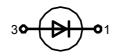


advanced

45 V

10 A


0.53 V

Schottky

High Performance Schottky Diode Low Loss and Soft Recovery Common Cathode

Part number (Marking on product)

DSB 10 I 45PM

Features / Advantages:

- Very low Vf
- Extremely low switching losses
- Low Irm-values
- Improved thermal behaviour
- High reliability circuit operation
- Low voltage peaks for reduced protection circuits
- Low noise switching
- Low losses

Applications:

- Rectifiers in switch mode power supplies (SMPS)
- Free wheeling diode in low voltage converters

Package:

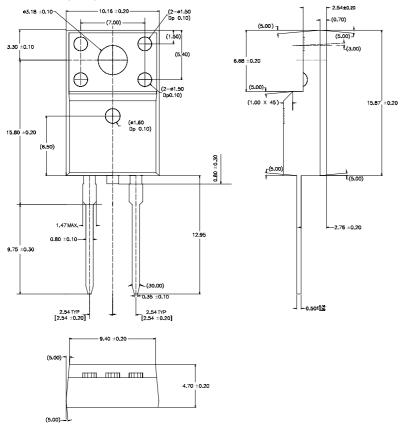
 $V_{RRM} =$

TO-220FPAB

- Industry standard outline
- Plastic overmolded tab for electrical isolation
- Epoxy meets UL 94V-0
- RoHS compliant

Ratings

Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RRM}	max. repetitive reverse voltage		T _{VJ} = 25 °C			45	V
I _R	reverse current	V _R = 45 V	T _{VJ} = 25 °C			6	mA
		$V_R = 45 V$	T_{VJ} = 100 °C			30	mA
V_{F}	forward voltage	I _F = 10 A	T _{VJ} = 25 °C			0.58	V
		I _F = 20 A				0.81	V
		I _F = 10 A	T _{VJ} = 125 °C			0.53	V
		I _F = 20 A				0.77	V
I _{FAV}	average forward current	rectangular, d = 0.5	$T_c = 115 ^{\circ}C$			10	Α
V _{F0} r _F	threshold voltage slope resistance $T_{VJ} = 150 ^{\circ}\text{C}$		T_{VJ} = 150 °C			0.31	V
						22	$m\Omega$
R_{thJC}	thermal resistance junction to case					4.50	K/W
T_{VJ}	virtual junction temperature			-55		150	°C
P _{tot}	total power dissipation		T _C = 25 °C			30	W
I _{FSM}	max. forward surge current	$t_p = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$	$T_{VJ} = 45 ^{\circ}\text{C}$			110	Α
CJ	junction capacitance	$V_R = V; f = 1 MHz$	$T_{VJ} = 25 ^{\circ}C$				pF
E _{AS}	non-repetitive avalanche energy	$I_{AS} = A; L = 100 \mu H$	$T_{VJ} = 25 ^{\circ}C$			tbd	mJ
I _{AR}	repetitive avalanche current	$V_A = 1.5 \cdot V_R \text{ typ.; } f = 10 \text{ kHz}$	<u>'</u>			tbd	Α



advanced

Symbol	Definition	Conditions		Ratings				
			min.	typ.	max.	Unit		
I _{RMS}	RMS current	per pin*			35	Α		
R _{thCH}	thermal resistance case to I	heatsink		0.50		K/W		
M_{D}	mounting torque		0.4		0.6	Nm		
F _c	mounting force with clip		20		60	N		
T _{stg}	storage temperature		-55		150	°C		
Weight				2		g		

^{*} Irms is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip.
In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Outlines TO-220FPAB

