |        | 0.19  |                     |                  | 0.19       | 1    |  |
| Δlcc§                 | $V_{CC} = 3 \text{ V to } 3.6 \text{ V, One input at } V_{CC} - 0.6 \text{ V,}$ Other inputs at $V_{CC}$ or GND |                                                                                 |                             |                     |        | 0.2   |                     |                  | 0.2        | mA   |  |
| Ci                    |                                                                                                                 | V <sub>I</sub> = 3 V or 0                                                       |                             |                     | 4      |       |                     | 4                |            | pF   |  |
| Co                    |                                                                                                                 | V <sub>O</sub> = 3 V or 0                                                       |                             |                     | 9      |       |                     | 9                |            | pF   |  |

<sup>\*</sup> On products compliant to MIL-PRF-38535, this parameter is not production tested.

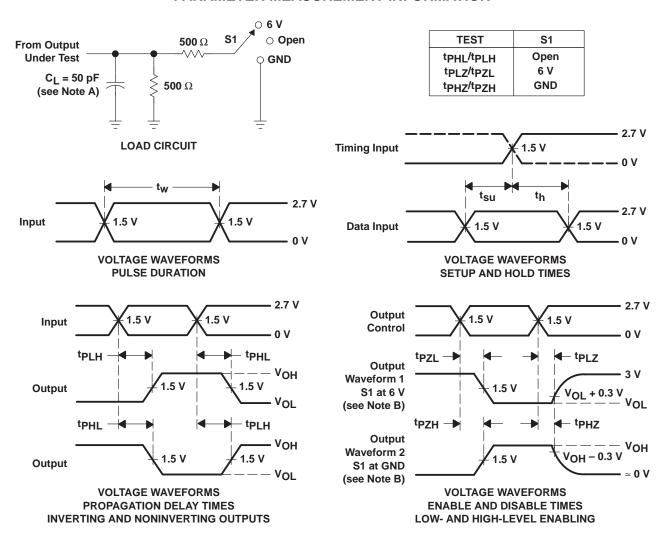


<sup>&</sup>lt;sup>†</sup> All typical values are at  $V_{CC} = 3.3 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ .

<sup>‡</sup> This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

<sup>§</sup> This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

SCBS684C - MARCH 1997 - REVISED APRIL 1999


switching characteristics over recommended operating free-air temperature range,  $C_L = 50$  pF (unless otherwise noted) (see Figure 1)

|                  |                 |                | SN54LVTH16240                      |     |                         |     | SN74LVTH16240                      |                  |     |                         |     |      |   |     |     |  |   |     |
|------------------|-----------------|----------------|------------------------------------|-----|-------------------------|-----|------------------------------------|------------------|-----|-------------------------|-----|------|---|-----|-----|--|---|-----|
| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CC</sub> = 3.3 V<br>± 0.3 V |     | V <sub>CC</sub> = 2.7 V |     | V <sub>CC</sub> = 3.3 V<br>± 0.3 V |                  |     | V <sub>CC</sub> = 2.7 V |     | UNIT |   |     |     |  |   |     |
|                  |                 |                | MIN                                | MAX | MIN                     | MAX | MIN                                | TYP <sup>†</sup> | MAX | MIN                     | MAX |      |   |     |     |  |   |     |
| tPLH             | А               | <b>V</b>       | 1                                  | 3.6 | 3                       | 4.1 | 1                                  | 2.2              | 3.5 |                         | 4   | ns   |   |     |     |  |   |     |
| <sup>t</sup> PHL | ^               | ı              |                                    | '   | '                       | •   | '                                  | •                | 1   | 3.6                     | 3/4 | 4.1  | 1 | 2.7 | 3.5 |  | 4 | 115 |
| <sup>t</sup> PZH | ŌĒ              | >              | 1                                  | 4.2 | 74                      | 5.1 | 1                                  | 2.6              | 4   |                         | 4.9 | ns   |   |     |     |  |   |     |
| t <sub>PZL</sub> | OE              |                | 1.1                                | 4.6 | 7,                      | 4.8 | 1.2                                | 2.6              | 4.4 |                         | 4.6 | 115  |   |     |     |  |   |     |
| t <sub>PHZ</sub> | ŌĒ              | ~              | 1.9                                | 4.7 |                         | 5.2 | 2                                  | 3.4              | 4.5 |                         | 5   | ns   |   |     |     |  |   |     |
| t <sub>PLZ</sub> | OE              | 1              | 1.9                                | 4.4 |                         | 4.5 | 2                                  | 3.2              | 4.2 |                         | 4.2 | 115  |   |     |     |  |   |     |
| tsk(o)           |                 |                |                                    | D   |                         | ·   |                                    |                  | 0.5 |                         | 0.5 | ns   |   |     |     |  |   |     |

<sup>&</sup>lt;sup>†</sup> All typical values are at  $V_{CC} = 3.3 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ .

SCBS684C - MARCH 1997 - REVISED APRIL 1999

#### PARAMETER MEASUREMENT INFORMATION



NOTES: A. C<sub>I</sub> includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz,  $Z_{O} = 50 \Omega$ ,  $t_{f} \leq 2.5$  ns.  $t_{f} \leq 2.5$  ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms





#### PACKAGE OPTION ADDENDUM

5-Sep-2005

#### **PACKAGING INFORMATION**

| Orderable Device   | Status <sup>(1)</sup> | Package<br>Type | Package<br>Drawing | Pins | Package<br>Qty | e Eco Plan <sup>(2)</sup> | Lead/Ball Finish | MSL Peak Temp <sup>(3)</sup> |
|--------------------|-----------------------|-----------------|--------------------|------|----------------|---------------------------|------------------|------------------------------|
| 74LVTH16240DGGRE4  | ACTIVE                | TSSOP           | DGG                | 48   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74LVTH16240DGGR  | ACTIVE                | TSSOP           | DGG                | 48   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74LVTH16240DL    | ACTIVE                | SSOP            | DL                 | 48   | 25             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74LVTH16240DLG4  | ACTIVE                | SSOP            | DL                 | 48   | 25             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74LVTH16240DLR   | ACTIVE                | SSOP            | DL                 | 48   | 1000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74LVTH16240DLRG4 | ACTIVE                | SSOP            | DL                 | 48   | 1000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

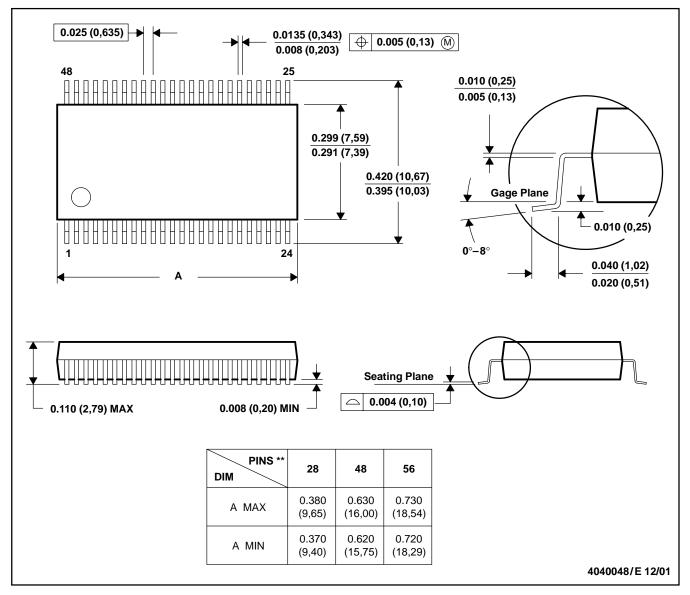
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

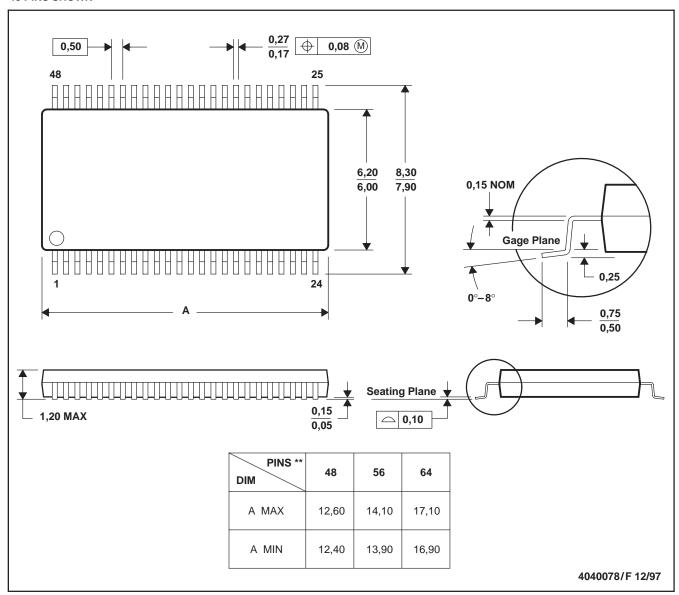
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### DL (R-PDSO-G\*\*)

#### **48 PINS SHOWN**

#### PLASTIC SMALL-OUTLINE PACKAGE




NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

## DGG (R-PDSO-G\*\*)

#### PLASTIC SMALL-OUTLINE PACKAGE

#### **48 PINS SHOWN**



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products         |                        | Applications       |                           |
|------------------|------------------------|--------------------|---------------------------|
| Amplifiers       | amplifier.ti.com       | Audio              | www.ti.com/audio          |
| Data Converters  | dataconverter.ti.com   | Automotive         | www.ti.com/automotive     |
| DSP              | dsp.ti.com             | Broadband          | www.ti.com/broadband      |
| Interface        | interface.ti.com       | Digital Control    | www.ti.com/digitalcontrol |
| Logic            | logic.ti.com           | Military           | www.ti.com/military       |
| Power Mgmt       | power.ti.com           | Optical Networking | www.ti.com/opticalnetwork |
| Microcontrollers | microcontroller.ti.com | Security           | www.ti.com/security       |
|                  |                        | Telephony          | www.ti.com/telephony      |
|                  |                        | Video & Imaging    | www.ti.com/video          |
|                  |                        | Wireless           | www.ti.com/wireless       |

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265