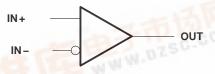

SGLS191 - JUNE 2004

- Qualification in Accordance With AEC-Q100†
- **Qualified for Automotive Applications**
- **Customer-Specific Configuration Control** Can Be Supported Along With Major-Change Approval
- **ESD Protection Exceeds 2000 V Per** MIL-STD-883, Method 3015; Exceeds 50 V Using Machine Model (C = 200 pF, R = 0)
- Push-Pull CMOS Output Drives Capacitive Loads Without Pullup Resistor, $I_0 = \pm 8 \text{ mA}$
- Very Low Power . . . 200 μW Typ at 5 V
- Fast Response Time . . . $t_{Pl H} = 2.7 \mu s Typ$ With 5-mV Overdrive
- Single Supply Operation . . . 3 V to 16 V
- **On-Chip ESD Protection**


D PACKAGE (TOP VIEW) 14 30UT 10UT [20UT [13 40UT 12 GND V_{DD} 3 2IN-[] 4 11 1 4IN+ 2IN+∏ 5 10 ¶ 4IN− 1IN-**∏** 6 9 3IN+] 3IN− **PW PACKAGE** (TOP VIEW)

description/ordering information

The TLC3704 consists of four independent micropower voltage comparators designed to operate from a single supply and be compatible with modern HCMOS logic systems. They are functionally similar to the LM339 but use 1/20th the power for similar response times. The push-pull CMOS output stage drives capacitive

symbol (each comparator)

loads directly without a power-consuming pullup resistor to achieve the stated response time. Eliminating the pullup resistor not only reduces power dissipation, but also saves board space and component cost. The output stage is also fully compatible with TTL requirements.

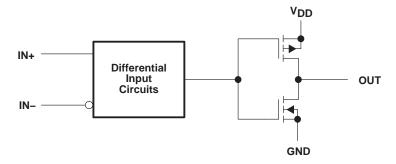
Texas Instruments LinCMOS™ process offers superior analog performance to standard CMOS processes. Along with the standard CMOS advantages of low power without sacrificing speed, high input impedance, and low bias currents, the LinCMOS process offers extremely stable input offset voltages with large differential input voltages. This characteristic makes it possible to build reliable CMOS comparators. WWW.DZSC.COM

The TLC3704Q is characterized for operation from -40°C to 125°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

CMOS is a trademark of Texas Instruments Incorporated.

[†]Contact factory for details. Q100 qualification data available on request.


SGLS191 - JUNE 2004

ORDERING INFORMATION

TA	V _{IO} max AT 25°C	PACKAGE [†]				ORDERABLE PART NUMBER	TOP-SIDE MARKING
400C to 4050C	5\/	SOIC (D)	Tape and reel	TLC3704QDRQ1	TLC3704Q1		
-40°C to 125°C	5 mV	TSSOP (PW)	Tape and reel	TLC3704QPWRQ1 [‡]			

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

functional block diagram (each comparator)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{DD} (see Note 1)	0.3 V to 18 V
Differential input voltage, V _{ID} (see Note 2)	±18 V
Input voltage range, V ₁	
Output voltage range, V _O	0.3 to V _{DD}
Input current, I _I	±5 mA
Output current, I _O (each output)	±20 mA
Total supply current into V _{DD}	40 mA
Total current out of GND	60 mA
Continuous total power dissipation	. See Dissipation Rating Table
Operating free-air temperature range, T _A : TLC3704Q	–40°C to 125°C
Storage temperature range	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D package	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{\scriptsize A}} \leq 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	494 mW	190 mW
PW	675 mW	5.4 mW/°C	432 mW	351 mW	135 mW

[‡] Product Preview

NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.

^{2.} Differential voltages are at IN+ with respect to IN -.

SGLS191 - JUNE 2004

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{DD}	3	5	16	V
Common-mode input voltage, V _{IC}	-0.2		V _{DD} – 1.5	V
High-level output current, IOH			- 20	mA
Low-level output current, IOL			20	mA
Operating free-air temperature, TA	- 40		125	°C

electrical characteristics at specified operating free-air temperature, V_{DD} = 5 V, V_{IC} = 0 (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	TA	MIN	TYP	MAX	UNIT			
Via	Input offset voltage	V _{DD} = 5 V to 10	0 V,	25°C		1.2	5	mV			
VIO	input onset voltage	V _{IC} = V _{ICR} min	, See Note 3	-40°C to 125°C			7	IIIV			
	land offer to summer!	0.51/		25°C		1		pА			
lio	Input offset current	V _{IC} = 2.5 V		125°C			15	nA			
		V 0.5.V		25°C		5		рА			
lΒ	Input bias current	V _{IC} = 2.5 V		125°C			30	nA			
.,	Common-mode input voltage			25°C	0 to V _{DD} – 1			.,			
VICR	range			-40°C to 125°C	0 to V _{DD} – 1.5			V			
				25°C		84					
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min		125°C		83		dB			
				-40°C		83					
				25°C		85					
ksvr	Supply-voltage rejection ratio	$V_{DD} = 5 \text{ V to } 10$	0 V	125°C		85		dB			
				-40°C		83					
.,		., .,,		25°C	4.5	4.7		.,			
VOH	High-level output voltage	$V_{ID} = 1 V$,	$I_{OH} = -4 \text{ mA}$	125°C	4.2		15 30 4 3 3 3 5 5 3 7 0 300 500	V			
				25°C		210	300				
VOL	Low-level output voltage	voltage $V_{ID} = -1 \text{ V}, \qquad I_{OH} = 4 \text{ mA}$ 125°C			500	mV					
1	Supply current (all four	Outrotte less	Nolood	25°C		35	80	^			
IDD	comparators)	Outputs low,	No load	-40°C to 125°C			175	μΑ			

NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.

SGLS191 - JUNE 2004

switching characteristics, V_{DD} = 5 V, T_A = 25°C

	PARAMETER	TES	T CONDITIONS	MIN TYP	MAX	UNIT	
	Overdrive = 2 mV			4.5			
			Overdrive = 5 mV	2.7			
<u> </u>	5	f = 10 kHz, C _L = 50 pF	Overdrive = 10 mV	1.9			
tPLH	Propagation delay time, low-to-high-level output [†]	ор – 30 рг	Overdrive = 20 mV	1.4		μs	
			Overdrive = 40 mV	1.1			
		V _I = 1.4-V ste	p at IN+	1.1			
			Overdrive = 2 mV	4			
			Overdrive = 5 mV	2.3			
1.		f = 10 kHz, $C_1 = 50 \text{ pF}$	Overdrive = 10 mV	1.5			
tPHL	Propagation delay time, high-to-low-level output	CL = 30 pi	Overdrive = 20 mV	0.95		μs	
			Overdrive = 40 mV	0.65			
		V _I = 1.4-V ste	p at IN+	0.15			
t _f	Fall time	f = 10 kHz, C _L = 50 pF	Overdrive = 50 mV	50		ns	
t _r	Rise time	f = 10 kHz, C _L = 50 pF	Overdrive = 50 mV	125		ns	

 $[\]ensuremath{^{\dagger}}$ Simultaneous switching of inputs causes degradation in output response.

PRINCIPLES OF OPERATION

LinCMOS process

The LinCMOS process is a linear polysilicon-gate CMOS process. Primarily designed for single-supply applications, LinCMOS products facilitate the design of a wide range of high-performance analog functions from operational amplifiers to complex mixed-mode converters.

This short guide is intended to answer the most frequently asked questions related to the quality and reliability of LinCMOS products. Direct further questions to the nearest TI field sales office.

electrostatic discharge

CMOS circuits are prone to gate oxide breakdown when exposed to high voltages even if the exposure is only for very short periods of time. Electrostatic discharge (ESD) is one of the most common causes of damage to CMOS devices. It can occur when a device is handled without proper consideration for environmental electrostatic charges, e.g., during board assembly. If a circuit in which one amplifier from a dual op amp is being used and the unused pins are left open, high voltages tends to develop. If there is no provision for ESD protection, these voltages may eventually punch through the gate oxide and cause the device to fail. To prevent voltage buildup, each pin is protected by internal circuitry.

Standard ESD-protection circuits safely shunt the ESD current by providing a mechanism whereby one or more transistors break down at voltages higher than the normal operating voltages but lower than the breakdown voltage of the input gate. This type of protection scheme is limited by leakage currents which flow through the shunting transistors during normal operation after an ESD voltage has occurred. Although these currents are small, on the order of tens of nanoamps, CMOS amplifiers are often specified to draw input currents as low as tens of picoamps.

To overcome this limitation, TI design engineers developed the patented ESD-protection circuit shown in Figure 1. This circuit can withstand several successive 2-kV ESD pulses, while reducing or eliminating leakage currents that may be drawn through the input pins. A more detailed discussion of the operation of the TI ESD-protection circuit is presented on the next page.

All input and output pins on LinCMOS and Advanced LinCMOS products have associated ESD-protection circuitry that undergoes qualification testing to withstand 2000 V discharged from a 100-pF capacitor through a 1500- Ω resistor (human body model) and 200 V from a 100-pF capacitor with no current-limiting resistor (charged device model). These tests simulate both operator and machine handling of devices during normal test and assembly operations.

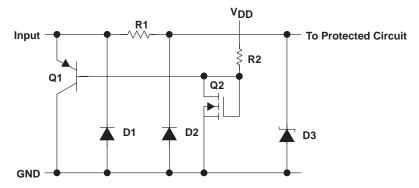


Figure 1. LinCMOS ESD-Protection Schematic

SGLS191 - JUNE 2004

PRINCIPLES OF OPERATION

input protection circuit operation

Texas Instruments patented protection circuitry allows for both positive- and negative-going ESD transients. These transients are characterized by extremely fast rise times and usually low energies, and can occur both when the device has all pins open and when it is installed in a circuit.

positive ESD transients

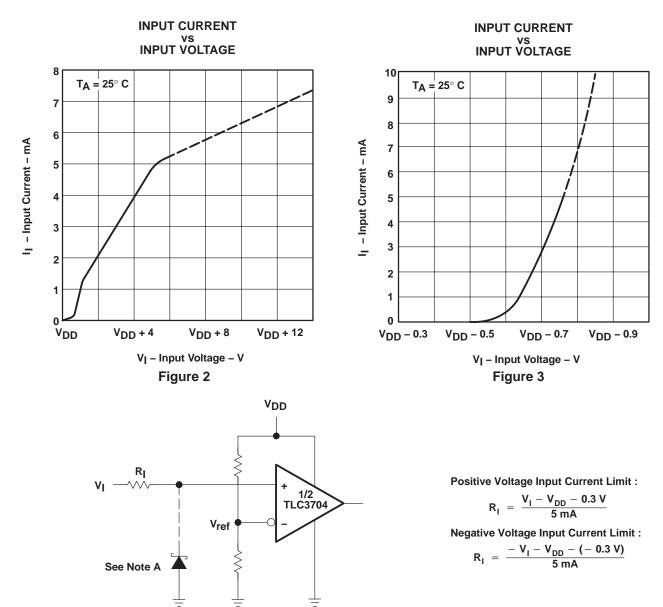
Initial positive charged energy is shunted through Q1 to V_{SS} . Q1 turns on when the voltage at the input rises above the voltage on the V_{DD} pin by a value equal to the V_{BE} of Q1. The base current increases through R2 with input current as Q1 saturates. The base current through R2 forces the voltage at the drain and gate of Q2 to exceed its threshold level ($V_T \sim$ 22 to 26 V) and turn Q2 on. The shunted input current through Q1 to V_{SS} is now shunted through the n-channel enhancement-type MOSFET Q2 to V_{SS} . If the voltage on the input pin continues to rise, the breakdown voltage of the zener diode D3 is exceeded, and all remaining energy is dissipated in R1 and D3. The breakdown voltage of D3 is designed to be 24 to 27 V, which is well below the gate-oxide voltage of the circuit to be protected.

negative ESD transients

The negative charged ESD transients are shunted directly through D1. Additional energy is dissipated in R1 and D2 as D2 becomes forward biased. The voltage seen by the protected circuit is – 0.3 V to –1 V (the forward voltage of D1 and D2).

circuit-design considerations

LinCMOS products are being used in actual circuit environments that have input voltages that exceed the recommended common-mode input voltage range and activate the input protection circuit. Even under normal operation, these conditions occur during circuit power up or power down, and in many cases, when the device is being used for a signal conditioning function. The input voltages can exceed V_{ICR} and not damage the device only if the inputs are current limited. The recommended current limit shown on most product data sheets is ± 5 mA. Figures 2 and 3 show typical characteristics for input voltage versus input current.


Normal operation and correct output state can be expected even when the input voltage exceeds the positive supply voltage. Again, the input current should be externally limited even though internal positive current limiting is achieved in the input protection circuit by the action of Q1. When Q1 is on, it saturates and limits the current to approximately 5-mA collector current by design. When saturated, Q1 base current increases with input current. This base current is forced into the V_{DD} pin and into the device I_{DD} or the V_{DD} supply through R2 producing the current limiting effects shown in Figure 2. This internal limiting lasts only as long as the input voltage is below the V_{T} of Q2.

When the input voltage exceeds the negative supply voltage, normal operation is affected and output voltage states may not be correct. Also, the isolation between channels of multiple devices (duals and quads) can be severely affected. External current limiting must be used since this current is directly shunted by D1 and D2 and no internal limiting is achieved. If normal output voltage states are required, an external input voltage clamp is required (see Figure 4).

PRINCIPLES OF OPERATION

circuit-design considerations (continued)

NOTE A: If the correct input state is required when the negative input exceeds GND, a Schottky clamp is required.

Figure 4. Typical Input Current-Limiting Configuration for a LinCMOS Comparator

PARAMETER MEASUREMENT INFORMATION

The TLC3704 contains a digital output stage which, if held in the linear region of the transfer curve, can cause damage to the device. Conventional operational amplifier/comparator testing incorporates the use of a servo loop which is designed to force the device output to a level within this linear region. Since the servo-loop method of testing cannot be used, we offer the following alternatives for measuring parameters such as input offset voltage, common-mode rejection, etc.

To verify that the input offset voltage falls within the limits specified, the limit value is applied to the input as shown in Figure 5(a). With the noninverting input positive with respect to the inverting input, the output should be high. With the input polarity reversed, the output should be low.

A similar test can be made to verify the input offset voltage at the common-mode extremes. The supply voltages can be slewed as shown in Figure 5(b) for the V_{ICR} test, rather than changing the input voltages, to provide greater accuracy.

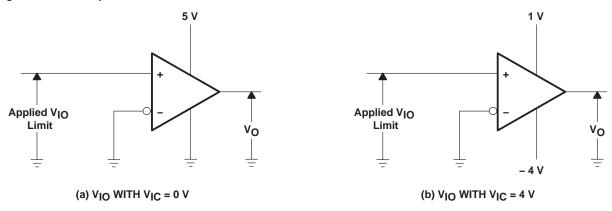


Figure 5. Method for Verifying That Input Offset Voltage Is Within Specified Limits

A close approximation of the input offset voltage can be obtained by using a binary search method to vary the differential input voltage while monitoring the output state. When the applied input voltage differential is equal, but opposite in polarity, to the input offset voltage, the output changes states.

Figure 6 illustrates a practical circuit for direct dc measurement of input offset voltage that does not bias the comparator in the linear region. The circuit consists of a switching mode servo loop in which IC1a generates a triangular waveform of approximately 20-mV amplitude. IC1b acts as a buffer, with C2 and R4 removing any residual d.c. offset. The signal is then applied to the inverting input of the comparator under test, while the noninverting input is driven by the output of the integrator formed by IC1c through the voltage divider formed by R8 and R9. The loop reaches a stable operating point when the output of the comparator under test has a duty cycle of exactly 50%, which can only occur when the incoming triangle wave is sliced symmetrically or when the voltage at the noninverting input exactly equals the input offset voltage.

Voltage divider R8 and R9 provides an increase in the input offset voltage by a factor of 100 to make measurement easier. The values of R5, R7, R8, and R9 can significantly influence the accuracy of the reading; therefore, it is suggested that their tolerance level be one percent or lower.

Measuring the extremely low values of input current requires isolation from all other sources of leakage current and compensation for the leakage of the test socket and board. With a good picoammeter, the socket and board leakage can be measured with no device in the socket. Subsequently, this open socket leakage value can be subtracted from the measurement obtained with a device in the socket to obtain the actual input current of the device.

PARAMETER MEASUREMENT INFORMATION

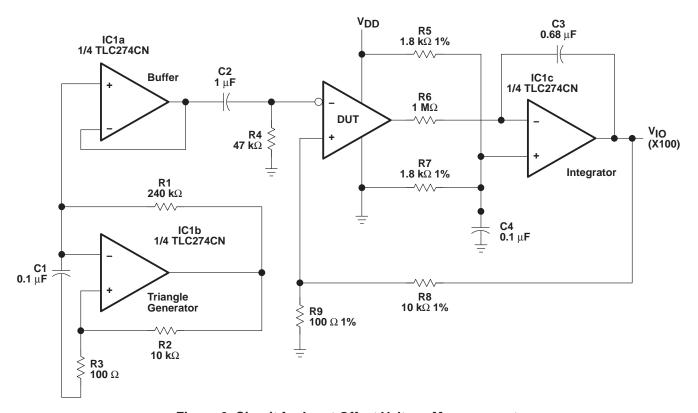
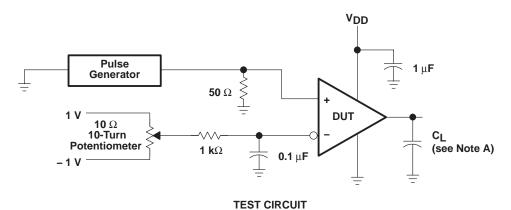



Figure 6. Circuit for Input Offset Voltage Measurement

Response time is defined as the interval between the application of an input step function and the instant when the output reaches 50% of its maximum value. Response time for the low-to-high-level output is measured from the leading edge of the input pulse, while response time for the high-to-low-level output is measured from the trailing edge of the input pulse. Response time measurement at low input signal levels can be greatly affected by the input offset voltage. The offset voltage should be balanced by the adjustment at the inverting input as shown in Figure 7, so that the circuit is just at the transition point. A low signal, for example 105-mV overdrive, causes the output to change state.

PARAMETER MEASUREMENT INFORMATION

Overdrive Overdrive 100 mV Input Input 100 mV 90% 90% Low-to-High Level Output High-to-Low Level Output 50% 50% 10% 10% ^tPLH ^tPHL

NOTE A: C_L includes probe and jig capacitance.

Figure 7. Response, Rise, and Fall Times Circuit and Voltage Waveforms

VOLTAGE WAVEFORMS

TYPICAL CHARACTERISTICS

Table of Graphs

	<u>·</u>		
			FIGURE
VIO	Input offset voltage	Distribution	8
l _{IB}	Input bias current	vs Free-air temperature	9
CMRR	Common-mode rejection ratio	vs Free-air temperature	10
k _{SVR}	Supply-voltage rejection ratio	vs Free-air temperature	11
Vон	High-level output current	vs Free-air temperature vs High-level output current	12 13
VOL	Low-level output voltage	vs Low-level output current vs Free-air temperature	14 15
t _t	Output transition time	vs Load capacitance	16
	Supply current response to an output voltage transition		17
	Low-to-high-level output response for various input overdrives		18
	High-to-low-level output response for various input overdrives		19
^t PLH	Low-to-high-level output response time	vs Supply voltage	20
^t PHL	High-to-low-level output response time	vs Supply voltage	21
I _{DD}	Supply current	vs Frequency vs Supply voltage vs Free-air temperature	22 23 24

DISTRIBUTION OF INPUT OFFSET VOLTAGE[†]

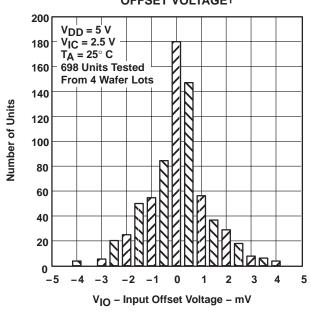
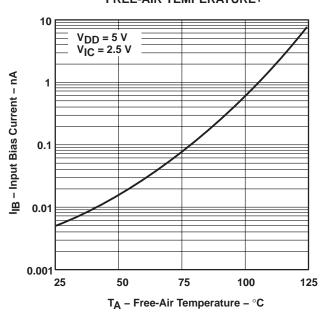
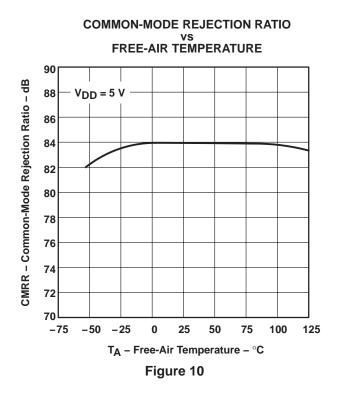
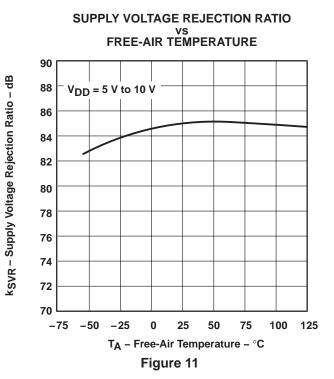


Figure 8

INPUT BIAS CURRENT vs FREE-AIR TEMPERATURE[†]


Figure 9

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS[†]

HIGH-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

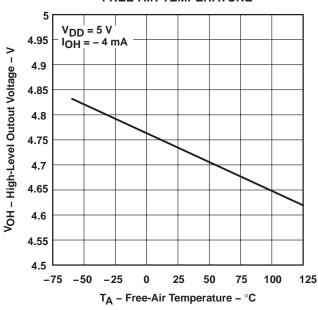


Figure 12

HIGH-LEVEL OUTPUT VOLTAGE
VS
HIGH-LEVEL OUTPUT CURRENT

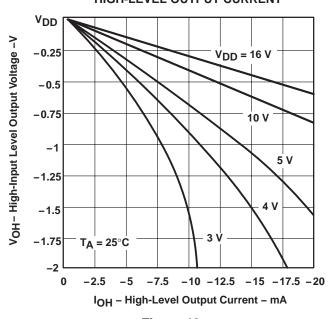


Figure 13

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS[†]

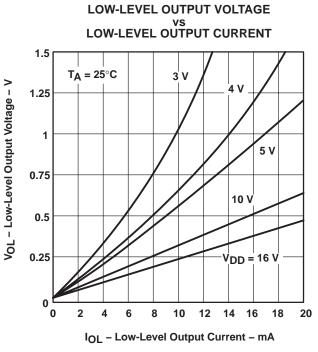
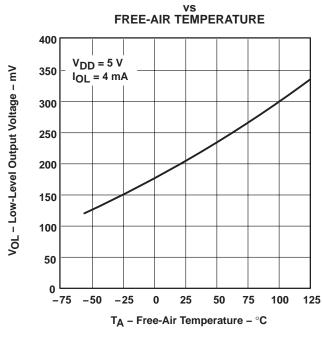



Figure 14

LOW-LEVEL OUTPUT VOLTAGE

Figure 15

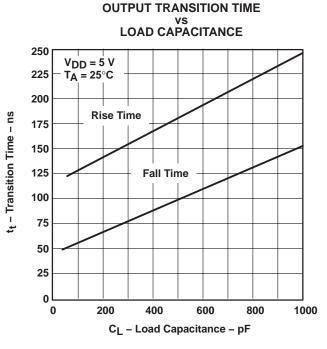
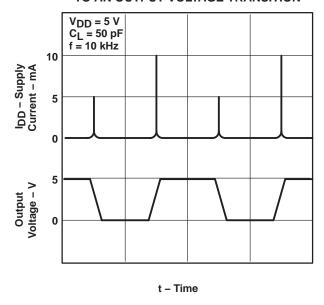
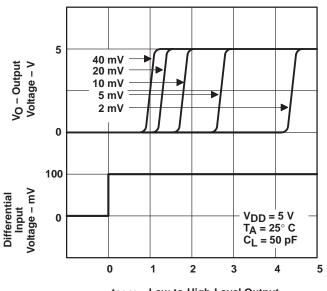


Figure 16

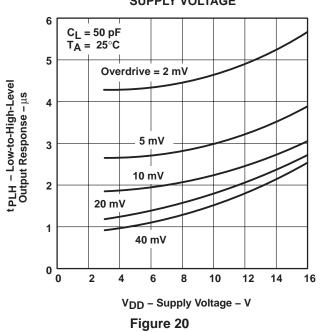
SUPPLY CURRENT RESPONSE TO AN OUTPUT VOLTAGE TRANSITION




Figure 17

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS


LOW-TO-HIGH-LEVEL OUTPUT RESPONSE FOR VARIOUS INPUT OVERDRIVES

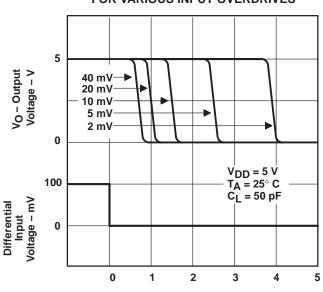
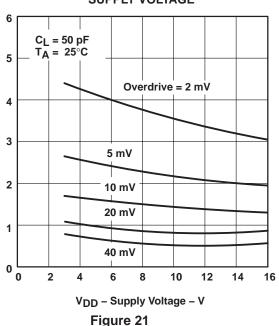

t_{PLH} – Low-to-High-Level Output Response Time – μs

Figure 18

LOW-TO-HIGH-LEVEL OUTPUT RESPONSE TIME VS SUPPLY VOLTAGE

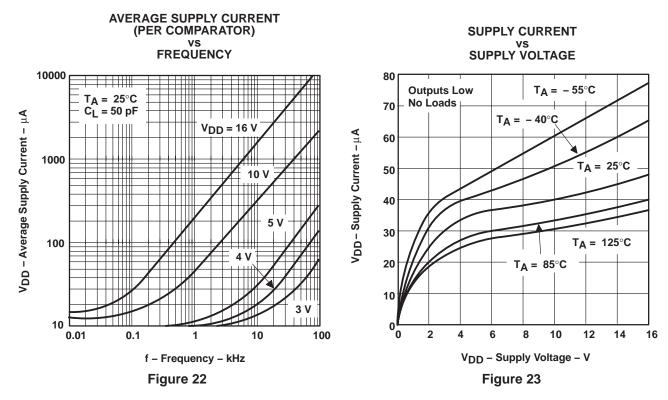
HIGH-TO-LOW-LEVEL OUTPUT RESPONSE FOR VARIOUS INPUT OVERDRIVES



tpHL - High-to-Low-Level Output Response Time - μs

Figure 19

HIGH-TO-LOW-LEVEL OUTPUT RESPONSE TIME vs


SUPPLY VOLTAGE

PHL - High-to-Low-Level Output Response -μs

TYPICAL CHARACTERISTICS[†]

SUPPLY CURRENT vs FREE-AIR TEMPERATURE

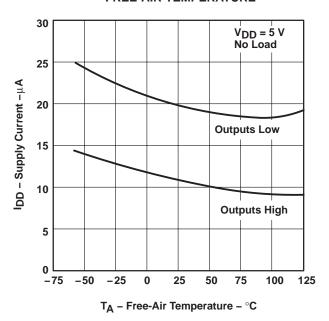


Figure 24

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

SGLS191 - JUNE 2004

APPLICATION INFORMATION

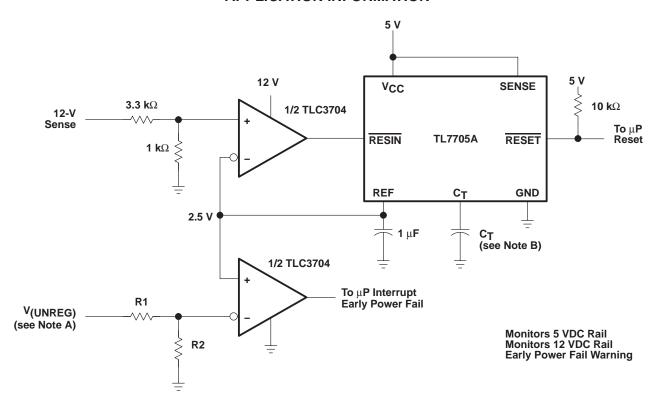
The inputs should always remain within the supply rails in order to avoid forward biasing the diodes in the electrostatic discharge (ESD) protection structure. If either input exceeds this range, the device is not damaged as long as the input is limited to less than 5 mA. To maintain the expected output state, the inputs must remain within the common-mode range. For example, at 25° C with $V_{DD} = 5$ V, both inputs must remain between -0.2 V and 4 V to ensure proper device operation. To ensure reliable operation, the supply should be decoupled with a capacitor (0.1 μ F) that is positioned as close to the device as possible.

Output and supply current limitations should be watched carefully since the TLC3704 does not provide current protection. For example, each output can source or sink a maximum of 20 mA; however, the total current to ground can only be an absolute maximum of 60 mA. This prohibits sinking 20 mA from each of the four outputs simultaneously since the total current to ground would be 80 mA.

The TLC3704 has internal ESD-protection circuits that prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

Table of Applications

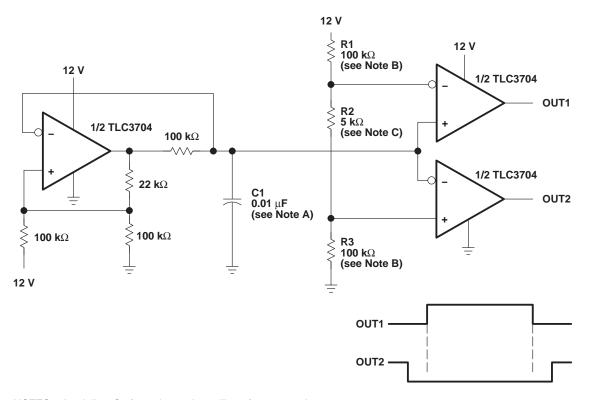
	FIGURE
Pulse-width-modulated motor speed controller	25
Enhanced supply supervisor	26
Two-phase nonoverlapping clock generator	27
Micropower switching regulator	28



NOTES: A. The recommended minimum capacitance is 10 μF to eliminate common ground switching noise.

B. Adjust C1 for change in oscillator frequency

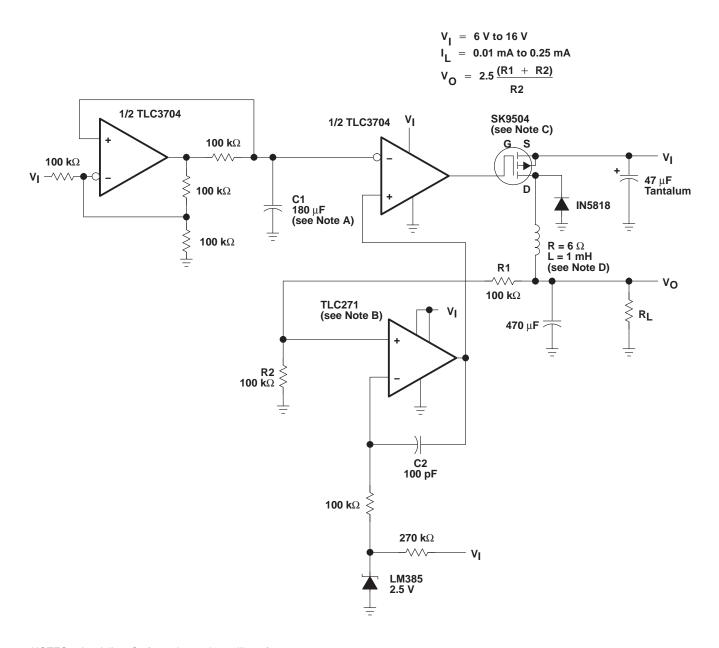
Figure 25. Pulse-Width-Modulated Motor Speed Controller



NOTES: A. $V_{(UNREG)} = 2.5 \frac{(R1 + R2)}{R2}$

 $V_{(UNREG)} = 2.5 \frac{C}{R2}$ B. The value of C_T determines the time delay of reset.

Figure 26. Enhanced Supply Supervisor



NOTES: A. Adjust C1 for a change in oscillator frequency where: $1/f = 1.85(100 \; k\Omega)C1$

- B. Adjust R1 and R3 to change duty cycle
- C. Adjust R2 to change deadtime

Figure 27. Two-Phase Nonoverlapping Clock Generator

NOTES: A. Adjust C1 for a change in oscillator frequency

B. TLC271 - Tie pin 8 to pin 7 for low bias operation

C. SK9504 - VDS = 40 VIDS = 1 Awill

D. To achieve microampere current drive, the inductance of the circuit must be increased.

Figure 28. Micropower Switching Regulator

PACKAGE OPTION ADDENDUM

25-Feb-2005

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins I	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp (3)
TLC3704QDRQ1	ACTIVE	SOIC	D	14	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

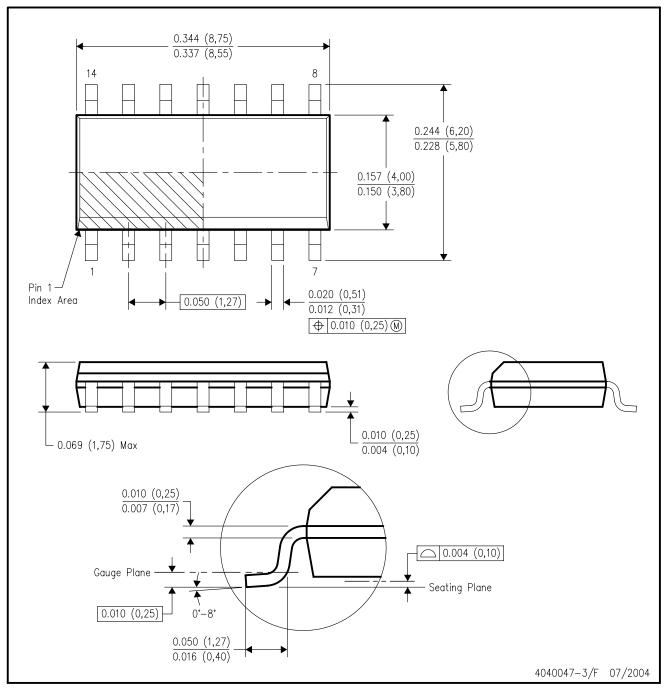
OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

None: Not yet available Lead (Pb-Free).

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.


(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AB.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265