－Generates Clocks for Next Generation Microprocessors
－Uses a 14．318－MHz Crystal Input to Generate Multiple Output Frequencies
－Includes Spread Spectrum Clocking（SSC）， 0．6\％Downspread for Reduced EMI With Theoretical EMI of 7 dB
－Power Management Control Terminals
－Low Output Skew and Jitter for Clock Distribution
－Operates From a Single 3．3－V Supply
－Generates the Following Clocks：
－ 8 Host（Diff Pairs，100／133 MHz）
－ 1 CLK33（3．3 V，33．3 MHz）
－ 1 REFCLK（ $3.3 \mathrm{~V}, 14.318 \mathrm{MHz}$ ）
－ 2 3V48（3．3 V， 180° Shifted Pairs， 48 MHz ）
－Packaged in a 48－Pin TSSOP Package

description

The CDC950 is a differential clock synthesizer／ driver that generates HCLK／HCLK，CLK33，3V48， and REFCLK system clock signals to support a computer system with next generation processors and double data rate（DDR）memory subsystems．
All output frequencies are generated from a $14.318-\mathrm{MHz}$ crystal input．A reference clock input can be provided at the XIN input instead of a crystal．Two phase－locked loops（PLLs）are used to generate the host frequencies and the $48-\mathrm{MHz}$ clock frequencies．On－chip loop filters and internal feedback eliminate the need for external components．

The HCLK，CLK33 clock，and 48－MHz clock outputs provide low－skew／low－jitter clock signals for reliable clock operation．All outputs have 3 －state capability，which can be selected through control inputs SEL $\overline{100} / 133$ ， $3 \mathrm{~V} 48 / \mathrm{SelA}$ ，and $3 \mathrm{~V} 48 /$ SelB．
The outputs are either differential host clock or 3．3－V single－ended CMOS buffers．With a logic high－level on the PWRDWN terminal，the device operates normally．When a logical low－level input is applied，the device powers down completely with the HOST clock at $2 \times I_{\text {REF }}$ ，HOSTB is undriven，CLK33，3V48，and REFCLK outputs are in a low－level output state and 3V48B is in a high－level output state．
The host bus can operate at 100 MHz or 133 MHz ．Output frequency selection is done with the corresponding setting for SEL $\overline{100} / 133$ control input．The CLK33（PCI）frequency is fixed to 33 MHz ．
Since the CDC950 is based on PLL circuitry，it requires a stabilization time to achieve phase－lock of the PLL． This stabilization time is required following power up，as well as following changes to the SEL inputs．With the use of an external reference clock，this signal must be fixed－frequency and fixed－phase prior to stabilization time starts．The CDC950 is characterized for operation from $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ．

[^0]
CDC950

133-MHz DIFFERENTIAL CLOCK SYNTHESIZER/DRIVER FOR
PC MOTHERBOARDS/SERVERS
SCAS646B - FEBRUARY 2001 - REVISED OCTOBER 2003
functional block diagram

Terminal Functions

TERMINAL			DESCRIPTION
NAME	NO.	1/0	
$\begin{aligned} & \frac{3 V 48 / S e l A}{3} \text { 3V48/SelB } \end{aligned}$	3, 4	I/O	$48-\mathrm{MHz} 180^{\circ}$ shifted pair clocks for USB use Logic select pins. Selects the mode of operation, see Table 1 for details.
AGND	27, 45	P	Analog ground
AVDD3.3V	25, 46	P	Power. Analog power supply
CLK33	1	0	33-MHz reference clock for PCI use, host clock divided by 3 or by 4
GND	$\begin{gathered} 5,9,15 \\ 21,28,34 \\ 40,47 \end{gathered}$	P	Ground
HCLK	$\begin{gathered} 7,10,13 \\ 16,33,36 \\ 39,42 \end{gathered}$	0	CPU and host clock outputs [7:0]. These eight differential CPU clock pairs run at $100 / 133 \mathrm{MHz}$. The V_{OH} swing amplitude is configured by MultSel0, MultSel1 pins. See Table 5 and Intel's CK00 document for details.
$\overline{\text { HCLK }}$	$\begin{gathered} 8,11,14 \\ 17,32,35 \\ 38,41 \end{gathered}$	0	CPU and host clock outputs [7:0]. These eight differential CPU clock pairs run at $100 / 133 \mathrm{MHz}$. The V_{OH} swing amplitude is configured by MultSel0, MultSel1 pins. See Table 5 and Intel's CK00 document for details.
I_REF	26	1	Current reference. This pin establishes the reference current for host clock parts. See Table 5 and Intel's CKOO document for details.
MultSel0	30	I	See Table 5 and Intel's CK00 document for details.
MultSel1	29	1	See Table 5 and Intel's CK00 document for details.
$\overline{\text { PWRDWN }}$	44	1	Power-down input. 3.3-V LVTTL compatible, asynchronous input that requests the device to enter the power-down mode. See Table 2 for details.
REFCLK	19	0	14.138-MHz reference clock output: 3.3 V copy of the $14.318-\mathrm{MHz}$ reference clock.
SEL $\overline{100} / 133$	48	1	Active low LVTTL level logic select. SEL100/133 is used for enabling 100/133 MHz. Low = 100 MHz , high $=133 \mathrm{MHz}$
$\overline{\text { SPREAD }}$	20	U	Spread spectrum enable. 3.3-V LVTTL compatible, input that enables the spread spectrum mode when held low. See Table 4 for details.
V $\mathrm{DD}^{3.3 \mathrm{~V}}$	$\begin{gathered} 2,6,12 \\ 18,24,31, \\ 37,43 \end{gathered}$	P	Power. Power supply
XIN	22	I	Crystal connection or an external reference frequency input. Connect to either a $14.138-\mathrm{MHz}$ crystal or an external reference signal.
XOUT	23	0	Crystal connection. An output connection for an external 14.318-MHz crystal. If using an external reference, this pin must be left unconnected.

Function Tables

Table 1. Select Functions

INPUTS			OUTPUTS				FUNCTION
SEL $\overline{100} / 133$	SelA	SelB	HCLK, $\overline{\text { HCLK }}$	CLK33	3V48, $\overline{3 V 48}$	REFCLK	
0	0	0	100 MHz	33 MHz	48 MHz	14.318 MHz	Active 100 MHz
0	0	1	100 MHz	33 MHz	L, H	14.318 MHz	100 MHz mode; PLL48 powerdown
0	1	0	105 MHz	35 MHz	48 MHz	14.318 MHz	100 MHz mode 5\% overclocking
0	1	1	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	All 3-state outputs
1	0	0	133 MHz	33 MHz	48 MHz	14.318 MHz	Active 133 MHz
1	0	1	127 MHz	31.7 MHz	48 MHz	14.318 MHz	133 MHz mode -5\% underclocking
1	1	0	133 MHz	33 MHz	48 MHz	14.318 MHz	Test mode
1	1	1	TCLK/2	TCLK/8	TCLK/2	TCLK	Test mode (PLL bypass)

Table 2. Enable Functions

INPUT	OUTPUTS					
$\overline{\text { PWRDWN }}$	HCLK	$\overline{\text { HCLK }}$	CLK33	3V48	$\overline{3 V 48}$	REFCLK
0	$2 \times$ I REF	$\mathrm{Hi}-\mathrm{Z}$	L	L	H	L
1	On	On	On	On	On	On

Table 3. Output Buffer Specifications

BUFFER NAME	VDD RANGE (\mathbf{V})	IMPEDANCE (Ω)	BUFFER TYPE
3V48, REFCLK	$3.135-3.465$	$20-60$	TYPE 3
CLK33	$3.135-3.465$	$12-55$	TYPE 5
HCLK/HCLK	$3.135-3.465$		TYPE X1

Table 4. Spread Spectrum Functions

INPUT	OUTPUTS
$\overline{\text { SPREAD }}$	
0	Spread spectrum clocking active, -0.6% at HCLK//HCLK, CLK33
1	Spread spectrum clocking inactive

Function Tables (Continued)

Table 5. Host/ $\overline{\text { HOST Output Buffer Specifications }}$

INPUT		BOARD TARGET TRACE/TERM Z	REFERENCE R, IREF = VDD/(3 Rr)		OUTPUT CURRENT IOH	V_{OH} at Z
MultSel0	MultSel1					
0	0	60Ω	Rr = 475 1\%,	I_REF = 2.32 mA	$5 \times \mathrm{I}_{\text {REF }}$	0.71 V at 60Ω
0	0	50Ω	$\mathrm{Rr}=475$ \%	I_REF $=2.32 \mathrm{~mA}$	5×1 REF	0.59 V at 50Ω
0	1	60Ω	$\mathrm{Rr}=475$ 1\%,	I_REF = 2.32 mA	$6 \times \mathrm{IREF}$	0.85 V at 60Ω
0	1	50Ω	Rr = 475 1\%,	I_REF = 2.32 mA	$6 \times I_{\text {REF }}$	0.71 V at 50Ω
1	0	60Ω	$\mathrm{Rr}=475$ 1\%,	I_REF = 2.32 mA	$4 \times \mathrm{IREF}$	0.56 V at 60Ω
1	0	50Ω	$\mathrm{Rr}=475$ \%,	I_REF $=2.32 \mathrm{~mA}$	4×1 REF	0.47 V at 50Ω
1	1	60Ω	$\mathrm{Rr}=475$ 1\%,	I_REF = 2.32 mA	7×1 REF	0.99 V at 60Ω
1	1	50Ω	$\mathrm{Rr}=475$ 1\%,	I_REF $=2.32 \mathrm{~mA}$	7×1 REF	0.82 V at 50Ω
0	0	30 (dc equivalent)	$\mathrm{Rr}=221$ \%,	I_REF $=5 \mathrm{~mA}$	5×1 REF	0.75 V at 30Ω
0	0	25 (dc equivalent)	$\mathrm{Rr}=2211 \%$,	I_REF $=5 \mathrm{~mA}$	5×1 REF	0.62 V at 25Ω
0	1	30 (dc equivalent)	$\mathrm{Rr}=2211 \%$,	I_REF $=5 \mathrm{~mA}$	6×1 REF	0.90 V at 30Ω
0	1	25 (dc equivalent)	$\mathrm{Rr}=2211 \%$,	I_REF $=5 \mathrm{~mA}$	6×1 REF	0.75 V at 25Ω
1	0	30 (dc equivalent)	$\mathrm{Rr}=2211 \%$,	I_REF $=5 \mathrm{~mA}$	4×1 REF	0.60 V at 30Ω
1	0	25 (dc equivalent)	$\mathrm{Rr}=2211 \%$,	I_REF $=5 \mathrm{~mA}$	4×1 REF	0.5 V at 25Ω
1	1	30 (dc equivalent)	$\mathrm{Rr}=2211 \%$,	I_REF $=5 \mathrm{~mA}$	7×1 REF	1.05 V at 30Ω
1	1	25 (dc equivalent)	$\mathrm{Rr}=2211 \%$,	I_REF = 5 mA	$7 \times$ IREF	0.84 V at 25Ω

NOTE: The entries in boldface are the primary system configurations of interest. The outputs should be optimized for these configurations.

absolute maximum ratings over operating free-air temperature (unless otherwise noted) \dagger

Supply voltage range, V_{DD}
-0.5 V to 4.3 V

Voltage range applied to any output in the high-impedance or power-off state, V_{O}
(see Note 1)
-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$

($\mathrm{V}_{1}>\mathrm{V}_{\mathrm{DD}}$) ... 50 mA
Output clamp current, $\mathrm{I}_{\mathrm{OK}}:\left(\mathrm{V}_{\mathrm{O}}<0\right)$... 50 mA

Package thermal impedance, θ_{JA} (see Note 2) . .. 89 ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) (see Note 3) 1070 mW

Storage temperature range, $\mathrm{T}_{\text {stg }} \ldots . .65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 10 seconds $260^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for the through-hole packages, which use a trace length of zero.
3. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the ABT Advanced BICMOS Technology Data Book, literature number SCBD002.

CDC950

133-MHz DIFFERENTIAL CLOCK SYNTHESIZER/DRIVER FOR
PC MOTHERBOARDS/SERVERS
SCAS646B - FEBRUARY 2001 - REVISED OCTOBER 2003
DISSIPATION RATING TABLE

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR \dagger ABOVE TA $=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ POWER RATING
DGG	1400 mW	$11.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	900 mW	730 mW

†This is the inverse of the traditional junction-to-case thermal resistance ($\mathrm{R}_{\theta J \mathrm{~A}}$) and uses a board-mounted device at $89^{\circ} \mathrm{C} / \mathrm{W}$
recommended operating conditions (see Note 4)

		MIN	NOM \ddagger	MAX	UNIT
Supply voltages, $\mathrm{V}_{\mathrm{DD}}, \mathrm{AV}_{\mathrm{DD}}$		3.135	3.3	3.465	V
High-level input voltage, V_{IH}		2			
Low-level input voltage, $\mathrm{V}_{\text {IL }}$				0.8	
Input voltage, $\mathrm{V}_{\text {I }}$		-0.3		$\mathrm{V}_{\mathrm{DD}}+0.3$	
High-level output current, IOH	HCLK/HCLK			-40	mA
	CLK33			-18	
	3V48/SelA and $\overline{3 V 48} / \mathrm{SelB}$			-14	
	REFCLK			-14	
Low-level output current, IOL	HCLK/HCLK			0	
	CLK33			12	
	3V48/SelA and $\overline{3 V 48} / \mathrm{SelB}$			9	
	REFCLK			9	
Reference frequency, $\mathrm{f}^{(\mathrm{XIN})^{\text {§ }} \text {) }}$	Test mode		14		
Crystal, $\mathrm{f}_{\text {(XTAL) }}{ }^{\text {I }}$	Normal mode	13.8	14.318	14.8	MHz
Operating free-air temperature, T_{A}		0		85	${ }^{\circ} \mathrm{C}$

\ddagger All nominal values are measured at their respective nominal $V_{D D}$ values.
\S Reference frequency is a test clock driven on the XIN input during the device test mode or normal mode. In test mode, XIN can be driven externally up to $f($ XIN $)=16 \mathrm{MHz}$. If XIN is driven externally, XOUT is floating.
IT This is a series fundamental crystal with $\mathrm{fo}=14.31818 \mathrm{MHz}$
NOTE 4: Unused inputs must be held high or low to prevent them from floating.

electrical characteristics over recommended operating free-air temperature range (unless

 otherwise noted)| PARAMETER | | | TEST CONDITIONS | | | MIN | TYP† | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VIK | Input clamp voltage | | $\mathrm{V}_{\mathrm{DD}}=3.135 \mathrm{~V}$, | $\mathrm{I}=-18 \mathrm{~mA}$ | | | | -1.2 | V |
| ${ }^{1 / H}$ | High-level input current | All inputs except SelA, SelB | $\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}$, | $V_{1}=V_{\text {DD }}$ | | | | 5 | $\mu \mathrm{A}$ |
| IIL | Low-level input current | All inputs except SelA, SelB | $V_{D D}=3.465 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ | | | | -5 | $\mu \mathrm{A}$ |
| Ioz | High-impedance -state output current | All outputs including SelA, SelB | $V_{D D}=3.465 \mathrm{~V}$ | $\begin{aligned} & \hline \text { 3V48/SelA, } \overline{3 V 48} \\ & \text { SEL100/133 = L, } \\ & V_{O}=V_{D D} \text { or GN } \\ & \hline \text { PWRDWN }=H \end{aligned}$ | $\mathrm{SelB}=\mathrm{H},$ | | | ± 10 | $\mu \mathrm{A}$ |
| ${ }^{\text {I D D }}$ ($)$ | High-impedance-state supply current \ddagger | | $V_{D D}=3.465 \mathrm{~V}$ | $\begin{aligned} & \text { 3V48/SelA, } \overline{3 V 48} / \text { SelB }=\mathrm{H}, \\ & \text { SEL100/133 }=\mathrm{L}, \\ & \overline{\text { PWRDWN }=\mathrm{H}} \end{aligned}$ | | | 19 | 25 | mA |
| IDD(PD) | | | $\begin{aligned} & \text { SelA, SelB }=\mathrm{L} \\ & \mathrm{R}(\text { ref })=475 \Omega \\ & \hline \text { PWRDWN }=\mathrm{L} \end{aligned}$ | VDD Supply | | | 43 | 47 | mA |
| AldD(PD) | $\overline{\text { PWRDWN }}$ state supply current \ddagger | | | AVDD Supply | | | 3.4 | 4.2 | mA |
| IDD(D) | Dynamic supply current \ddagger | | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}, \\ & \mathrm{R}_{\text {ref }}=475 \Omega, \\ & \mathrm{l}=6 \times \mathrm{I}_{\text {ref }} \end{aligned}$ | $\begin{aligned} & \hline \text { PWRDWN }=\mathrm{H} \\ & S S C=O N / O F F \\ & C_{L}=\mathrm{MAX} \end{aligned}$ | 100 MHz | | 173 | 190 | mA |
| | | | 133 MHz | | | 183 | 200 | |
| AldD | Analog power supply current | | | $\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}$ | 100 MHz and SS | | 19 | | 24 | mA |
| | | | 133 MHz and SS | | | 26 | | 33 | | |
| | | | 100 MHz and SSC on | | 26 | | 33 | | |
| | | | 133 MHz and SSC on | | 35 | | 45 | | |
| Cl_{1} | Input capacitance§ | | $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \quad \mathrm{~V}_{\text {I }}=\mathrm{V}_{\text {DD }}$ or GND | | | 2 | | 5 | pF | |
| $\mathrm{C}_{\text {(XTAL) }}$ | Crystal load capacitance ${ }^{\text {d }}$ | | Effective capacity between $\mathrm{C}_{\text {IN }}$ and COUT | | | 13.5 | | 22.5 | | |

[^1]
CDC950

133-MHz DIFFERENTIAL CLOCK SYNTHESIZER/DRIVER FOR
 PC MOTHERBOARDS/SERVERS

SCAS646B - FEBRUARY 2001 - REVISED OCTOBER 2003

electrical characteristics over recommended operating free-air temperature range (unless

 otherwise noted) (continued)HCLK/HCLK (Type X1)

PARAMETER		TEST CONDITIONS		MIN	TYP† MAX	UNIT
ro	Output resistance			3000		Ω
V_{O}	Output voltage				1.2	V
10	Output current	$\mathrm{V}_{\mathrm{DD}}=3.30 \mathrm{~V}$ nom	All combinations of Table 5, See Note 5	$\begin{array}{r} -7 \% \\ \text { (} \mathrm{NOM} \text {) } \\ \hline \end{array}$	$\begin{array}{r} 7 \% \\ \mathrm{I}(\mathrm{NOM}) \\ \hline \end{array}$	mA
		$\mathrm{V}_{\mathrm{DD}}=3.30 \mathrm{~V}, \pm 5 \%$		$\begin{array}{r} -12 \% \\ \text { I(NOM) } \\ \hline \end{array}$	$\begin{array}{r} 12 \% \\ \text { I(NOM) } \\ \hline \end{array}$	
CO_{0}	Output capacitance	$\mathrm{V}_{\mathrm{DD}}=3.30 \mathrm{~V}$ nom	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {DD }}$ GND		3.5	pF

NOTE 5: ${ }^{\prime}(\mathrm{NOM})$ is output current (lOH) of table 5.
3V48, 3V48REFCLK (Type 3)

PARAMETER			TEST CONDITIONS		MIN	TYP†	MAX	UNIT
VOH	High-level output voltage		$\mathrm{V}_{\mathrm{DD}}=$ min to max,	$\mathrm{IOH}=-1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.1$			V
			$\mathrm{V}_{\mathrm{DD}}=3.135 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-14 \mathrm{~mA}$	2.4			
VOL	Low-level output voltage		$\mathrm{V}_{\mathrm{DD}}=$ min to max,	$\mathrm{IOL}=1 \mathrm{~mA}$			0.1	
			$\mathrm{V}_{\mathrm{DD}}=3.135 \mathrm{~V}$,	$\mathrm{IOL}=9 \mathrm{~mA}$		0.18	0.4	
IOH	High-level output current		$\mathrm{V}_{\mathrm{DD}}=3.135 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}$	-29			mA
			$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=1.65 \mathrm{~V}$		-37		
			$\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=3.135 \mathrm{~V}$		-11	-23	
${ }^{\text {IOL }}$	Low-level output current		$\mathrm{V}_{\mathrm{DD}}=3.135 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=1.95 \mathrm{~V}$	29			
			$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=1.65 \mathrm{~V}$	39			
			$\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$		16	27	
Co_{0}	Output capacitance		$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$ or GND	4.5		7	pF
Z_{0}	Output impedance	High state	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}_{\mathrm{DD}}$,	$\mathrm{V}_{\mathrm{O}} / \mathrm{l} \mathrm{OH}$	20	40	60	Ω
		Low state	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}_{\mathrm{DD}}$,	$\mathrm{V}_{\mathrm{O}} / \mathrm{loL}$	20	40	60	

\dagger All typical values are measured at their respective nominal $V_{D D}$ values.

electrical characteristics over recommended operating free-air temperature range (unless

 otherwise noted) (continued)
CLK33 (Type 5)

PARAMETER			TEST CONDITIONS		MIN	TYP \dagger	MAX	UNIT
VOH	High-level output voltage		$\mathrm{V}_{\mathrm{DD}}=$ min to max,	$\mathrm{IOH}=-1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.1$			V
			$\mathrm{V}_{\mathrm{DD}}=3.135 \mathrm{~V}$,	$\mathrm{I} \mathrm{OH}=-18 \mathrm{~mA}$	2.4			
VOL	Low-level output voltage		$\mathrm{V}_{\mathrm{DD}}=$ min to max,	$\mathrm{IOL}=1 \mathrm{~mA}$			0.1	
			$\mathrm{V}_{\mathrm{DD}}=3.135 \mathrm{~V}$,	$\mathrm{l} \mathrm{OL}=12 \mathrm{~mA}$		0.15	0.4	
IOH	High-level output current		$\mathrm{V}_{\mathrm{DD}}=3.135 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}$	-33			mA
			$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=1.65 \mathrm{~V}$	-53			
			$\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=3.135 \mathrm{~V}$		-16	-33	
${ }^{\text {IOL }}$	Low-level output current		$\mathrm{V}_{\mathrm{DD}}=3.135 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=1.95 \mathrm{~V}$	30			
			$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=1.65 \mathrm{~V}$	51			
			$\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$		21	38	
C_{O}	Output capacitance		$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$ or GND	4.5		7.5	pF
Z_{0}	Output impedance	High state	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}_{\mathrm{DD}}$,	$\mathrm{V}_{\mathrm{O}} / \mathrm{lOH}$	12	35	55	Ω
		Low state	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}_{\mathrm{DD}}$,	$\mathrm{V}_{\mathrm{O}} / \mathrm{l} \mathrm{OL}$	12	35	55	

\dagger All typical values are measured at their respective nominal V_{DD} values.

switching characteristics, $\mathrm{V}_{\mathrm{DD}}=3.135 \mathrm{~V}$ to $3.465 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

\dagger These parameters are assured by design and lab characterization, not 100% production tested.
\ddagger Stabilization time is the time required for the integrated PLL circuit to obtain phase lock of its feedback signal to its reference signal. In order for phase lock to be obtained, a fixed-frequency, fixed-phase reference signal must be present at XIN. Until phase lock is obtained, the specifications for propagation delay and skew parameters given in the switching characteristics tables are not applicable. Stabilization time is defined as the time since $V_{D D}$ achieves its nominal operating level (3.3 V) or $\overline{\text { PWRDWN }}$ transition from a low to a high level (2 V) until the output frequency is stable and operating within specification.

CDC950
133-MHz DIFFERENTIAL CLOCK SYNTHESIZER/DRIVER FOR
PC MOTHERBOARDS/SERVERS
SCAS646B - FEBRUARY 2001 - REVISED OCTOBER 2003
switching characteristics, $\mathrm{V}_{\mathrm{DD}}=3.135 \mathrm{~V}$ to $3.465 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (continued)
HCLK/HCLK (Type X1), $\mathrm{C}_{\mathrm{L}}=2 \mathrm{pF}, \mathrm{R}_{\text {ref }}=475 \Omega, 6 \times \mathrm{R}_{\text {ref }}$

PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT	
HCLK clock period \ddagger			$\mathrm{f}(\mathrm{HCLK})=100 \mathrm{MHz}$		10		10.2	ns	
			$\mathrm{f}(\mathrm{HCLK})=133 \mathrm{MHz}$		7.5		7.65		
$\mathrm{T}_{\mathrm{jit}(\mathrm{cc})}$	Cycle-to-cycle jitter		$f($ HCLK $)=100$ or 133 MHz	SSC off	-80		80	ps	
			SSC on	-110		110			
$t_{\text {dc }}$	Duty cycle			$f($ HCLK $)=100$ or 133 MHz , Crossing point		45\%		55\%	
$\mathrm{tsk}_{\text {(0) }}$	HCLK bus skew		${ }^{f}($ HCLK $)=100$ or 133 MHz , Crossing point		70			ps	
tr_{r}	Rise time \dagger	0.7-V amplitude	$\mathrm{V}_{\mathrm{O}}=0.14 \mathrm{~V}$ to 0.56 V		175		700	ps	
$\mathrm{tf}^{\text {f }}$	Fall time ${ }^{\dagger}$		$\mathrm{V}_{\mathrm{O}}=0.14 \mathrm{~V}$ to 0.56 V		175		700		
v(cross)	Cross point voltages \dagger	0.7-V amplitude	$\begin{aligned} & { }_{f}^{f}(\mathrm{HCLK})=100 \text { or } 133-\mathrm{MHz} \\ & \text { HCLK and } \mathrm{HCLK} \end{aligned}$		$\begin{aligned} & 45 \% \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$		$\begin{aligned} & 55 \% \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	V	

\dagger These parameters are assured by design and lab characterization, not 100% production tested.
\ddagger The average over any $1-\mu$ s period of time is greater than the minimum specified period.
CLK33 (Type 5), $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	PCI clock period \dagger	$\mathrm{f}_{(\text {HCLK })}=100$ or 133 MHz	30	30.06	30.6	ns
$\mathrm{T}_{\mathrm{jit}(\mathrm{cc})}$	Cycle-to-cycle jitter	$\mathrm{f}(\mathrm{HCLK})=100$ or 133 MHz	-150		150	ps
$\mathrm{t}_{\text {(dc) }}$	Duty cycle	${ }^{\mathrm{f}}$ (CLK33) $=33.3 \mathrm{MHz}$	45\%		55\%	
tr_{r}	Rise time	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ to 2.4 V	0.5		2	ns
t_{f}	Fall time	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ to 2.4 V	0.5		2	

† The average over any $1-\mu \mathrm{s}$ period of time is greater than the minimum specified period.
3V48 (Type 3), $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

PARAMETER		TEST CONDITIONS	MIN	TYP
	3V48 clock period	$\mathrm{f}(\mathrm{HCLK})=100$ or 133 MHz	20.83	UNIT
	Cycle-to-cycle jitter	$\mathrm{f}(\mathrm{HCLK})=100$ or 133 MHz	-300	300
$\mathrm{~T}_{\mathrm{jit}}(\mathrm{cc})$	ps			
t_{dc}	Duty cycle	$\mathrm{f}(3 \mathrm{~V} 48)=48 \mathrm{MHz}$	45%	55%
t_{r}	Rise time	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ to 2.4 V	1	4
t_{f}	Fall time	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ to 2.4 V	1	4

REF (Type 3), $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	REF clock period	$f($ REF $)=14.318 \mathrm{MHz}$		69.84		ns
$\mathrm{T}_{\mathrm{jit}(\mathrm{cc})}$	Cycle-to-cycle jitter	$f($ HCLK $)=100$ or 133 MHz	-0.5		0.5	
${ }_{\text {t }}$ (dc)	Duty cycle	$\mathrm{f}(\mathrm{REF})=14.318 \mathrm{MHz}$	45\%		55\%	
tr_{r}	Rise time	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ to 2.4 V	1		4	ns
t_{f}	Fall time	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ to 2.4 V	1		4	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT for t_{r} and t_{f}

VOLTAGE WAVEFORMS
NOTES: A. C_{L} includes probe and jig capacitance. $C_{L}=2 \mathrm{pF}(H C L K, \overline{H C L K}), C_{L}=20 \mathrm{pF}(48 \mathrm{MHz}, R E F), \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}(\mathrm{CLK} 33)$.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 14.318 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.

	PARAMETER	3.3-V INTERFACE	UNIT
$\mathrm{V}_{\mathrm{IH}(\mathrm{REF})}$	High-level reference voltage	2.4	V
$\mathrm{~V}_{\mathrm{IL}(\mathrm{REF})}$	Low-level reference voltage	0.4	
$\mathrm{~V}_{\mathrm{T}(\mathrm{REF})}$	Input threshold reference voltage	1.5	
$\mathrm{~V}_{\mathrm{O}(\mathrm{REF})}$	Off-state reference voltage	6	

Figure 1. Load Circuit and Voltage Waveforms

APPLICATION INFORMATION

Figure 2. Load Circuit for HCLK Bus

spread spectrum clock (SSC) implementation for CDC950

Simultaneously switching at a fixed frequency generates a significant power peak at the selected frequency, which in turn causes EMI disturbance to the environment. The purpose of the internal frequency modulation of the CPU-PLL allows energy to be distributed to many different frequencies which reduces the power peak.

A typical characteristic for a single frequency spectrum and a frequency modulated spectrum is shown in Figure 3.

Figure 3. Frequency Power Spectrum With and Without the Use of SSC
The modulated spectrum has its distribution (left side) associated with the single-frequency spectrum which indicates a down-spread modulation.

The peak reduction depends on the modulation scheme and modulation profile. System performance and timing requirements are the limiting factors for actual design implementations. The implementation was driven to keep the average clock frequency close to its upper specification limit. The modulation amount was set to approximately -0.6%.
To allow a downstream PLL to follow the frequency modulated signal, the bandwidth of the modulation signal is limited in order to minimize SSC induced tracking skew jitter. The modulation frequency is approximately 31 kHz .

MECHANICAL DATA

DGG (R-PDSO-G**)
48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153
www.ti.com
13-Sep-2005

PACKAGING INFORMATION

| Orderable Device | Status $^{\text {(1) }}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CDC950DGG | ACTIVE | TSSOP | DGG | 48 | 40 |
 no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR |
| CDC950DGGG4 | ACTIVE | TSSOP | DGG | 48 | 40 |
 no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR |
| CDC950DGGR | ACTIVE | TSSOP | DGG | 48 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR |
| CDC950DGGRG4 | ACTIVE | TSSOP | DGG | 48 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb -Free/Green conversion plan has not been defined.
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): Tl defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DGG (R-PDSO-G**)
48 PINS SHOWN

PINS **	48	56	64
A MAX	12,60	14,10	17,10
A MIN	12,40	13,90	16,90

4040078/F 12/97

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DSP	dsp.ti.com
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com

Applications

Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

[^0]: Please be aware that an important notice concerning availability，standard warranty，and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet．

[^1]: \dagger All typical values are measured at their respective nominal $V_{D D}$ values.
 $\ddagger C_{L}=M A X=5 \mathrm{pF}, \mathrm{RS}=33.2 \Omega, \mathrm{Rp}=49.9 \Omega$ at HCLK/HCLK (Type X1)
 $C_{L}=\mathrm{MAX}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$ at 48 MHz , REF (Type 3)
 $\mathrm{C}_{\mathrm{L}}=\mathrm{MAX}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$ at CLK33 (Type 5)
 § These parameters are assured by design and lab characterization, not 100% production tested.
 II This is the corresponding capacitive load for the XTAL in this oscillator application (Pierce oscillator)

