January 1987

General Description

These circuits are the TRI－STATE versions of the popular BCD to binary and binary to BCD converters，DM74184 and DM74185A respectively．They are derived from the 256 －bit ROM，DM8598．Emitter connections are made to provide direct read out of converted codes at outputs Y8 through Y1，as shown in the truth tables．Both converters compre－ hend the fact that the least significant bits（LSB）of the bina－ ry and BCD codes are logically equal，and in each case the LSB bypasses the converter．Thus a 6－bit converter is pro－ duced in each case，and both devices are cascadable．

An overriding enable input is provided on each converter which，when taken high，inhibits the function，causing all outputs to go into the high－impedance state．For this rea－ son，and to minimize power consumption，unused outputs Y7 and Y8 of the 185A and all＂don＇t care＂conditions of the 184 are programmed high．

DM8898 BCD－TO－BINARY CONVERTERS

The 6－bit BCD－to－binary function of the DM8898 is analo－ gous to the algorithm：
a．Shift BCD number right one bit and examine each dec－ ade．Subtract three from each 4－bit decade containing a binary value greater than seven．
b．Shift right，examine，and correct after each shift until the least significant decade contains a number smaller than eight and all other converted decades contain zeros．
In addition to BCD－to－binary conversion，the DM8898 is pro－ grammed to generate BCD 9＇s complement or BCD 10＇s complement．In each case，one bit of the complement code is logically equal to one of the BCD bits；therefore，these complements can be produced on three lines．As outputs Y6，Y7 and Y8 are not required in the BCD－to－binary conver－ sion，they are utilized to provide these complement codes as specified in the function table when the devices are con－ nected as shown．

DM8899A BINARY－TO－BCD CONVERTERS

The function performed by these 6－bit binary－to－BCD con－ verters is analogous to the algorithm：
a．Examine the three most significant bits．If the sum is greater than four，add three and shift left one bit．
b．Examine each BCD decade．If the sum is greater than four，add three and shift left one bit．
c．Repeat step b until the least－significant binary bit is in the least－significant BCD location．

Features

■ TRI－STATE versions of DM74184，DM74185A
－Typical propagation delay 30 ns

RI－STATE is a registered trademark of National Semiconductor Corporation

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage 7
Input Voltage 5.5 V

Operating Free Air Temperature Range DM88
Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM8898		Units	
		Min	Nom		
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.8	V
I_{OH}	High Level Output Current			-5.2	mA
I_{OL}	Low Level Output Current			12	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

DM8898 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	2.4			V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6	mA
lozh	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			40	$\mu \mathrm{A}$
${ }^{\text {IOZL }}$	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			-40	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2)	-20		-70	mA
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		70	99	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.

DM8898 Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)						
Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=400 \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output				50	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output				50	ns
$t_{\text {PZH }}$	Output Enable Time to High Level Output				25	ns
${ }_{\text {tPZL }}$	Output Enable Time to Low Level Output				40	ns
$t_{\text {PHZ }}$	Output Disable Time from High Level Output		20			ns
$t_{\text {PLZ }}$	Output Disable Time from Low Level Output		36			ns

Recommended Operating Conditions

Symbol	Parameter	DM8899		Units	
		Min	Nom		V
V_{CC}	Supply Voltage	4.75	5.0	5.25	
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.8	mA
I_{OH}	High Level Output Current			-5.2	$\mathrm{~m}^{2}$
I_{OL}	Low Level Output Current			12	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

DM8899 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1	mA
$\mathrm{IIH}_{\mathrm{H}}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
1 IL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-1.6	mA
$\mathrm{l}_{\mathrm{OZH}}$	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OZL }}$	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			-40	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=$ Max (Note 2)	-20		-70	mA
l CC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		70	99	mA

DM8899 Switching Characteristics
at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=400 \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output				50	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output				50	ns
$t_{\text {PZH }}$	Output Enable Time to High Level Output				25	ns
$t_{\text {PZL }}$	Output Enable Time to Low Level Output				40	ns
$t_{\text {PHZ }}$	Output Disable Time from High Level Output		20			ns
$t_{\text {PLZ }}$	Output Disable Time from Low Level Output		36			ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.

Function Tables

BCD-to-Binary Converter												
BCD Words		Inputs (See Note A)						Outputs (See Note B)				
		E	D	C	B	A	G	Y5	Y4	Y3	Y2	Y1
0	1	L	L	L	L	L	L	L	L	L	L	L
2	3	L	L	L	L	H	L	L	L	L	L	H
4	5	L	L	L	H	L	L	L	L	L	H	L
6	7	L	L	L	H	H	L	L	L	L	H	H
8	9	L	L	H	L	L	L	L	L	H	L	L
10	11	L	H	L	L	L	L	L	L	H	L	H
12	13	L	H	L	L	H	L	L	L	H	H	L
14	15	L	H	L	H	L	L	L	L	H	H	H
16	17	L	H	L	H	H	L	L	H	L	L	L
18	19	L	H	H	L	L	L	L	H	L	L	H
20	21	H	L	L	L	L	L	L	H	L	H	L
22	23	H	L	L	L	H	L	L	H	L	H	H
24	25	H	L	L	H	L	L	L	H	H	L	L
26	27	H	L	L	H	H	L	L	H	H	L	H
28	29	H	L	H	L	L	L	L	H	H	H	L
30	31	H	H	L	L	L	L	L	H	H	H	H
32	33	H	H	L	L	H	L	H	L	L	L	L
34	35	H	H	L	H	L	L	H	L	L	L	H
36	37	H	H	L	H	H	L	H	L	L	H	L
38	39	H	H	H	L	L	L	H	L	L	H	H
Any		X	X	X	X	X	H	Z	Z	Z	Z	Z

BCD Word	Inputs (See Note C)						Outputs (See Note D)		
	$\mathbf{E} \dagger$	D	C	B	A	G	Y8	Y7	Y6
0	L	L	L	L	L	L	H	L	H
1	L	L	L	L	H	L	H	L	L
2	L	L	L	H	L	L	L	H	H
3	L	L	L	H	H	L	L	H	L
4	L	L	H	L	L	L	L	H	H
5	L	L	H	L	H	L	L	H	L
6	L	L	H	H	L	L	L	L	H
7	L	L	H	H	H	L	L	L	L
8	L	H	L	L	L	L	L	L	H
9	L	H	L	L	H	L	L	L	L
0	H	L	L	L	L	L	L	L	L
1	H	L	L	L	H	L	H	L	L
2	H	L	L	H	L	L	H	L	L
3	H	L	L	H	H	L	L	H	H
4	H	L	H	L	L	L	L	H	H
5	H	L	H	L	H	L	L	H	L
6	H	L	H	H	L	L	L	H	L
7	H	L	H	H	H	L	L	L	H
8	H	H	L	L	L	L	L	L	H
9	H	H	L	L	H	L	L	L	L
Any	X	X	X	X	X	H	Z	Z	Z

$H=$ High Level, $L=$ Low Level, $Z=$ High Impedance
Note A: Input conditions other than those shown produce highs at outputs Y1 through Y5.
Note B: Outputs Y6, Y7, and Y8 are not used for BCD-to-binary conversion.
Note C: Input conditions other than those shown produce highs at outputs $\mathrm{Y} 6, \mathrm{Y} 7$, and Y 8 .
Note D: Outputs Y1 through Y5 are not used for BCD 9's or BCD 10's complement conversion.
\dagger When these devices are used as complement converters, input E is used as a mode control. With this input low, the BCD 9's complement is generated; when it is high, the BCD 10's complement is generated.

6-BIT BINARY OUTPUT
TL/F/6593-2

BCD 9's
Complement Converter

BCD 10's Complement Converter

BCD 10's COMPLEMENT
L/F/6593-4

Physical Dimensions inches (millimeters)

Molded Dual-In-Line Package (N) Order Number DM8898N or DM8899AN NS Package Number N16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: (+49) 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

