捷多邦,专业PCB打样工厂,24小时加急出货

National Semiconductor

July 1986

DS8906 AM/FM Digital Phase-Locked Loop Synthesize

DS8906 AM/FM Digital Phase-Locked Loop Synthesizer

General Description

The DS8906 is a PLL synthesizer designed specifically for use in AM/FM radios. It contains the reference oscillator, a phase comparator, a charge pump, a 120 MHz ECL/I²L dual modulus programmable divider, and a 20-bit shift register/latch for serial data entry. The device is designed to operate with a serial data controller generating the necessary division codes for each frequency, and logic state information for radio function inputs/outputs.

The Colpitts reference oscillator for the PLL operates at 4 MHz. A chain of dividers is used to generate a 500 kHz clock signal for the external controller. Additional dividers generate a 12.5 kHz reference signal for FM and a 500 Hz reference signal for AM/SW. One of these reference signals is selected by the data from the controller for use by the phase comparator. Additional dividers are used to generate a 50 Hz timing signal used by the controller for "time-of-day".

Data is transferred between the frequency synthesizer and the controller via a 3 wire bus system. This consists of a data input line, an enable line and a clock line. When the enable line is low, data can be shifted from the controller into the frequency synthesizer. When the enable line is transitioned from low to high, data entry is disabled and data present in the shift register is latched.

From the controller 22-bit data stream, the first 2 bits address the device permitting other devices to share the same bus. Of the remaining 20-bit data word, the next 14-bits are used for the PLL divide code. The remaining 6 bits are connected via latches to output pins. These 6 bits can be used to drive radio functions such as gain, mute, FM, AM, LW and SW only. These outputs are open collector. Bit 18 is used internally to select the AM or FM local oscillator input and to select between the 500 Hz and 12.5 kHz reference. A high level at bit 18 indicates FM and a low level indicates AM.

The PLL consists of a 14-bit programmable I²L divider, an ECL phase comparator, an ECL dual modulus (p/p + 1) prescaler, and a high speed charge pump. The programmable divider divides by (N+1), N being the number loaded by the shift register (bits 1–14 after address). It is clocked by the AM input via an ECL \div 7/8 prescaler, or through a \div 63/64 prescaler from the FM input. The AM input will work at frequencies up to 8 MHz, while the FM input works up to 120 MHz. The AM band is tuned with a resolution of 12.5 kHz. The buffered AM and FM inputs are self-biased and can be driven directly by the VCO thru a capacitor. The ECL phase comparator produces very accurate resolution of the phase difference between the input signal and the reference of the phase difference between the input signal and the reference between the input signal and the reference between the input signal and the reference based and the phase difference between the input signal and the reference between the input signal and the reference based and the phase difference between the input signal and the reference based and the phase difference between the input signal and the reference based and the phase difference between the input signal and the reference based and the phase difference based and the reference based and the reference based and the phase difference based and the reference based and the ref

The high speed charge pump consists of a switchable constant current source (-0.3 mA) and a switchable constant current sink (+0.3 mA). If the VCO frequency is low, the charge pump will source current, and sink current if the VCO frequency is high.

A separate V_{CCM} pin (typically drawing 1.5 mA) powers the oscillator and reference chain to provide controller clocking frequencies when the balance of the PLL is powered down.

Features

- Uses inexpensive 4 MHz reference crystal
- F_{IN} capability greater than 120 MHz allows direct synthesis at FM frequencies
- FM resolution of 12.5 kHz allows usage of 10.7 MHz ceramic filter distribution
- Serial data entry for simplified control
- 50 Hz output for "time-of-day" reference with separate low power supply (V_{CCM})
- 6-open collector buffered outputs for band switching and other radio functions
- Separate AM and FM inputs. AM input has 15 mV (typical) hysteresis

Connection Diagram

FM IN

GND

Dual-In-Line Package 20 BIT 18 OUT FM/AM BIT 19 OUT -19 BIT 20 OUT BIT 17 OUT 18 BIT 16 OUT DATA-17 CLOCK BIT 15 OUT 16 CHARGE PUMP ENARLE OUTPUT DS8906 15 - 50 Hz OUT Vcci 14 500 kHz OUT AM IN 13 OSC B CAP BYPASS

> TL/F/5775-1 Top View Order Number DS8906N

See NS Package Number N20A

TRI-STATE® is a registered trademark of National Semiconductor Corp

©1995 National Semiconductor Corporation TL/F/5775

12 OSC E

VCCM

11

Absolute Maximum Ratings (Note 1)	Absolut	e Maximum	Ratings (Note 1	I)
-----------------------------------	---------	-----------	-----------------	----

(V_{CC1}) (V_{CCM})

Input Voltage

Output Voltage

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage

Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 4	4 seconds) 260°C
A 11 A 11	

Operating Conditions					
Min	Max	Units			
4.75	5.25	V			
4.5	6.0	V			
0	70	°C			
	Min 4.75	Min Max 4.75 5.25 4.5 6.0			

DC Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{IH}	Logical "1" Input Voltage			2.1			V
I _{IH}	Logical "1" Input Current	V _{IN} =V _{CC1}			0	10	μA
V _{IL}	Logical "0" Input Voltage					0.7	V
IIL	Logical "0" Input Current	Data, Clock and ENABLE INP	UTS, V _{IN} =0V		-5	-25	μA
I _{OH}	Logical "1" Output Current All Bit Outputs, 50 Hz Output	V _{OH} =5.25V				50	μΑ
	500 kHz Output	$V_{OH} = 2.4V, V_{CCM} = 4.5V$				-250	μA
V _{OL}	Logical "0" Output Voltage All Bit Outputs	I _{OL} =5 mA				0.5	v
	50 Hz Output, 500 kHz Output	I _{OL} =250 μA			-0.5	V	
I _{CC1}	Supply Current (V _{CC1})	All Bit Outputs High			90	160	mA
ICCM(STANDBY)	V _{CCM} Supply Current	V _{CCM} =6.0V, All Other Pins Open			1.5	4.0	mA
lout	Charge Pump Output Current	$\begin{array}{c} 1.2V {\leq} V_{OUT} {\leq} V_{CCM} {-} 1.2V \\ V_{CCM} {\leq} 6.0V \end{array}$	Pump Up	-0.10	-0.30	-0.6	mA
			Pump Down	0.10	0.30	0.6	mA
			TRI-STATE®		0	±100	nA
ICCM(OPERATE)	V _{CCM} Supply Current	V _{CCM} =6.0V, V _{CC1} =5.25V, All Other Pins Open			2.5	6.0	mA

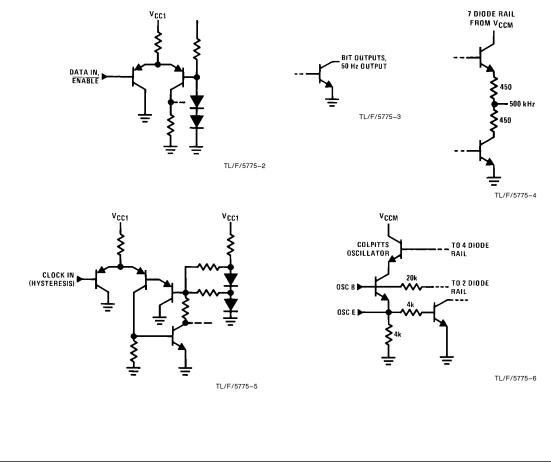
7V 7V

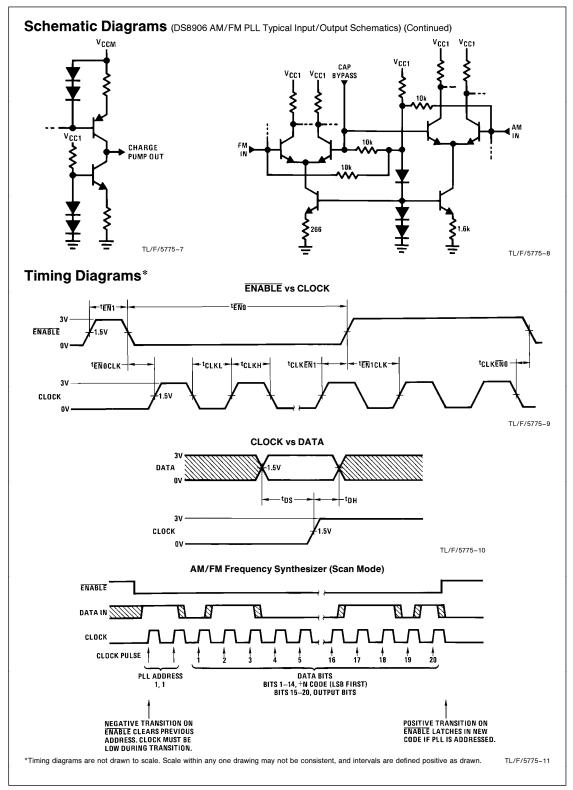
7V

7V

AC Electrical Characteristics $v_{CC}=$ 5V, $T_A=$ 25°C, $t_r \leq$ 10 ns, $t_f \leq$ 10 ns

Symbol	Parameter	Conditions	Min	Тур	Max	Units
VIN(MIN)(F)	F _{IN} Minimum Signal Input	AM and FM Inputs, 0°C \leq T_A \leq 70°C		20	100	mV (rms)
V _{IN(MAX)(F)}	F _{IN} Maximum Signal Input	AM and FM Inputs, 0°C \leq T_A \leq 70°C	1000	1500		mV (rms)
F _{OPERATE}	Operating Frequency Range (Sine Wave Input)	$ \begin{array}{ll} V_{IN} = 100 \text{ mV rms} & AM \\ 0^\circ C \leq T_A \leq 70^\circ C & FM \end{array} $	0.4 60		8 120	MHz MHz
R _{IN} (FM)	AC Input Resistance, FM	120 MHz, V _{IN} = 100 mV rms	300			Ω
R _{IN} (AM)	AC Input Resistance, AM	2 MHz, $V_{IN} = 100 \text{ mV rms}$	1000			Ω
C _{IN}	Input Capacitance, FM and AM	$V_{IN} = 120 \text{ MHz}$	3	6	10	pF
t EN 1	Minimum ENABLE High Pulse Width			625	1250	ns
t _{EN0}	Minimum ENABLE Low Pulse Width			375	750	ns
t _{CLKEN0}	Minimum Time before ENABLE Goes Low that CLOCK must be Low			-50	0	ns
t <u>en</u> oclk	Minimum Time after ENABLE Goes Low that CLOCK must Remain Low			275	550	ns
t _{CLK} EN1	Minimum Time before ENABLE Goes High that Last Positive CLOCK Edge May Occur			300	600	ns


Symbol	Parameter	Conditions	Min	Тур	Max	Units
^t EN1CLK	Minimum Time After ENABLE Goes High Before an Unused Positive CLOCK Edge May Occur			175	350	ns
^t CLKH	Minimum CLOCK High Pulse Width			275	550	ns
^t CLKL	Minimum CLOCK Low Pulse Width			400	800	ns
t _{DS}	Minimum DATA Setup Time, Minimum Time Before CLOCK that DATA Must be Valid			150	300	ns
t _{DH}	Minimum DATA Hold Time, Minimum Time After CLOCK that DATA Must Remain Valid			400	800	ns


Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0°C to +70°C temperature range for the DS8906.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Schematic Diagrams (DS8906 AM/FM PLL Typical Input/Output Schematics)

Applications Information

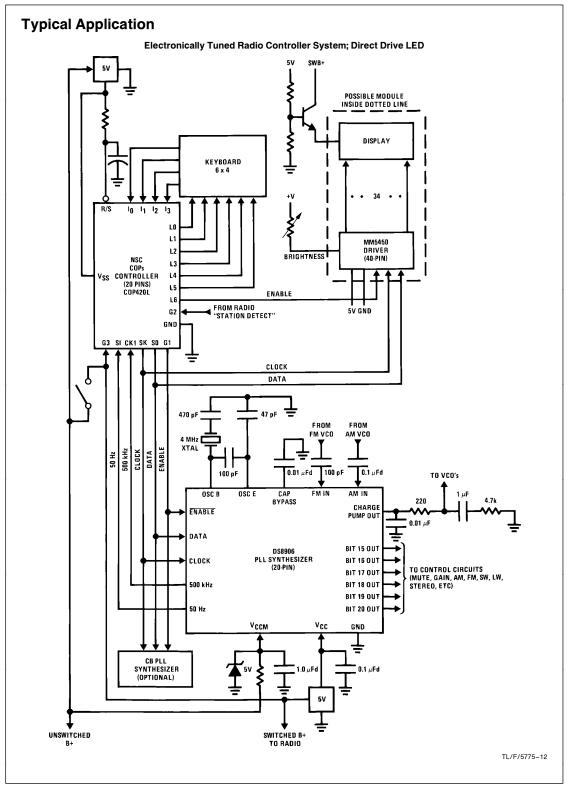
SERIAL DATA ENTRY INTO THE DS8906

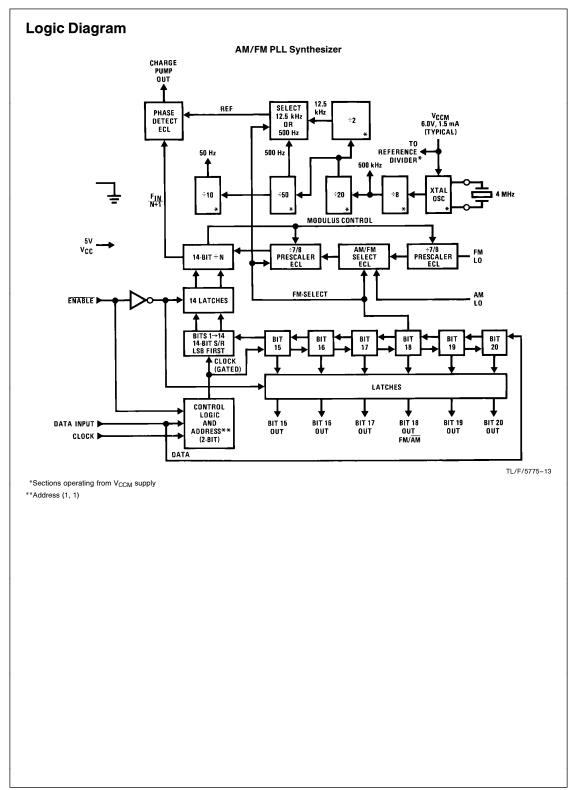
Serial information entry into the DS8906 is enabled by a low level on the ENABLE input. One binary bit is then accepted from the DATA input with each positive transition of the CLOCK input. The CLOCK input must be low for the specified time preceding and following the negative transition of the ENABLE input.

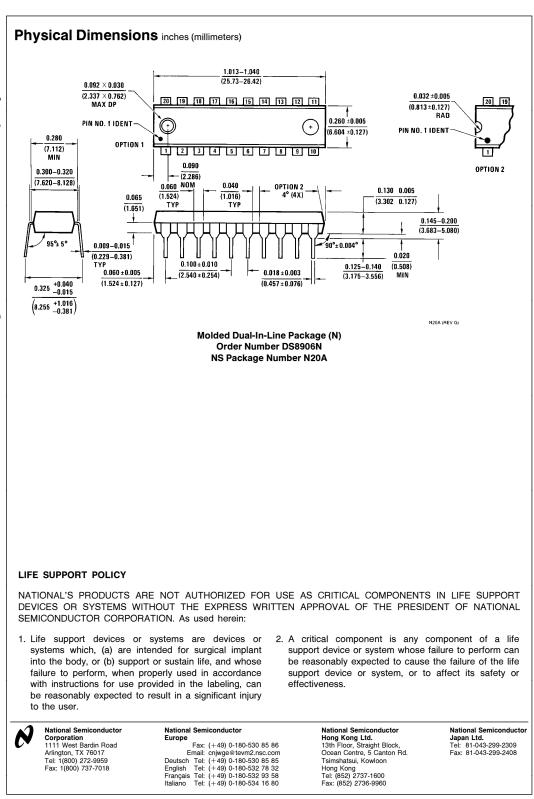
The first 2 bits accepted following the negative transition of the ENABLE input are interpreted as address. If these address bits are *not* 1,1, *no* further information will be accepted from the DATA inputs, and the internal data latches *will not* be changed when ENABLE returns high.

If these first 2 bits *are* 1,1, then all succeeding bits are *accepted* as data, and are shifted successively into the internal shift register as long as ENABLE remains low.

Any *data* bits preceding the 20th to last bit will be shifted out, and are thus irrelevant. Data bits are counted as any bits following 2 valid (1,1) address bits with the $\overline{\text{ENABLE}}$ low.


When the ENABLE input returns high, any further serial data input is inhibited. Upon this positive transition of the ENABLE, the data in the internal shift register is transferred into the internal data latches.


Note that until this time, the states of the internal data latches have remained unchanged.


These data bits are interpreted as follows:

intege data bite are	
DATA BIT POSITIO	N DATA INTERPRETATION
Last	Bit 20 Output (Pin 2)
2nd to Last	Bit 19 Output (Pin 1)
3rd to Last	Bit 18 Output (FM/AM) (Pin 20)
4th to Last	Bit 17 Output (Pin 19)
5th to Last	Bit 16 Output (Pin 18)
6th to Last	Bit 15 Output (Pin 17)
7th to Last	MSB of N (2 ¹³)
8th to Last	(212)
9th to Last	(211)
10th to Last	(210)
11th to Last	(2 ⁹)
12th to Last	(28)
13th to Last	(2 ⁷) ÷ N
14th to Last	(26)
15th to Last	(2 ⁵)
16th to Last	(24)
17th to Last	(2 ³)
18th to Last	(2 ²)
19th to Last	(21)
20th to Last	LSB of N (2 ⁰)

Note. The actual divide code is N+1, i.e., the number loaded plus 1.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.