专业PCB打样工厂 ,24小时加急出货

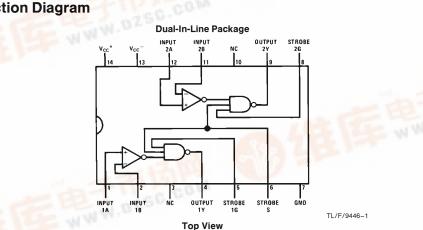
January 1996

National Semiconductor

DS55107/DS75107/DS75108/DS75208 **Dual Line Receivers**

General Description

The products described herein are TTL compatible dual high speed circuits intended for sensing in a broad range of system applications. While the primary usage will be for line receivers of MOS sensing, any of the products may effectively be used as voltage comparators, level translators, window detectors, transducer preamplifiers, and in other sensing applications. As digital line receivers the products are applicable with the SN55109/SN75109 and µA75110/ DS75110 companion drivers, or may be used in other balanced or unbalanced party-line data transmission systems. The improved input sensitivity and delay specifications of the DS75208 make it ideal for sensing high performance MOS memories as well as high sensitivity line receivers and voltage comparators.


Input protection diodes are incorporated in series with the collectors of the differential input stage. These diodes are

Connection Diagram

useful in certain applications that have multiple V_{CC} + supplies or V_{CC}+ supplies that are turned off.

Features

- Diode protected input stage for power "OFF" condition
- 17 ns typ high speed
- TTL compatible
- ±10 mV or ±25 mV input sensitivity
- ±3V input common-mode range
- High input impedance with normal V_{CC}, or V_{CC} = 0V
- Strobes for channel selection
- Dual circuits
- Sensitivity gntd. over full common-mode range
- Logic input clamp diodes—meets both "A" and "B" version specifications
- ±5V standard supply voltages

Order Number DS75107M, DS75107N, DS75107AM, DS75107AN, DS75108M, DS75108N or DS75208N See NS Package Number M14A or N14A

For Complete Military 883 Specifications, see RETS Datasheet. Order Number DS55107AJ/883 See NS Package Number J14A

Selection Guide

Temperature \rightarrow Package \rightarrow	$\frac{-55^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +125^{\circ}\text{C}}{\text{Cavity Dip}}$	$0^{\circ}C \le T_A \le +70^{\circ}$ Cavity or Molded I	
In <mark>put Se</mark> nsitivity → Output Logic ↓	± 25 mV	\pm 25 mV	\pm 10 mV
TTL Active Pull-Up TTL Open Collector	DS55107	DS75107 DS75108	DS75208

© 1996 National Semiconductor Corporation TI /F/9446 RRD-B30M36/Printed in U. S. A.

http://www.national.com

DS55107/DS75107/DS75108/DS75208 Dual Line Receivers

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage V_{CC}^+ 7V

Supply Voltage, V_{CC}⁺ Supply Voltage, V_{CC}⁻ Differential Input Voltage Common Mode Input Voltage

Strobe Input Voltage	5.5V
Storage Temperature Range	-65°C to +150°C
Maximum Power Dissipation* at 25°C)
Cavity Package	1308 mW
Molded Package	1207 mW
Lead Temperature (Soldering, 4 sec) *Derate cavity package 8.7 mW/°C above 25°C mW/°C above 25°C.	260°C ; derate molded package 9.7

Operating Conditions

		DS55107		DS	DS75107, 75108, DS75	208
	Min	Nom	Max	Min	Nom	Мах
Supply Voltage V _{CC} $^+$	4.5V	5V	5.5V	4.75V	5V	5.25V
Supply Voltage V _{CC} ⁻	-4.5V	-5V	-5.5V	-4.75V	-5V	-5.25V
Operating Temperature Range	-55°C	to	+ 125°C	0°C	to	+ 70°C

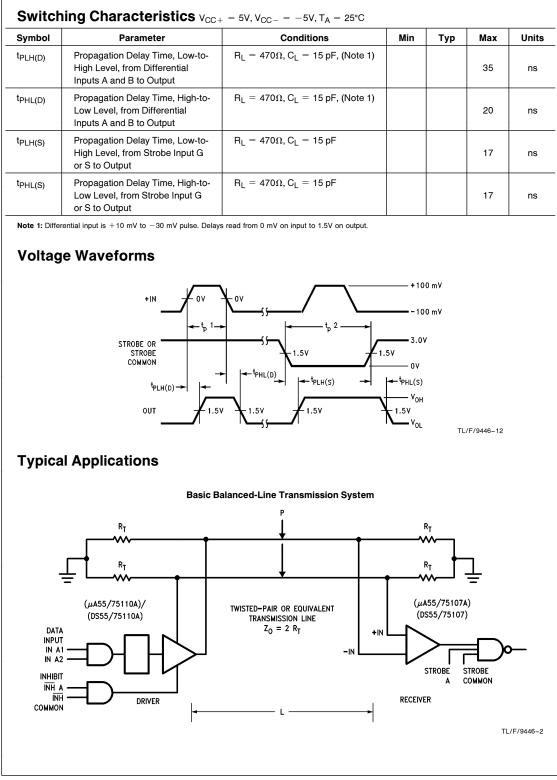
-7V

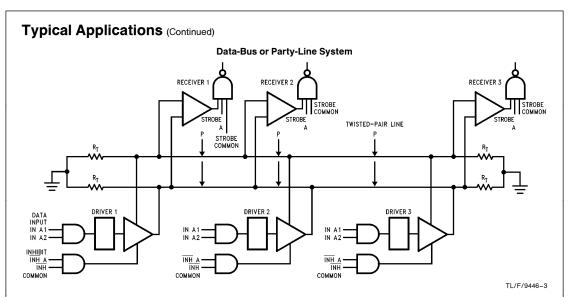
 $\pm 6V$

 $\pm 5V$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2. Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS55107 and across the 0° C to $+70^{\circ}$ C range for the DS75108, and DS75208. All typical values are for T_A = 25^{\circ}C and V_{CC} = 5V.


Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.


DS55107/DS75107, DS75108

Electrical Characteristics $T_{MIN} \le T_A \le T_{MAX}$ (Notes 2, 3)

Symbol	Parameter	Condition	s	Min	Тур	Max	Units
I _{IH} High Level Input Current into A1, B1, A2 or B2		$\label{eq:VCC+} \begin{array}{l} V_{CC+} = Max, V_{CC-} = Max, \\ V_{ID} = 0.5V, V_{IC} = -3V \text{ to } 3V \end{array}$		30	75	μA	
IIL	Low Level Input Current into A1, B1, A2 or B2	$\begin{array}{l} V_{CC+} = Max, V_{CC-} = Max, \\ V_{ID} = -2V, V_{IC} = -3V \text{ to } 3V \end{array}$				-10	μΑ
IIH	High Level Input Current into G1 or G2	$V_{CC+} = Max,$ $V_{CC-} = Max$	$\frac{V_{\text{IH(S)}} = 2.4V}{V_{\text{IH(S)}} \text{ Max } V_{\text{CC}+}}$			40 1	μA mA
IIL	Low Level Input Current into G1 or G2	$V_{CC+} = Max, V_{CC-} = Max, V_{IL(S)} = 0.4V$		-		-1.6	mA
IIH	High Level Input Current into S	$V_{CC+} = Max,$ $V_{CC-} = Max$	$V_{\text{IH(S)}} = 2.4V$			80 2	μA mA
IIL	Low Level Input Current into S	$V_{CC+} = Max, V_{CC-} = Max, V_{IL(S)} = 0.4V$	$V_{\text{IH(S)}} = \text{Max} V_{\text{CC}+}$			-3.2	mA
V _{OH}	High Level Output Voltage		iV,	2.4			v
V _{OL}	Low Level Output Voltage	$\label{eq:V_CC+} \begin{array}{l} V_{CC+} = Min, V_{CC-} = Min, \\ I_{SINK} = 16 \mbox{ mA}, V_{ID} = -25 \mbox{ mV} \\ V_{IC} = -3 V \mbox{ to } 3V \end{array}$, ,			0.4	v
I _{OH}	High Level Output Current	$V_{CC+} = Min, V_{CC-} = Min$ $V_{OH} = Max V_{CC+}, (Note 4)$				250	μΑ
I _{OS}	Short Circuit Output Current	$V_{CC+} = Max, V_{CC-} = Max,$ (Notes 2 and 3)		-18		-70	mA
I _{CCH+}	High Logic Level Supply Current from V _{CC}	$V_{CC+} = Max, V_{CC-} = Max, V_{ID} = 25 \text{ mV}, T_A = 25^{\circ}C$			18	30	mA
ICCH-	High Logic Level Supply Current from V_{CC}	$V_{CC+} = Max, V_{CC-} = Max, V_{ID} = 25 \text{ mV}, T_A = 25^{\circ}C$			-8.4	-15	mA
VI	Input Clamp Voltage on G or S	$V_{CC+} = Min, V_{CC-} = Min,$ $I_{IN} = -12 \text{ mA}, T_A = 25^{\circ}\text{C}$			-1	-1.5	v

Symbol	Parameter	(C	Conditions		Min	Тур	Max	Units
t _{PLH(D)}	Propagation Delay Time, Low to	$R_L = 390\Omega, C$	c _L = 50 pF,	(Note 3)		17	25	ns
	High Level, from Differential Inputs A and B to Output	(Note 1)		(Note 4)		19	25	ns
^t PHL(D)	Propagation Delay Time, High to	$\begin{array}{c c} {\sf R}_{\sf L} = 390 \Omega, {\sf C}_{\sf L} = 50 {\sf pF}, & ({\sf Note} 3) \\ \hline & ({\sf Note} 1) & & \\ \hline & & \\ \end{array} $			17	25	ns	
	Low Level, from Differential Inputs A and B to Output			(Note 4)		19	25	ns
	Propagation Delay Time, Low to			(Note 3)		10	15	ns
	High Level, from Strobe Input G or S to Output			(Note 4)		13	20	ns
t _{PHL(S)}	Propagation Delay Time, High to	$R_L = 390\Omega, C_L = 50 \text{ pF}$ (Note 3)		(Note 3)		8	15	ns
Low Level, from Strobe Input G or S to Output		(Note 4)				13	20	ns
DS752 Electr	ical Characteristics or Parameter		onditions		Min	Тур	Мах	Unit
-					NIII I	тур	Wax	01111
IH	High Level Input Current into A1, B1, A2 or B2	$\label{eq:VCC} \begin{array}{l} V_{CC+} = Max, \ V_{CC-} = Max, \\ V_{ID} = 0.5V, \ V_{IC} = -3V \ \text{to} \ 3V \end{array}$			30	75	μΑ	
IL	Low Level Input Current into A1, B1, A2 or B2	$\label{eq:VCC+} \begin{array}{l} V_{CC+} = Max, \\ V_{ID} = -2V, \\ V_{IC} = -3V \text{ to } 3V \end{array}$				-10	μΑ	
IIH		$V_{CC+} = Max$, $V_{IH(S)} = 2.4V$				40	μA	
IH	High Level Input Current	$V_{CC+} = Max,$	$V_{IH(S)} = 2$	2.4V			40	'
н	High Level Input Current into G1 or G2	$V_{CC+} = Max,$ $V_{CC-} = Max$	$V_{\rm IH(S)} = 2$ $V_{\rm IH(S)} = N$	2.4V ⁄Iax V _{CC+}			40	, mA
		$\label{eq:V_CC+} \begin{array}{l} V_{CC+} = Max, \\ V_{CC-} = Max \end{array}$ $\begin{array}{l} V_{CC+} = Max, V_{I}, \\ V_{IL(S)} = 0.4V \end{array}$	$V_{\rm IH(S)} = N$	2.4V Max V _{CC+}				mA
IL	into G1 or G2 Low Level Input Current	$\label{eq:CC} \begin{array}{l} V_{CC-} = Max \\ \\ V_{CC+} = Max, V_{IL(S)} \\ \\ V_{IL(S)} = 0.4V \\ \\ \\ V_{CC+} = Max, \end{array}$	$V_{\rm IH(S)} = N$ $CC_{\rm C} = Max,$ $V_{\rm IH(S)} = 2$	Aax V _{CC+}			1	mA mA
IL	into G1 or G2 Low Level Input Current into G1 or G2	$\label{eq:CC} \begin{array}{l} V_{CC-} = Max \\ \\ V_{CC+} = Max, V_{IL(S)} \\ \\ V_{IL(S)} = 0.4V \\ \\ \\ V_{CC+} = Max, \end{array}$	$V_{\rm IH(S)} = N$ $CC_{\rm C} = Max,$ $V_{\rm IH(S)} = 2$	Aax V _{CC+}			1 1.6	mA mA μA
IL IH	into G1 or G2 Low Level Input Current into G1 or G2	$V_{CC-} = Max$ $V_{CC+} = Max, V_{VIL(S)} = 0.4V$	$V_{IH(S)} = N$ $CC - = Max,$ $V_{IH(S)} = 2$ $V_{IH(S)} = N$	Aax V _{CC+}			1 1.6 80	mA mA μA mA
н L н L Vol	into G1 or G2 Low Level Input Current into G1 or G2 High Level Input Current into S	$\begin{split} & V_{CC-} = Max \\ & V_{CC+} = Max, V_{V} \\ & V_{IL(S)} = 0.4V \\ & V_{CC+} = Max, \\ & V_{CC-} = Max \\ & V_{CC+} = Max, V_{CC+} \end{split}$	$\label{eq:VIH(S)} \begin{split} V_{IH(S)} &= N \\ CC- &= Max, \\ V_{IH(S)} &= 2 \\ V_{IH(S)} &= N \\ CC- &= Max, \\ CC- &= Min, \\ V_{ID} &= -10 \ m \end{split}$	Max V _{CC+} 2.4V Max V _{CC+}			1 1.6 80 2	mA mA μA mA
IL IH	into G1 or G2 Low Level Input Current into G1 or G2 High Level Input Current into S Low Level Input Current into S	$\label{eq:VCC} \begin{array}{l} V_{CC-} = Max \\ V_{CC+} = Max, V_{V} \\ V_{IL(S)} = 0.4V \\ V_{CC+} = Max, V_{CC-} \\ V_{CC-} = Max \\ V_{CC+} = Max, V_{V} \\ V_{IL(S)} = 0.4V \\ V_{CC+} = Min, V_{C} \\ I_{SINK} = 16 \text{ mA}, V_{C} \end{array}$	$\label{eq:ViH(S)} \begin{array}{ c c c } V_{IH(S)} = N \\ CC- = Max, \\ \hline V_{IH(S)} = 2 \\ \hline V_{IH(S)} = N \\ CC- = Max, \\ \hline CC- = Min, \\ \hline V_{ID} = -10 \ mv \\ \hline CC- = Min, \\ \hline V_{CC} = Min, \\ \hline \end{array}$	Max V _{CC+} 2.4V Max V _{CC+}			1 -1.6 80 2 -3.2	mA mA μA mA mA
IL IH IL VOL	into G1 or G2 Low Level Input Current into G1 or G2 High Level Input Current into S Low Level Input Current into S Low Level Output Voltage	$\begin{array}{l} V_{CC-} = Max \\ V_{CC+} = Max, V_{V} \\ V_{IL(S)} = 0.4V \\ V_{CC+} = Max, V_{V} \\ V_{CC-} = Max \\ V_{CC-} = Max, V_{V} \\ V_{IL(S)} = 0.4V \\ V_{CC+} = Min, V_{C} \\ I_{SINK} = 16 mA, V_{V} \\ V_{IC} = -3V \text{ to } 3V \\ V_{CC+} = Min, V_{C} \\ \end{array}$	$\begin{array}{c} V_{IH(S)} = N \\ CC- = Max, \\ \hline V_{IH(S)} = 2 \\ \hline V_{IH(S)} = N \\ CC- = Max, \\ \hline CC- = Min, \\ V_{ID} = -10 \text{ m} \\ V \\ CC- = Min, \\ CC- = Min, \\ CC- = Max, \\ \hline CC- =$	Max V _{CC+} 2.4V Max V _{CC+}		18	1 -1.6 80 2 -3.2 0.4	mA mA μA mA
IL IH IL VOL	into G1 or G2 Low Level Input Current into G1 or G2 High Level Input Current into S Low Level Input Current into S Low Level Output Voltage High Level Output Current High Logic Level Supply	$\begin{array}{l} V_{CC-} = Max \\ V_{CC+} = Max, V_{V} \\ V_{IL}(S) = 0.4V \\ V_{CC+} = Max, V_{V} \\ V_{CC-} = Max \\ V_{CC-} = Max, V_{V} \\ V_{IL}(S) = 0.4V \\ V_{IL}(S) = 0.4V \\ V_{CC+} = Min, V_{C} \\ I_{SINK} = 16 mA, V_{V} \\ V_{IC} = -3V to 3V \\ V_{CC+} = Min, V_{CC} \\ V_{OH} = Max V_{CC} \\ V_{CC+} = Max, V_{CC} \\ \end{array}$	$\begin{array}{c} V_{IH(S)} = N \\ CC- = Max, \\ \hline V_{IH(S)} = 2 \\ \hline V_{IH(S)} = N \\ CC- = Max, \\ \hline CC- = Max, \\ \hline CC- = Min, \\ \hline CC- = Min, \\ \hline CC- = Min, \\ \hline CC- = Max, \\ \hline CC- = Max$	Max V _{CC+} 2.4V Max V _{CC+}		18	1 1.6 80 2 3.2 0.4 250	Am Aμ A MA MA

APPLICATION

The DS55107, DS75107 dual line circuits are designed specifically for use in high speed data transmission systems that utilize balanced, terminated transmission lines such as twisted-pair lines. The system operates in the balanced mode, so that noise induced on one line is also induced on the other. The noise appears common mode at the receiver input terminals where it is rejected. The ground connection between the line driver and receiver is not part of the signal circuit so that system performance is not affected by circulating ground currents.

The unique driver output circuit allows terminated transmission lines to be driven at normal line impedances. High speed system operation is ensured since line reflections are virtually eliminated when terminated lines are used. Crosstalk is minimized by low signal amplitudes and low line impedances.

The typical data delay in a system is approximately (30 \pm 1.3L) ns, where L is the distance in feet separating the driver and receiver. This delay includes one gate delay in both the driver and receiver.

Data is impressed on the balanced-line system by unbalancing the line voltages with the driver output current. The driven line is selected by appropriate driver input logic levels. The voltage difference is approximately:

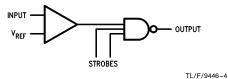
$$V_{\text{DIFF}} \simeq \frac{1}{2} I_{\text{O(on)}} \times R_{\text{T}}$$
(1)

High series line resistance will cause degradation of the signal. The receivers, however, will detect signals as low as 25 mV (or less). For normal line resistances, data may be recovered from lines of several thousand feet in length.

Line termination resistors (R_T) are required only at the extreme ends of the line. For short lines, termination resistors at the receiver only may prove adequate. The signal amplitude will then be approximately:

$$V_{\text{DIFF}} \simeq I_{O(on)} \times R_{T}$$
 (2)

The strobe feature of the receivers and the inhibit feature of the drivers allow the DS55107, DS75107 dual line circuits to be used in data-bus or party-line systems. In these applications, several drivers and receivers may share a common transmission line. An enabled driver transmits data to all enabled receivers on the line while other drivers and receivers are disabled. Data is thus time multiplexed on the transmission line. The DS55107, DS75107 device specifications allow widely varying thermal and electrical environments at the various driver and receiver locations. The data-bus system offers maximum performance at minimum cost.

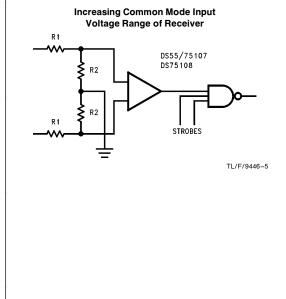

The DS55107, DS75107 dual line circuits may also be used in unbalanced or single line systems. Although these systems do not offer the same performance as balanced systems for long lines, they are adequate for very short lines where environment noise is not severe.

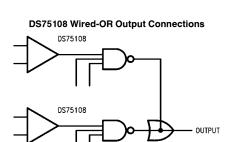
The receiver threshold level is established by applying a DC reference voltage to one receiver input terminal. The signal from the transmission line is applied to the remaining input. The reference voltage should be optimized so that signal

Typical Applications (Continued)

swing is symmetrical about it for maximum noise margin. The reference voltage should be in the range of -3.0V to +3.0V. It can be provided by a voltage supply or by a voltage divider from an available supply voltage.

Unbalanced or Single-Line Systems

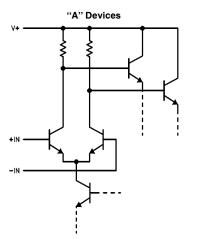

Precautions in the Use of DS1603, DS3603, DS55107, DS75107, DS75108 and DS75208 Dual Line Receivers


The following precaution should be observed when using or testing DS55107, DS75107 line circuits.

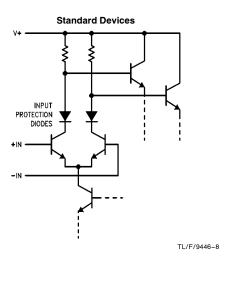
When only one receiver in a package is being used, at least one of the differential inputs of the unused receiver should be terminated at some voltage between -3.0V and +3.0V, preferably at ground. Failure to do so will cause improper operation of the unit being used because of common bias circuitry for the current sources of the two receivers.

The DS55107, DS75107 and DS75108 line receivers feature a common mode input voltage range of ± 3.0 V. This satisfies the requirements for all but the noisiest system applications. For these severe noise environments, the common mode range can be extended by the use of external input attenuators. Common mode input voltages can in this way be reduced to ± 3.0 V at the receiver input terminals. Differential data signals will be reduced proportionately. Input sensitivity, input impedance and delay times will be adversely affected.

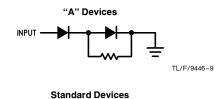
The DS75108 line receivers feature an open-collector-output circuit that can be connected in the DOT-OR logic configuration with other DS75108 outputs. This allows a level of logic to be implemented without additional logic delay.

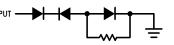


Circuit Differences Between "A" and Standard Devices The difference between the "A" and standard devices is shown in the following schematics of the input stage.

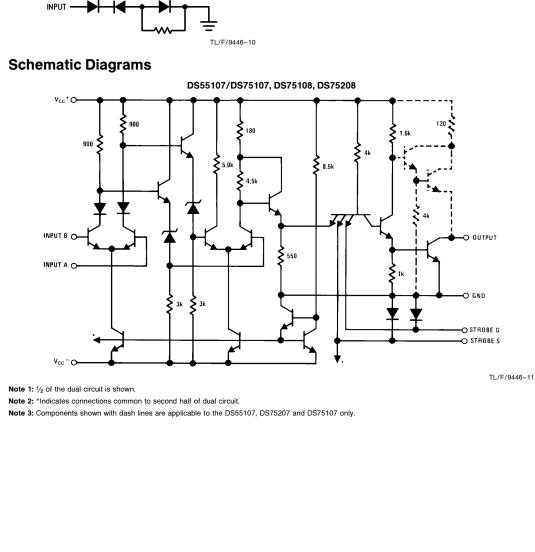

WIRED-OR

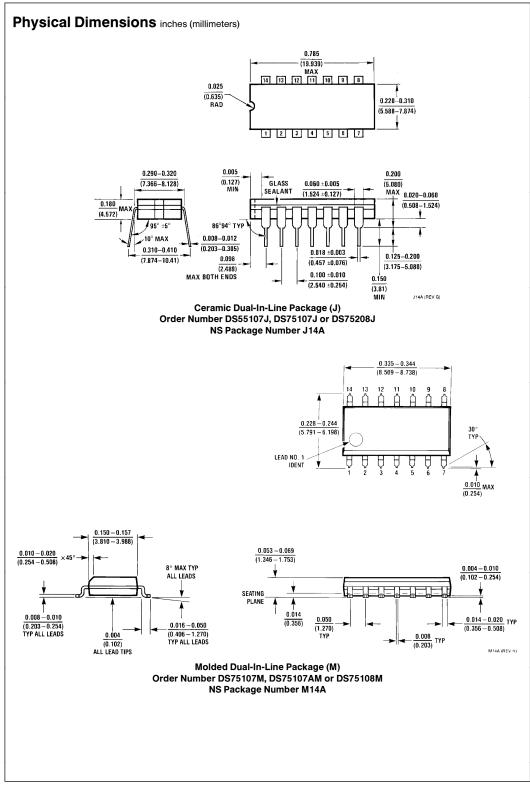
CONNECTION

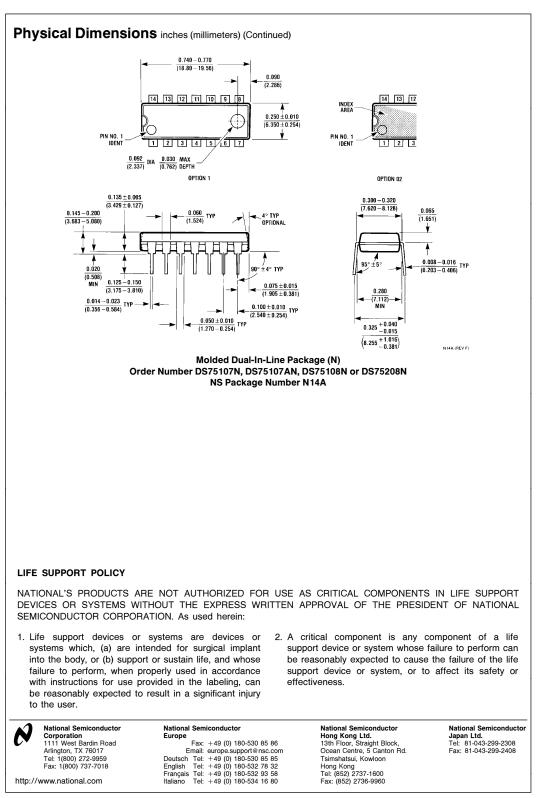

TL/F/9446-7


TI /F/9446-6

Typical Applications (Continued)


The input protection diodes are useful in certain party-line systems which may have multiple V+ power supplies and, in which case, may be operated with some of the V+ supplies turned off. In such a system, if a supply is turned off and allowed to go to ground, the equivalent input circuit connected to that supply would be as follows:





This would be a problem in specific systems which might possibly have the transmission lines biased to some potential greater than 1.4V. Since this is not a widespread application problem, both the "A" and standard devices will be available. The ratings and characteristic specifications of the "A" devices are the same as those of the standard devices.

The DS55107A feature the "A" device input stage.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.