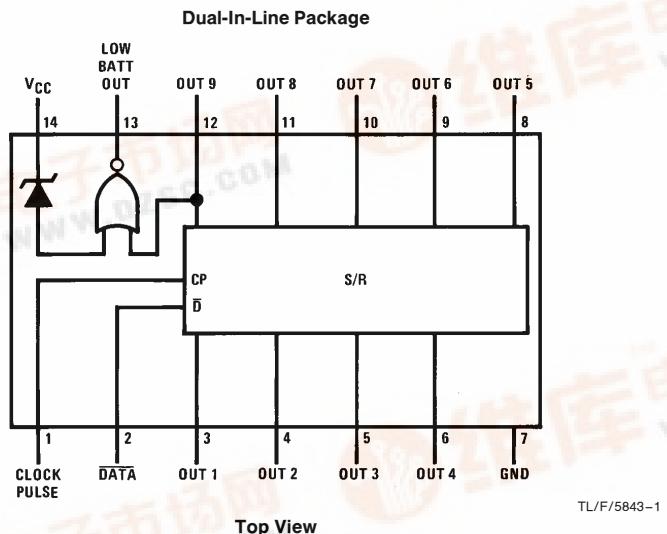


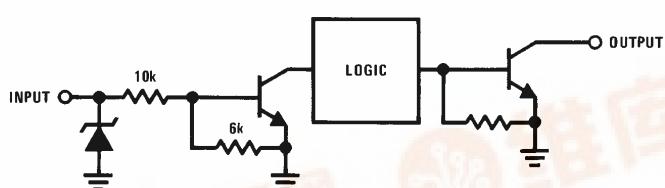
March 1988

DS8874 9-Digit Shift Input LED Driver


General Description

The DS8874 is a 9-digit LED driver which incorporates a shift register input decoding circuit and a low battery indicator. Outputs will sink 110 mA at less than 0.5V drop when sequentially selected. When the V_{CC} supply falls below 6.5V typical, segment current will be furnished at digit 9 time to indicate a low battery condition. Pin 13 is generally connected to the decimal point segment on the display so that when a low battery condition exists, the left-most decimal point lights up.

Features


- 110 mA digit sink
- Low battery indicator
- Minimum number of connections
- MOS compatible inputs

Connection Diagram

Order Number DS8874N
See NS Package Number N14A

Equivalent Schematic

TL/F/5843-2

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

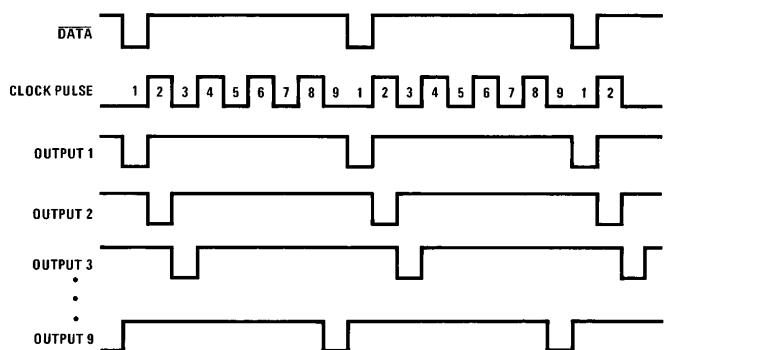
Supply Voltage	10V
Input Voltage	3V
Output Voltage	10V
Storage Temperature Range	-65°C to +150°C

Maximum Power Dissipation* at 25°C	
Molded Package	1280 mW
Lead Temperature (Soldering, 4 sec.)	260°C
*Derate molded package 10.24 mW/°C above 25°C.	

Operating Conditions

	Min	Max	Units
Supply Voltage (V_{CC})	6.0	9.5	V
Temperature (T_A)	0	+70	°C

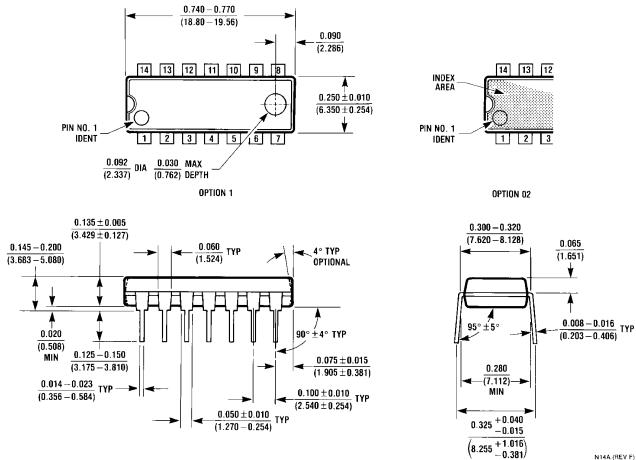
Electrical Characteristics (Notes 2 and 3)


Symbol	Parameter	Conditions	Min	Typ	Max	Units
I_{IH}	Logical "1" Input Current	$V_{CC} = \text{Max}$, $V_{IN} = 3V$		0.25	0.4	mA
I_{IL}	Logical "0" Input Current	$V_{CC} = \text{Max}$, $V_{IN} = 0.8V$		0.05	0.1	mA
V_{CCL}	Decimal Point "ON"	$V_{dp} = 2.3V$, $I_{dp} = -4 \text{ mA}$, $O9 = V_{OL}$			6.0	V
V_{CCH}	Decimal Point "OFF"	$V_{dp} = 1V$, $I_{dp} = -10 \mu\text{A}$, $O9 = V_{OL}$	7.0			V
I_{OH}	Logical "1" Output Current	$V_{CC} = \text{Max}$, Output Not Selected			100	μA
V_{OL}	Logical "0" Output Voltage	$V_{CC} = \text{Min}$, Output Selected, $I_{O1} = 80 \text{ mA}$		0.45	1	V
		$V_{CC} = \text{Max}$, Output Selected, $I_{O1} = 110 \text{ mA}$		0.6	1.5	V
I_{CC}	Supply Current	$V_{CC} = \text{Max}$, One Output Selected	13	19		mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0°C to +70°C range. All typicals are given for $T_A = 25^\circ\text{C}$.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.


Timing Diagram (Upper Level More Positive)

TL/F/5843-4

Physical Dimensions inches (millimeters)

Molded Dual-In-Line Package (N)

Order Number DS8874N

NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation
1111 West Bardin Road
Arlington, TX 76017
Tel: (1800) 272-9959
Fax: (1800) 737-7018

National Semiconductor Europe
Fax: (+49) 0-180-530 85 86
Email: cnjwge@tevm2.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85
English Tel: (+49) 0-180-532 78 32
Français Tel: (+49) 0-180-532 93 58
Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon
Hong Kong
Tel: (852) 2737-1600
Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408