

National Semiconductor

February 2000

DP8310/DP8311 Octal Latched Peripheral Drivers

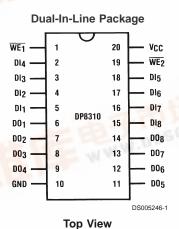
General Description

The DP8310 and DP8311 Octal Latched Peripheral Drivers provide the function of latching eight bits of data with open collector outputs, each driving up to 100 mA DC with an operating voltage range of 30V. Both devices are designed for low input currents, high input/output voltages, and feature a power up clear (outputs off) function.

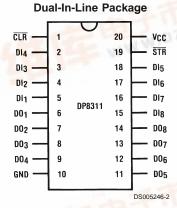
The DP8310 is positive edge latching. Two active low write/ enable inputs are available for convenient data bussing without external gating.

The DP8311 is positive edge latching. The active low strobe input latches data or allows fall through operation when held at logic "0". The latches are cleared (outputs off) with a logic "0" on the clear pin.

Features


- High current, high voltage open collector outputs
- Low current, high voltage inputs

- All outputs simultaneously sink rated current "DC" with no thermal derating at maximum rated temperature
- Parallel latching or buffering
- Separate active low enables for easy data bussing
- Internal "glitch free" power up clear
- 10% V_{CC} tolerance


Applications

- High current high voltage drivers
- Relay drivers
- Lamp drivers
- LED drivers
- TRIAC drivers
- Solenoid drivers
- Stepper motor drivers
- Level translators
- Fiber-optic LED drivers

Connection Diagrams

Order Number DP8310N or DP8311N See NS Package Number N20A

Top View

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	7.0V
Input Voltage	35V
Output Voltage	35V
M . D D:	

Maximum Power Dissipation* at $T_A = 25^{\circ}C$

DP8310/DP8311 2005 mW Storage Temperature Range -65° C to $+150^{\circ}$ C

Lead Temperature (Soldering, 4 sec.) 260°C

Note: *Derate N20A package 15.4 mW/°C above $T_A = 25$ °C, $\theta J_A = 65$ °C/W.

Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	4.5	5.5	V
Temperature			
DP8310/DP8311	0	+70	°C
Input Voltage		30	V
Output Voltage		30	V

DC Electrical Characteristics

DP8310 and DP8311 (Notes 2, 3)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{IH}	Logical "1" Input Voltage		2.0			V
V _{IL}	Logical "0" Input Voltage				0.8	V
V _{OL}	Logical "0" Output Voltage	Data outputs latched to logical "0", V _{CC} = Min.				
	DP8310/DP8311	I _{OL} = 100 mA		0.35	0.5	V
I _{OH}	Logical "1" Output Current	Data outputs latched to logical "1", V _{CC} = Min.				
	DP8310/DP8311	V _{OH} = 30V		2.5	250	μA
I _{IH}	Logical "1" Input Current	V _{IH} = 2.7V, V _{CC} = Max		0.1	25	μA
I _I	Input Current at Maximum Input Voltage	V _{IN} = 30V, V _{CC} = Max		1	250	μA
I _{IL}	Logical "0" Input Current	$V_{IN} = 0.4V, V_{CC} = Max$		-215	-300	μA
V _{clamp}	Input Clamp Voltage	I _{IN} = 12 mA		-0.8	-1.5	V
I _{CC0}	Supply Current, Outputs On	Data outputs latched to a logical "0". All Inputs are at logical "1", V _{CC} = Max.				
	DP8310			100	152	mA
	DP8311			88	125	mA
I _{CC1}	Supply Current, Outputs Off	Data outputs latched to a logic "1". Other conditions same as I _{CC0} .				
	DP8310			40	57	mA
	DP8311			25	36	mA

AC Electrical Characteristics

DP8310 only: V_{CC} = 4.5V, T_A = 25°C

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd0}	High to Low Propagation Delay Write Enable Input to Output	(Figure 1)		40	120	ns
t _{pd1}	Low to High Propagation Delay Write Enable Input to Output	(Figure 1)		70	150	ns
t _{SETUP}	Minimum Set-Up Time Data in to Write Enable Input	t _{HOLD} = 0 ns (Figure 1)	45	20		ns
t _{pWH} , t _{pWL}	Minimum Write Enable Pulse Width	(Figure 1)	60	25		ns
t _{THL}	High to Low Output Transition Time	(Figure 1)		16	35	ns
t _{TLH}	Low to High Output Transition Time	(Figure 1)		38	70	ns
C _{IN}	"N" Package (Note 4)			5	15	pF

www.national.com

AC Electrical Characteristics

DP8311 only: V_{CC} = 5V, T_A = 25°C

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd0}	High to Low Propagation Delay Data In to Output	(Figure 2)		30	60	ns
t _{pd1}	Low to High Propagation Delay Data to Output	(Figure 2)		70	100	ns
t _{SETUP}	Minimum Set-Up Time Data in to Strobe Input	t _{HOLD} = 0 ns (Figure 2)	0	-25		ns
t _{pWL}	Minimum Strobe Enable Pulse Width	(Figure 2)	60	35		ns
t _{pdC}	Propagation Delay Clear to Data Output	(Figure 2)		70	135	ns
t _{pWC}	Minimum Clear Input Pulse Width	(Figure 2)	60	25		ns
t _{THL}	High to Low Output Transition Time	(Figure 2)		20	35	ns
t _{TLH}	Low to High Output Transition Time	(Figure 2)		38	60	ns
C _{IN}	Input Capacitance — Any Input	(Note 4)		5	15	pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0° C to +70 $^{\circ}$ C for the DP8310/DP8311. All typical values are for T_A =25 $^{\circ}$ C, V_{CC} = 5 $^{\circ}$ C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted.

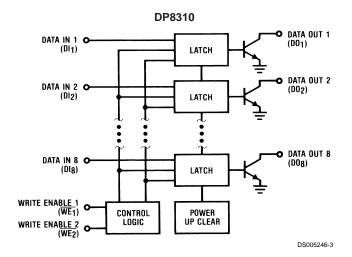
Note 4: Input capacitance is guaranteed by periodic testing. f_{TEST} = 10 kHz at 300 mV, T_A = 25°C.

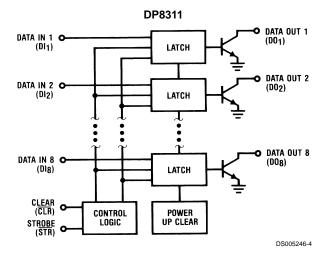
Logic Table

DP8310				
Write	Write	Data	Data	
Enable 1	Enable 2	Input	Output	
WE ₁	\overline{WE}_2	DI ₁₋₈	DO ₁₋₈	
0	0	Х	Q	
0	<i>s</i> -	0	1	
0	<i>s</i> -	1	0	
s-	0	0	1	
s-	0	1	0	
0	1	Х	Q	
1	0	Х	Q	
1	1	Х	Q	

DP8311				
Clear CLR	Strobe STR	Data Input DI _{1–8}	Data Output DO _{1–8}	
1	1	X	Q	
1	0	0	1	
1	0	1	0	
0	Χ	Х	1	

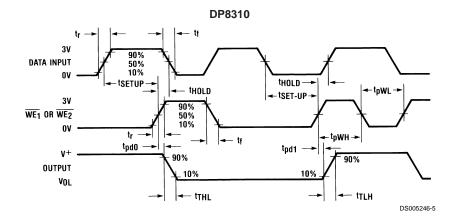
X = Don't Care

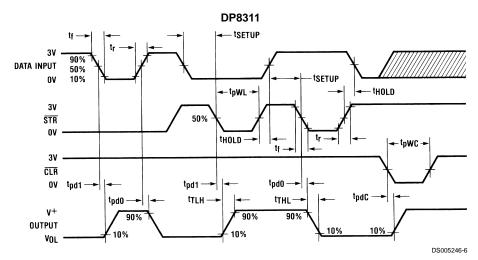

1 = Outputs Off

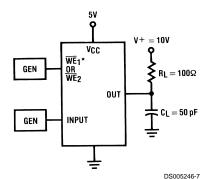

0 = Outputs On

Q = Pre-existing Output

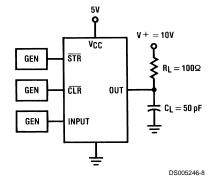
= Positive Edge Transition


Block Diagrams




www.national.com

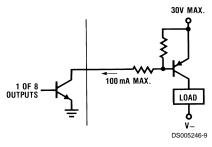
Switching Time Waveforms



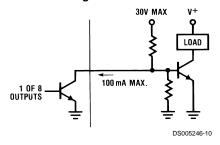
Switching Time Test Circuits

 $*\overline{WE}_1 = 0V$ When the Input = \overline{WE}_2

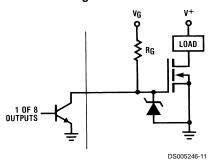
FIGURE 1. DP8310

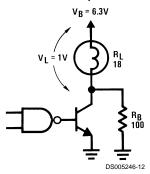

Pulse Generator Characteristics:

 $Z_{O} = 50\Omega$, $t_{r} = t_{f} = 5$ ns


FIGURE 2. DP8311

Typical Applications DP8310/11 Buffering High Current Device (Notes 5, 6)

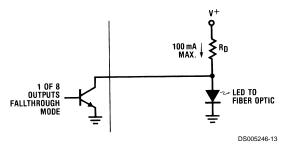

PNP High Current Driver

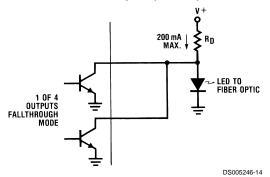

NPN High Current Driver

VMOS High Current Driver

Circuit Used to Reduce Peak Transient Lamp Current

$$R_{B} = \left(\frac{V_{B} - V_{L}}{V_{L}}\right) R_{L}$$

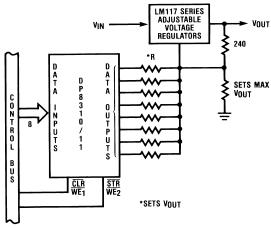

$$R_{B} = \left(\frac{6.3 - 1}{1}\right) 18\Omega = 95.4 \approx 100\Omega$$


Typical Applications DP8310/11 Buffering High Current Device (Notes 5, 6) (Continued)

Eight Output/Four Output Fiber Optic LED Driver

DP8311 100 mA Drivers

DP8311 Parallel Outputs (200 mA) Drivers*

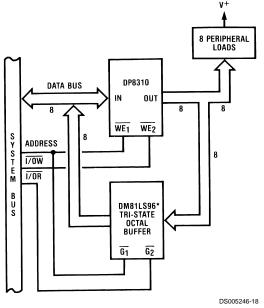


*Parallel only adjacent outputs

8-Bit Level Translator Driver

Digital Controlled 256 Level Power Supply from 1.2V to 30V

DS005246-16

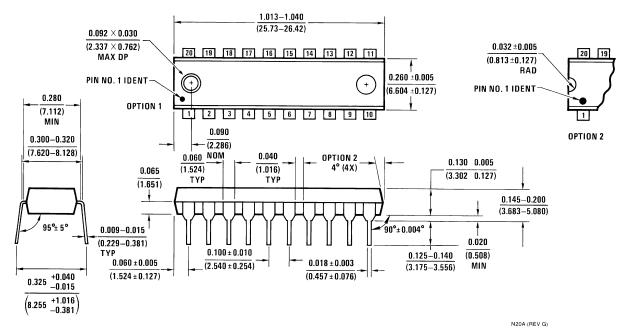

Typical Applications DP8310/11 Buffering High Current Device (Notes 5, 6) (Continued)

200 mA Drive for a 4 Phase Bifilar Stepper Motor

+VSTEPPER 30V MAX. * DO1 $D0_2$ D03 DATA BUS D04 DP8310 D05 D06 D07 D08 $\overline{\text{WE}}_2$ ADDRESS/CE i/0W DS005246-17

*Parallel only adjacent outputs

Reading the State of the Latched Peripherals


*High Level Input Voltage must not Exceed V_{CC} of the DM81LS96

Note 5: Always use good V_{CC} bypass and ground techniques to suppress transients caused by peripheral loads.

Note 6: Printed circuit board mounting is required if these devices are operated at maximum rated temperature and current (all outputs on DC).

www.national.com

Physical Dimensions inches (millimeters) unless otherwise noted

Molded Dual-In-Line Package (N) Order Number DP8310N or DP8311N NS Package Number N20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.national.com

National Semiconductor Corporation Americas

Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com National Semiconductor Europe

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466

Fax: 65-2504466 Email: ap.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560

Fax: 81-3-5639-7507