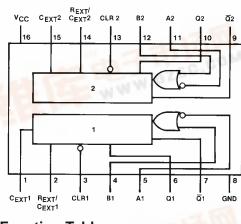


 August 1986 Revised February 2000

DM9602 Dual Retriggerable, Resettable One Shots

General Description

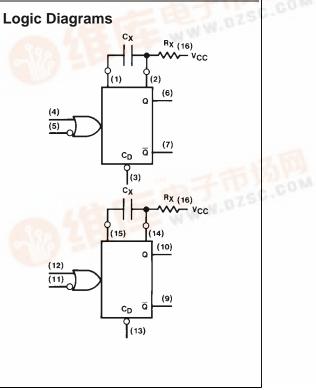
These dual resettable, retriggerable one shots have two inputs per function; one which is active HIGH, and one which is active LOW. This allows the designer to employ either leading-edge or trailing-edge triggering, which is independent of input transition times. When input conditions for triggering are met, a new cycle starts and the external capacitor is allowed to rapidly discharge and then charge again. The retriggerable feature permits output pulse widths to be extended. In fact a continuous true output can be maintained by having an input cycle time which is shorter than the output cycle time. The output pulse may then be terminated at any time by applying a LOW logic level to the RESET pin. Retriggering may be inhibited by either connecting the Q output to an active HIGH input, or the \overline{Q} output to an active LOW input.


Features

- **70** ns to ∞ output width range
- Resettable and retriggerable—0% to 100% duty cycle
- TTL input gating—leading or trailing edge triggering
- Complementary TTL outputs
- Optional retrigger lock-out capability
- Pulse width compensated for V_{CC} and temperature variations

DM9602 Dual Retriggerable, Resettable One Shots

Ordering Code:				
Order Number	Package Number	Package Description		
DM9602N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide		


Connection Diagram

Function Table

Pin Numbers			Operation	
Α	В	CLR	Operation	
H→L		Н	Trigger	
н	L→H	Н	Trigger	
Х	Х	L	Reset	

L = LOW Voltage Level X = Don't Care

DM9602

Operating Rules

- 1. An external resistor (R_X) and external capacitor (C_X) are required as shown in the Logic Diagram.
- 2. The value of C_X may vary from 0 to any necessary value available. If, however, the capacitor has leakages approaching 3.0 μ A or if stray capacitance from either terminal to ground is more than 50 pF, the timing equations may not represent the pulse width obtained.
- 3. The output pulse with (t) is defined as follows:

$$\begin{split} t &= K \, R_X C_X \left[1 + \frac{1}{R_X} \right] \begin{array}{l} \text{for } C_X > 10^3 \, \text{pF} \\ K &\approx 0.34 \end{array} \\ e: \qquad R_X \, \text{is in } k \Omega, \, C_X \, \text{is in } \text{pF} \end{split}$$

t is in ns

wher

for $C_X < 10^3 \text{ pF}$, see Figure 1.

for K vs. C_X see Figure 6.

- 4. If electrolytic type capacitors are to be used, the following three configurations are recommended:
 - 1. Use with low leakage capacitors:

The normal RC configuration can be used predictably only if the forward capacitor leakage at 5.0V is less than 3 μ A, and the inverse capacitor leakage at 1.0V is less than 5 μ A over the operational temperature range.

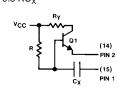
 $R < 0.6 R_X$ (Max)

2. Use with high inverse leakage current electrolytic capacitors:

The diode in this configuration prevents high inverse leakage currents through the capacitor by preventing an inverse voltage across the capacitor. The use of this configuration is not recommended with retriggerable operation.

 $t \approx 0.3 \text{ RC}_{X}$

3. Use to obtain extended pulse widths:


This configuration can be used to obtain extended pulse widths, because of the larger timing resistor allowed by beta multiplication. Electrolytics with high inverse leakage currents can be used.

 $R < R_X \, (0.7) \ (h_{FE} \, Q1)$ or $< 2.5 \ M\Omega,$ whichever is the lesser

 R_X (min) < R_Y < R_X (max)

(5 k $\Omega \le R_Y \le$ 10 k Ω is recommended)

Q1: NPN silicon transistor with h_{FE} requirements of above equations, such as 2N5961 or 2N5962. t \approx 0.3 RC_x

This configuration is not recommended with retriggerable operation.

5. To obtain variable pulse width by remote trimming, the following circuit is recommended:

(14)
$$R_X \ge R_X$$
 (Min)
PIN 2 AS CLOSE AS
POSSIBLE TO DEVICE R $< R_X$ (Max) - R_X
PIN 1

- Under any operating condition, C_X and R_X (min) must be kept as close to the circuit as possible to minimize stray capacitance and reduce noise pickup.
- 7. Input Trigger Pulse Rules (See Triggering Truth Table)

$$\begin{array}{c|c} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 \\ 1 & 0 \\ 1 & 1$$

Input to Pin 5(11), (Pin 3(13) = HIGH)

Pin 4(12) = LOW

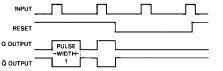
۵

 $t_1,\,t_3$ = Min. Positive Input Pulse Width >40~ns

 $t_2,\,t_4=\mbox{Min.}$ Negative Input Pulse Width $>40~\mbox{ns}$

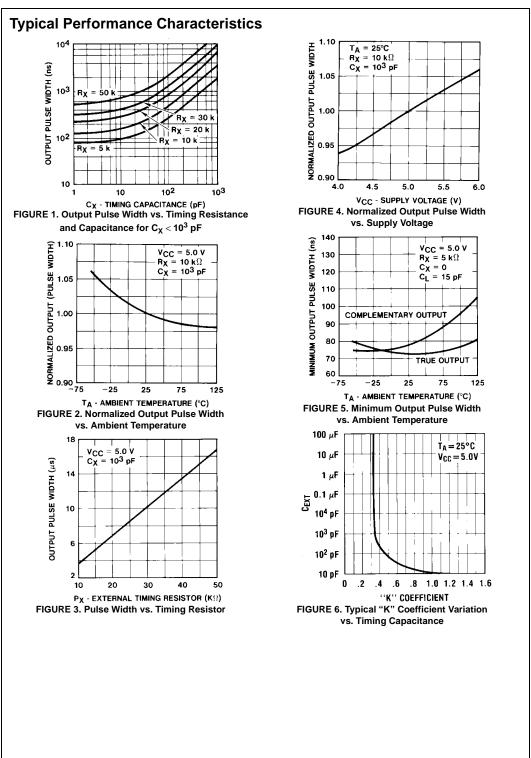
INPUT
$$2.5 V$$

 $0 V$
 $0 V$
 $1.5 V$


Input to Pin 4(12) (Pin 3(13) = HIGH) Pin 5(11) = HIGH

8. The retriggerable pulse width is calculated as shown below:

$$t_{W} = t + t_{PLH} = K R_{X} C_{X} \left(1 + \frac{1}{R_{X}}\right) + t_{PLH}$$


The retrigger pulse width is equal to the pulse width (t) plus a delay time. For pulse widths greater than 500 ns, I_W can be approximated as t. Retriggering will not occur if the retrigger pulse comes within ≈ 0.3 C_X (ns) after the initial trigger pulse (i.e., during the discharge cycle).

 Reset Operation—An overriding clear (active LOW level) is provided on each one shot. By applying a LOW to the reset, any timing cycle can be terminated or any new cycle inhibited until the LOW reset input is removed. Trigger inputs will not produce spikes in the output when the reset is held LOW.

10. V_{CC} and Ground wiring should conform to good high frequency standards so that switching transients on V_{CC} and Ground leads do not cause interaction between one shots. Use of a 0.01 to 0.1 μ F bypass capacitor between V_{CC} and Ground located near the DM9602 is recommended.

Note 1: For further detailed device characteristics and output performance, please refer to the NSC one-shot application note, AN-366.

DM9602

Absolute Maximum Ratings(Note 2)

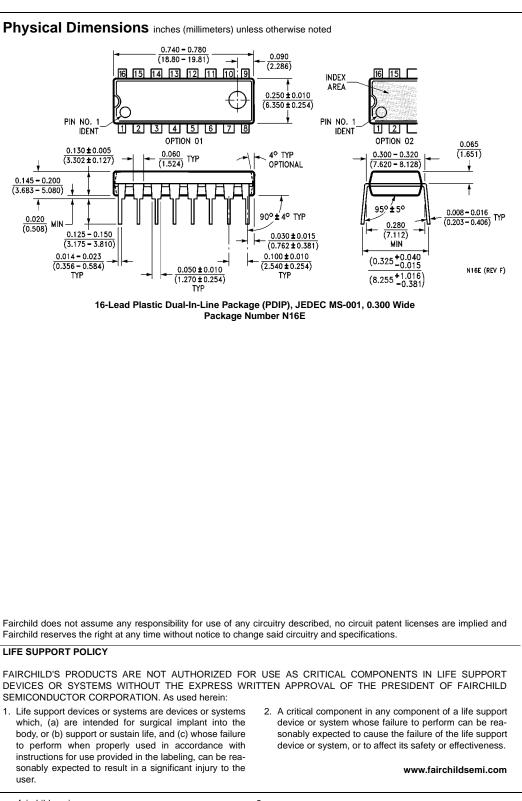
Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbo	Para Para	meter	Min	Nom	Max	l	Jnits
V _{CC}	Supply Voltage		4.75	5	5.25		V
V _{IH}	HIGH Level	$T_A = -55^{\circ}C$					
	Input Voltage	$T_A = 0^\circ C$	1.9				
		$T_A = 25^{\circ}C$	1.8				V
		$T_A = 75^{\circ}C$	1.65				
		$T_A = 125^{\circ}C$					
V _{IL}	LOW Level	$T_A = -55^{\circ}C$					
	Input Voltage	$T_A = 0^{\circ}C$			0.85		
		$T_A = 25^{\circ}C$			0.85		V
		$T_A = 75^{\circ}C$			0.85		
		$T_A = 125^{\circ}C$					
I _{ОН}	HIGH Level Output Cu	urrent			-0.8		mA
OL	LOW Level Output Cu	rrent			16		mA
T _A	Free Air Operating Te	mperature	0		75		°C
over recom	ical Characterist						
Symbol				Min	Тур	Max	Unite
Symbol	Parameter	Condit	ions (Note 3)	Min	Typ (Note 4)	Max	Units
VI	Parameter Input Clamp Voltage	Condit $V_{CC} = Min, I_1 = -12 \text{ mA}$	ions (Note 3)	Min		Max -1.5	Units V
VI	Parameter Input Clamp Voltage HIGH Level	$V_{CC} = Min, I_I = -12 \text{ mA}$ $V_{CC} = Min, I_{OH} = Max$	tions (Note 3)	Min 2.4			
V _I V _{OH}	Parameter Input Clamp Voltage HIGH Level Output Voltage	$\begin{tabular}{ c c c c c } \hline Condit \\ \hline V_{CC} = Min, I_I = -12 mA \\ \hline V_{CC} = Min, I_{OH} = Max \\ \hline V_{IL} = Max, V_{IH} = Min (N) \end{tabular}$	tions (Note 3)			-1.5	V
V _I V _{OH}	Parameter Input Clamp Voltage HIGH Level Output Voltage LOW Level	$\label{eq:condition} \hline \begin{array}{c} \mbox{Condit} \\ \mbox{V}_{CC} = \mbox{Min}, \mbox{I}_{I} = -12 \mbox{ mA} \\ \mbox{V}_{CC} = \mbox{Min}, \mbox{I}_{OH} = \mbox{Max} \\ \mbox{V}_{IL} = \mbox{Max}, \mbox{V}_{IH} = \mbox{Min}, \mbox{Min} \\ \mbox{V}_{CC} = \mbox{Min}, \mbox{I}_{OL} = \mbox{Max} \\ \mbox{V}_{CC} = \mbox{Min}, \mbox{I}_{OL} = \mbox{Max} \\ \end{array}$	Note 5)				V
V _I V _{OH} V _{OL}	Parameter Input Clamp Voltage HIGH Level Output Voltage LOW Level Output Voltage	$\label{eq:condition} \hline \begin{array}{c} \mbox{Condit} \\ \hline \mbox{V}_{CC} = \mbox{Min, } \mbox{I}_{I} = -12 \mbox{ mAx} \\ \hline \mbox{V}_{CC} = \mbox{Min, } \mbox{I}_{OH} = \mbox{Max} \\ \hline \mbox{V}_{IL} = \mbox{Max, } \mbox{V}_{IH} = \mbox{Min (N} \\ \hline \mbox{V}_{CC} = \mbox{Min, } \mbox{I}_{OL} = \mbox{Max} \\ \hline \mbox{V}_{IL} = \mbox{Max, } \mbox{V}_{IH} = \mbox{Min (N} \\ \hline \mbox{Min (N)} = \mbox{Max, } \mbox{Min (N)} \\ \hline \mbox{Min (N)} = \mbox{Min (N)} \\ \hline \mbox{Min (N)} \\ \hline \mbox{Min (N)} = \mbox{Min (N)} \\ \hline \mbox{Min (N)} = \mbox{Min (N)} \\ \hline \mbox{Min (N)} = \mbox{Min (N)} \\ \hline M$	Note 5)			-1.5 0.45	V V V
V _I V _{OH} V _{OL}	Parameter Input Clamp Voltage HIGH Level Output Voltage LOW Level	$\label{eq:condition} \hline \begin{array}{c} \mbox{Condit} \\ \hline \mbox{V}_{CC} = \mbox{Min, } \mbox{I}_{I} = -12 \mbox{ mAx} \\ \hline \mbox{V}_{CC} = \mbox{Min, } \mbox{I}_{OH} = \mbox{Max} \\ \hline \mbox{V}_{IL} = \mbox{Max, } \mbox{V}_{IH} = \mbox{Min (N} \\ \hline \mbox{V}_{CC} = \mbox{Min, } \mbox{I}_{OL} = \mbox{Max} \\ \hline \mbox{V}_{IL} = \mbox{Max, } \mbox{V}_{IH} = \mbox{Min (N} \\ \hline \mbox{V}_{CC} = \mbox{Max, } \mbox{V}_{IH} = \mbox{Min (N} \\ \hline \mbox{V}_{CC} = \mbox{Max, } \mbox{V}_{IH} = \mbox{Min (N} \\ \hline \mbox{V}_{CC} = \mbox{Max, } \mbox{V}_{IH} = \mbox{Min (N} \\ \hline \mbox{V}_{CC} = \mbox{Max, } \mbox{V}_{IH} = \mbox{Min (N} \\ \hline \mbox{Max} = \mbox{Min (N)} \\ \hline \mbox{Min (N)} \\ \hline \mbox{Min (N)} = $	Note 5)	2.4		-1.5	V V V μΑ
V _I V _{OH} V _{OL}	Parameter Input Clamp Voltage HIGH Level Output Voltage LOW Level Output Voltage HIGH Level Input Current	$\label{eq:condition} \hline \begin{array}{c} \mbox{Condit} \\ \hline \mbox{V}_{CC} = \mbox{Min, } \mbox{I}_{I} = -12 \mbox{ mAx} \\ \hline \mbox{V}_{CC} = \mbox{Min, } \mbox{I}_{OH} = \mbox{Max} \\ \hline \mbox{V}_{IL} = \mbox{Max, } \mbox{V}_{IH} = \mbox{Min (N} \\ \hline \mbox{V}_{CC} = \mbox{Min, } \mbox{I}_{OL} = \mbox{Max} \\ \hline \mbox{V}_{IL} = \mbox{Max, } \mbox{V}_{IH} = \mbox{Min (N} \\ \hline \mbox{Min (N)} = \mbox{Max, } \mbox{Min (N)} \\ \hline \mbox{Min (N)} = \mbox{Min (N)} \\ \hline \mbox{Min (N)} \\ \hline \mbox{Min (N)} = \mbox{Min (N)} \\ \hline \mbox{Min (N)} = \mbox{Min (N)} \\ \hline \mbox{Min (N)} = \mbox{Min (N)} \\ \hline M$	Note 5)	2.4 45V		-1.5 0.45 60	V V V
Symbol V1 V0H V0H V0L I1H I1L	Parameter Input Clamp Voltage HIGH Level Output Voltage LOW Level Output Voltage HIGH Level Input Current LOW Level	$\label{eq:condition} \hline \begin{tabular}{ c c c c c } \hline Condit \\ \hline V_{CC} = Min, I_I = -12 mA \\ \hline V_{CC} = Min, I_{OH} = Max \\ \hline V_{IL} = Max, V_{IH} = Min (N \\ \hline V_{CC} = Min, I_{OL} = Max \\ \hline V_{IL} = Max, V_{IH} = Min (N \\ \hline V_{CC} = Max, V_{I} = 4.5V \\ \hline V_{CC} = Max \\ \hline \end{tabular}$	Vote 5) Vote 5) Vote 5) Viete 5) Viete 5)	2.4 45V		-1.5 0.45 60 -1.6	V V V μΑ

Note 3: Unless otherwise noted, $R_{\chi} = 10k$ for all tests.


Note 4: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 5: Ground PIN 1(15) for V_{OL} on PIN 7(9) or V_{OH} and I_{OS} on PIN 6(10) and apply momentary ground to PIN 4(12). Open PIN 1(15) for V_{OL} on PIN 6(10) or V_{OH} and I_{OS} on PIN 7(9).

Note 6: Not more than one output should be shorted at a time.

00 .	$T_A = 25^{\circ}C$					
Symbol	Parameter		Conditions	Min	Max	Units
t _{PLH}	Propagation Delay Time, LOW-to-HIGH Level Output	Negative Trigger Input to True Output	$C_L = 15 \text{ pF}$ $C_X = 0$		40	ns
t _{PHL}	Propagation Delay Time, HIGH-to-LOW Level Output	Negative Trigger Input To Complement Output	$R_X = 5 k\Omega$		48	ns
t _{PW} (MIN)	Minimum True Output Pulse Width				100	ns
	Minimum Complement Pulse Width				110	115
t _{PW}	Pulse Width		$R_X = 10 k\Omega$ $C_X = 1000 pF$	3.08	3.76	μs
C _{STRAY}	Maximum Allowable Wiring Capacitance		Pins 2, 14 to GND		50	pF
R _X	External Timing Resistor			5	50	kΩ

DM9602

www.fairchildsemi.com