

DSD1794

SLES077A - MARCH 2003 - REVISED NOVEMBER 2003

24-BIT, 192-kHz SAMPLING, ADVANCED SEGMENT, AUDIO STEREO DIGITAL-TO-ANALOG CONVERTER

FEATURES

- Supports Both DSD and PCM Formats
- 24-Bit Resolution
- Analog Performance:
 - Dynamic Range:
 - 132 dB (9 V RMS, Mono)
 - 129 dB (4.5 V RMS, Stereo)
 - 127 dB (2 V RMS, Stereo)
 - THD+N: 0.0004%
- Differential Current Output: 7.8 mA p-p
- 8× Oversampling Digital Filter:
 - Stop-Band Attenuation: -130 dB
 - Pass-Band Ripple: ±0.00001 dB
- Sampling Frequency: 10 kHz to 200 kHz
- System Clock: 128, 192, 256, 384, 512, or 768 fs With Autodetect
- Accepts 16-, 20-, and 24-Bit Audio Data
- PCM Data Formats: Standard, I²S, and Left-Justified
- Optional Interface to External Digital Filter or DSP Available
- I²C-Compatible Serial Port
- User-Programmable Mode Controls:
 - Digital Attenuation: 0 dB to -120 dB,
 0.5 dB/Step
 - Digital De-Emphasis
 - Digital Filter Rolloff: Sharp or Slow
 - Soft Mute

- Dual-Supply Operation:
 - 5-V Analog, 3.3-V Digital
- 5-V Tolerant Digital Inputs
- Small 28-Lead SSOP Package, Lead-Free Product

APPLICATIONS

- A/V Receivers
- SACD Player
- DVD Players
- HDTV Receivers
- Car Audio Systems
- Digital Multitrack Recorders
- Other Applications Requiring 24-Bit Audio

DESCRIPTION

The DSD1794 is a monolithic CMOS integrated circuit that includes stereo digital-to-analog converters and support circuitry in a small 28-lead SSOP package. The data converters use Tl's advanced-segment DAC architecture to achieve excellent dynamic performance and improved tolerance to clock jitter. The DSD1794 provides balanced current outputs, allowing the user to optimize analog performance externally. The DSD1794 accepts the PCM and DSD audio data formats, providing easy interfacing to audio DSP and decoder chips. The DSD1794 also interfaces with external digital filter devices (DF1704, DF1706, PMD200). Sampling rates up to 200 kHz are supported. A full set of user–programmable functions is accessible through an I²C-compatible serial port.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLES077A - MARCH 2003 - REVISED NOVEMBER 2003

ORDERING INFORMATION

PRODUCT	PACKAGE	PACKAGE CODE	OPERATION TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA
D0D4704DD	00 I I 00 OD	0000	0500 1- 0500	D0D4704	DSD1794DB	Tube
DSD1794DB	28-lead SSOP	28DB	−25°C to 85°C	DSD1794	DSD1794DBR	Tape and reel

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted(1)

		DSD1794	
Cumply voltage	V _{CC} 1, V _{CC} 2L, V _{CC} 2R	–0.3 V to 6.5 V	
Supply voltage	V_{DD}	-0.3 V to 4 V	
Supply voltage differen	ences: V _{CC} 1, V _{CC} 2L, V _{CC} 2R	±0.1 V	
Ground voltage differ	ences: AGND1, AGND2, AGND3L, AGND3R, DGND	±0.1 V	
Digital input voltage	PLRCK, PDATA, PBCK, SCK, RST, SCL, SDA(2), ADR0, ADR1, DSDL(2), DSDR(2), DBCK	−0.3 V to 6.5 V	
	DSDL(3), DSDR(3), SDA(3)	$-0.3 \text{ V to } (\text{V}_{DD} + 0.3 \text{ V}) < 4 \text{ V}$	
Analog input voltage		$-0.3 \text{ V to } (\text{V}_{\text{CC}} + 0.3 \text{ V}) < 6.5 \text{ V}$	
Input current (any pir	s except supplies)	±10 mA	
Ambient temperature	under bias	-40°C to 125°C	
Storage temperature		−55°C to 150°C	
Junction temperature		150°C	
Lead temperature (so	260°C, 5 s		
Package temperature	e (IR reflow, peak)	250°C	

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

all specifications at $T_A = 25^{\circ}C$, $V_{CC}1 = V_{CC}2L = V_{CC}2R = 5 \text{ V}$, $V_{DD} = 3.3$. V, $f_S = 44.1 \text{ kHz}$, system clock = 256 f_S , and 24-bit data, unless otherwise noted

		TEST CONDITIONS	1	DSD1794DB			
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
RES	OLUTION			24		Bits	
DAT	A FORMAT (PCM Mode)						
	Audio data interface format		Standa	rd, I ² S, left	justified		
	Audio data bit length		16-, 20-, 24-bit selectable				
	Audio data format		MSB first, 2s complement				
fs	Sampling frequency		10		200	kHz	
	System clock frequency		128, 192,	256, 384, 5	512, 768 f _S		
DAT	A FORMAT (DSD Mode)	•	•				
	Audio data interface format		DSD (d	irect strear	n digital)		
	Audio data bit length		1 bit				
fs	Sampling frequency			2.8224		MHz	
	System clock frequency		2.8224		11.2896	MHz	

⁽²⁾ Input mode

⁽³⁾ Output mode

ELECTRICAL CHARACTERISTICS (Continued)

all specifications at $T_A = 25$ °C, $V_{CC}1 = V_{CC}2L = V_{CC}2R = 5$ V, $V_{DD} = 3.3$. V, $f_S = 44.1$ kHz, system clock = 256 f_S, and 24-bit data, unless otherwise noted

DADAMETER	TEST COMPITIONS		UNIT			
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNII	
IGITAL INPUT/OUTPUT		'		'		
Logic family			ole			
IH Land Lands Land		2			\(\(\)	
Input logic level				0.8	VD0	
H Input logic current	$V_{IN} = V_{DD}$			10		
Input logic current L	$V_{IN} = 0 V$			-10	μΑ	
OH Output logic level	$I_{OH} = -2 \text{ mA}$	2.4			VD	
OL	$I_{OL} = 2 \text{ mA}$			0.4	۷۵۱	
YNAMIC PERFORMANCE (PCM MODE,	2-V RMS OUTPUT) (1)(2)					
	f _S = 44.1 kHz		0.0004%	0.0008%		
THD+N at $V_{OUT} = 0 \text{ dB}$	$f_S = 96 \text{ kHz}$		0.0008%			
	$f_S = 192 \text{ kHz}$		0.0015%			
	EIAJ, A-weighted, f _S = 44.1 kHz	123	127			
Dynamic range	EIAJ, A-weighted, f _S = 96 kHz	127		dB		
	EIAJ, A-weighted, fg = 192 kHz		127			
	EIAJ, A-weighted, fg = 44.1 kHz	123	127		dB	
Signal-to-noise ratio	EIAJ, A-weighted, f _S = 96 kHz		127			
	EIAJ, A-weighted, fg = 192 kHz	EIAJ, A-weighted, f _S = 192 kHz				
	f _S = 44.1 kHz	120	123			
Channel separation	f _S = 96 kHz		122		dB	
	f _S = 192 kHz	120				
Level linearity error	V _{OUT} = −120 dB		±1		dB	
YNAMIC PERFORMANCE (PCM Mode,	4.5-V RMS Output) (1)(3)					
	f _S = 44.1 kHz		0.0004%			
THD+N at VOUT = 0 dB	f _S = 96 kHz	0.0008%				
33 .	f _S = 192 kHz		0.0015%			
	EIAJ, A-weighted, f _S = 44.1 kHz		129			
Dynamic range	EIAJ, A-weighted, f _S = 96 kHz		129		dB	
, -	EIAJ, A-weighted, f _S = 192 kHz		129			
	EIAJ, A-weighted, f _S = 44.1 kHz		129			
Signal-to-noise ratio	EIAJ, A-weighted, f _S = 96 kHz		129		dB	
-	EIAJ, A-weighted, f _S = 192 kHz	129				
	f _S = 44.1 kHz	124				
Channel separation	f _S = 96 kHz			123		
·	f _S = 192 kHz	121			Ī	

⁽¹⁾ Filter condition:

THD+N: 20-Hz HPF, 20-kHz apogee LPF

Dynamic range: 20-Hz HPF, 20-kHz AES17 LPF, A-weighted Signal-to-noise ratio: 20-Hz HPF, 20-kHz AES17 LPF, A-weighted

Channel separation: 20-Hz HPF, 20-kHz AES17 LPF

Analog performance specifications are measured using the System Two™ Cascade audio measurement system by Audio Precision™ in the averaging mode.

⁽²⁾ Dynamic performance and dc accuracy are specified at the output of the postamplifier as shown in Figure 33.

⁽³⁾ Dynamic performance and dc accuracy are specified at the output of the postamplifier as shown in Figure 34.

SLES077A - MARCH 2003 - REVISED NOVEMBER 2003

ELECTRICAL CHARACTERISTICS (Continued)

all specifications at $T_A = 25$ °C, $V_{CC}1 = V_{CC}2L = V_{CC}2R = 5$ V, $V_{DD} = 3.3$. V, $f_S = 44.1$ kHz, system clock = 256 f_S , and 24-bit data, unless otherwise noted

DADAMETED	TEST COMPLICATE	D:	SD1794DI	3	UNIT
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNII
DYNAMIC PERFORMANCE (MONO MODE) (1)	0(2)				•
	f _S = 44.1 kHz		0.0004%		
THD+N at $V_{OUT} = 0 \text{ dB}$	$f_S = 96 \text{ kHz}$		0.0008%		
	$f_S = 192 \text{ kHz}$		0.0015%		
	EIAJ, A-weighted, f _S = 44.1 kHz		132		
Dynamic range	EIAJ, A-weighted, f _S = 96 kHz		132		dB
	EIAJ, A-weighted, f _S = 192 kHz		132		
	EIAJ, A-weighted, f _S = 44.1 kHz		132		
Signal-to-noise ratio	EIAJ, A-weighted, f _S = 96 kHz		132		dB
	EIAJ, A-weighted, f _S = 192 kHz		132		
DSD MODE DYNAMIC PERFORMANCE (1) (3)	(44.1 kHz, 64 F _S)				
THD+N at FS	4.5 V rms		0.0005%		
Dynamic range	-60 dB, EIAJ, A-weighted		128		dB
Signal-to-noise ratio	EIAJ, A-weighted		128		dB
ANALOG OUTPUT		<u>'</u>			
Gain error		-6	±2	6	% of FSF
Gain mismatch, channel-to-channel		-3	±0.5	3	% of FSF
Bipolar zero error	At BPZ	-2	±0.5	2	% of FSR
Output current	Full scale (0 dB)		7.8		mA p-p
Center current	At BPZ		-6.2		mA
DIGITAL FILTER PERFORMANCE		'			1
De-emphasis error				±0.004	dB
FILTER CHARACTERISTICS-1: SHARP ROLL	OFF	I			1
	±0.00001 dB			0.454 fs	
Pass band	-3 dB			0.49 fs	
Stop band		0.546 fs			
Pass-band ripple				±0.00001	dB
Stop-band attenuation	Stop band = 0.546 fs	-130			dB
Delay time			55/fs		s
FILTER CHARACTERISTICS-2: SLOW ROLLO	FF	I			
	±0.04 dB			0.254 fs	
Pass band	-3 dB			0.46 fs	1
Stop band		0.732 fg			
Pass-band ripple				±0.001	dB
Stop-band attenuation	Stop band = 0.732 fs	-100			dB
Delay time			18/fs		S

⁽¹⁾ Filter condition:

THD+N: 20-Hz HPF, 20-kHz apogee LPF

Dynamic range: 20-Hz HPF, 20-kHz AES17 LPF, A-weighted Signal-to-noise ratio: 20-Hz HPF, 20-kHz AES17 LPF, A-weighted

Channel separation: 20-Hz HPF, 20-kHz AES17 LPF

Analog performance specifications are measured using the System Two Cascade audio measurement system by Audio Precision in the averaging mode.

⁽²⁾ Dynamic performance and dc accuracy are specified at the output of the postamplifier as shown in Figure 34.

⁽³⁾ Dynamic performance and dc accuracy are specified at the output of the postamplifier as shown in Figure 35.

ELECTRICAL CHARACTERISTICS (Continued)

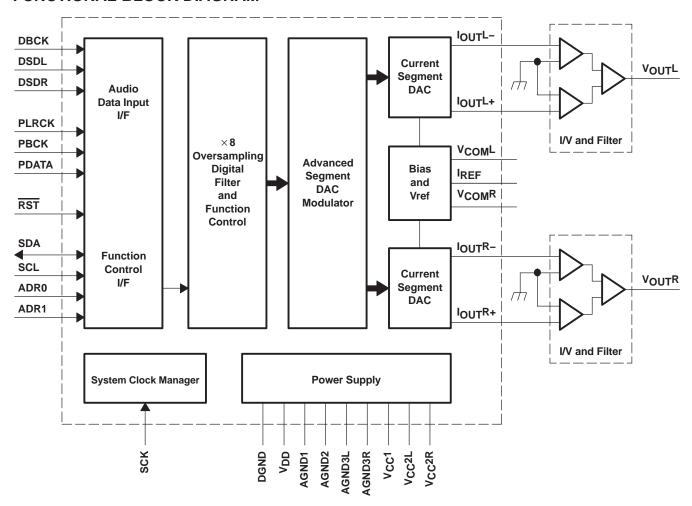
all specifications at $T_A = 25^{\circ}C$, $V_{CC}1 = V_{CC}2L = V_{CC}2R = 5$ V, $V_{DD} = 3.3$. V $f_S = 44.1$ kHz, system clock = 256 f_S , and 24-bit data, unless otherwise noted

				DSD1794D	В		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
POWER	SUPPLY REQUIREMENTS	·					
V_{DD}			3	3.3	3.6	VDC	
V _{CC} 1	Voltage region						
V _{CC} 2L	Voltage range	je	4.75	5	5.25	VDC	
V _{CC} 2R							
		f _S = 44.1 kHz		12	15		
l _{DD}		f _S = 96 kHz		23		mA	
	Supply support (1)	f _S = 192 kHz		45			
	Supply current (1)	f _S = 44.1 kHz		33	40		
ICC		f _S = 96 kHz		35		mA	
		f _S = 192 kHz		37			
		f _S = 44.1 kHz		205	250		
	Power dissipation (1)	f _S = 96 kHz		250		mW	
		f _S = 192 kHz		335			
TEMPE	RATURE RANGE						
	Operation temperature		-25	•	85	°C	
θЈА	Thermal resistance	28-pin SSOP		100		°C/W	

⁽¹⁾ Input is BPZ data.

PIN ASSIGNMENTS

DSD1794 (TOP VIEW) DSDL 🞞 28 \square V_{CC}^{2L} DSDR 🖂 2 27 AGND3L DBCK 🖂 3 26 DIOUTL-25 OUTL+ PLRCK 4 PDATA 5 24 AGND2 PBCK \square 6 23 □ V_{CC}1 22 □ V_{COM}L SCK 🖂 7 DGND = 8 21 □ V_{COM}R V_{DD} □ 9 20 ☐ I_{REF} ADR0 _____ 10 19 ADR1 _____11 18 □ I_{OUT}R-SCL 🖂 12 17 □ I_{OUT}R+ SDA 🖂 13 16 ☐☐ AGND3R RST 🖂 14 15


Terminal Functions

TERMI	NAL		
NAME	PIN	1/0	DESCRIPTIONS
ADR0	10	I	I ² C address 0 (1)
ADR1	11	I	I ² C address 1 (1)
AGND1	19	_	Analog ground (internal bias)
AGND2	24	_	Analog ground (internal bias)
AGND3L	27	_	Analog ground (L-channel DACFF)
AGND3R	16	_	Analog ground (R-channel DACFF)
DBCK	3	I	Bit clock input for DSD modes (1)
DGND	8	_	Digital ground
DSDL	1	I/O	L-channel audio data input when in DSD and external DF modes PCM-mode zero flag for L-channel when in zero-flag output mode (2)
DSDR	2	I/O	R-channel audio data input when in DSD and external DF modes (2) PCM-mode zero flag for R-channel when in zero-flag output mode
louTL+	25	0	L-channel analog current output +
IOUTL-	26	0	L-channel analog current output –
IOUTR+	17	0	R-channel analog current output +
IOUTR-	18	0	R-channel analog current output –
I _{REF}	20	-	Output current reference bias pin
PBCK	6	I	Bit clock input. Connected to GND in DSD mode (1)
PDATA	5	I	Serial audio data input for PCM-format operation (1)
PLRCK	4	I	Left and right clock (fs) input for PCM-format operation. WDCK clock input for external DF mode. Connected to GND for DSD mode ⁽¹⁾
RST	14	I	Reset (1)
SCL	12	I	I ² C clock (1)
SCK	7	I	System clock input (1)
SDA	13	I/O	I ² C data (3)
V _{CC} 1	23	-	Analog power supply, 5 V
V _{CC} 2L	28	-	Analog power supply (L-channel DACFF), 5 V
V _{CC} 2R	15	_	Analog power supply (R-channel DACFF), 5 V
VCOML	22	_	L-channel internal bias decoupling pin
VCOMR	21	-	R-channel internal bias decoupling pin
V_{DD}	9	_	Digital power supply, 3.3 V

⁽¹⁾ Schmitt-trigger input, 5-V tolerant
(2) Schmitt-trigger input and output. 5-V tolerant input, and CMOS output
(3) Schmitt-trigger 5-V tolerant input and open-drain/3-state output

FUNCTIONAL BLOCK DIAGRAM

TYPICAL PERFORMANCE CURVES

DIGITAL FILTER

Digital Filter Response

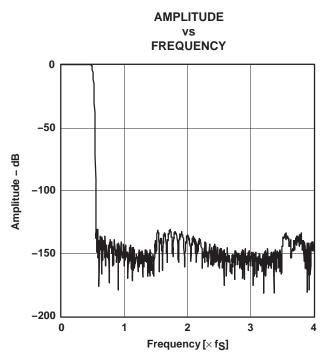


Figure 1. Frequency Response, Sharp Rolloff

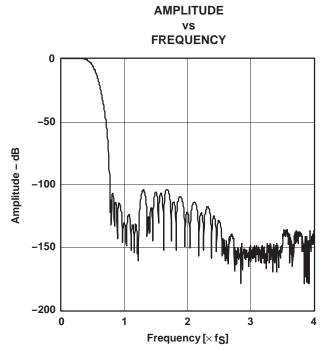


Figure 3. Frequency Response, Slow Rolloff

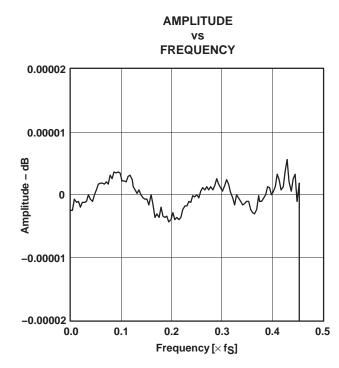
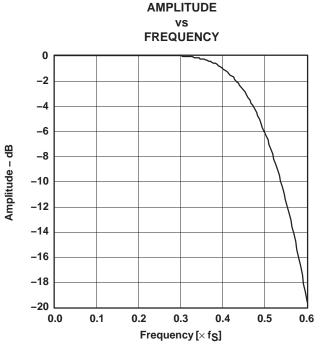
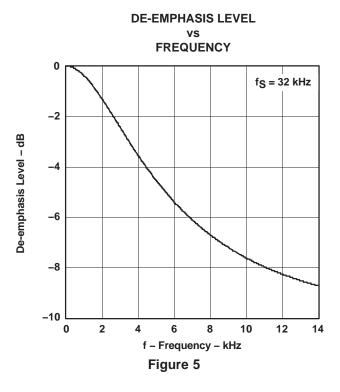
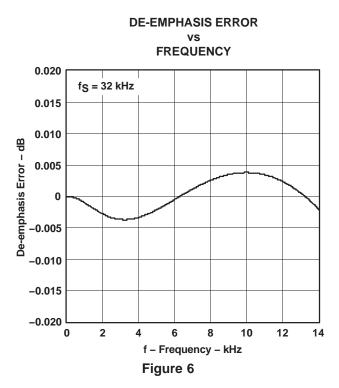
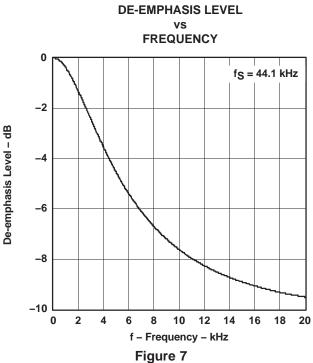
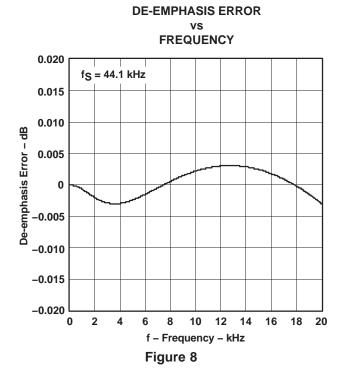


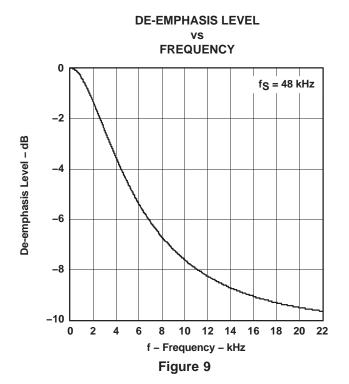
Figure 2. Pass-Band Ripple, Sharp Rolloff

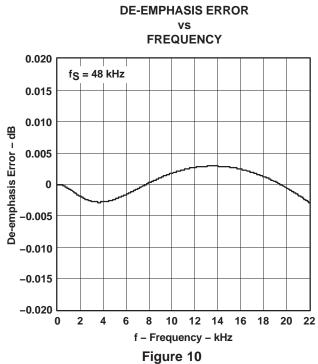





Figure 4. Transition Characteristics, Slow Rolloff

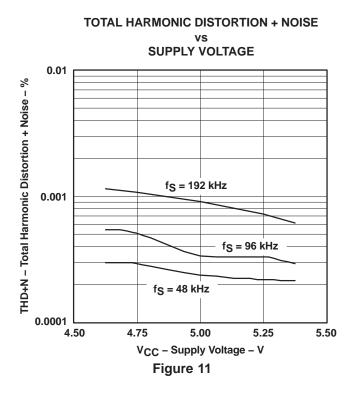


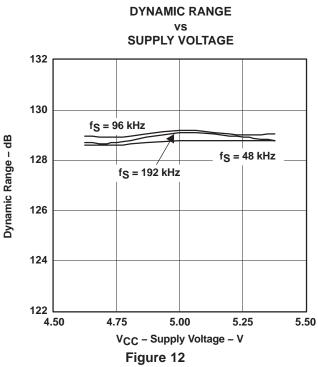
De-Emphasis Filter

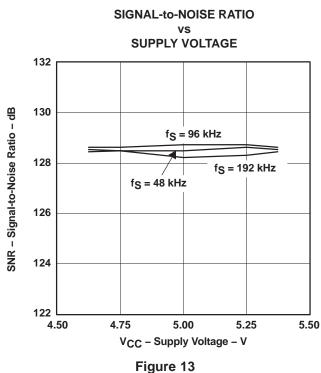


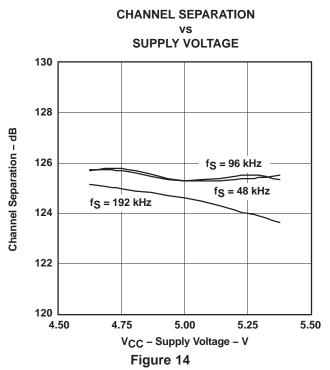


De-Emphasis Filter (Continued)

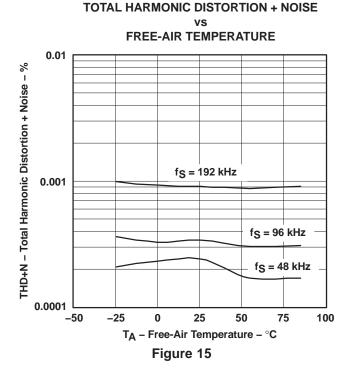




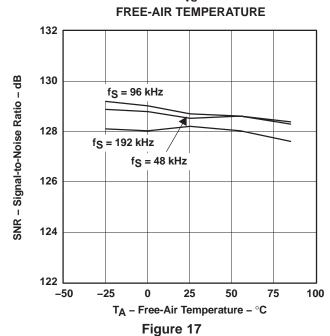



ANALOG DYNAMIC PERFORMANCE

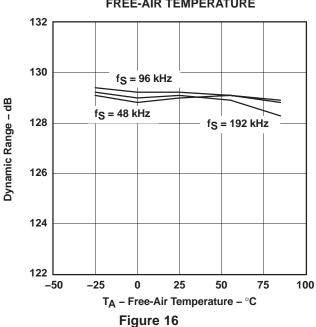
Supply Voltage Characteristics

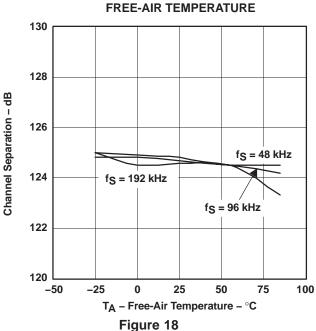


NOTE: PCM mode, $T_A = 25$ °C, $V_{DD} = 3.3$ V, measurement circuit is Figure 34 ($V_{OUT} = 4.5$ V rms).

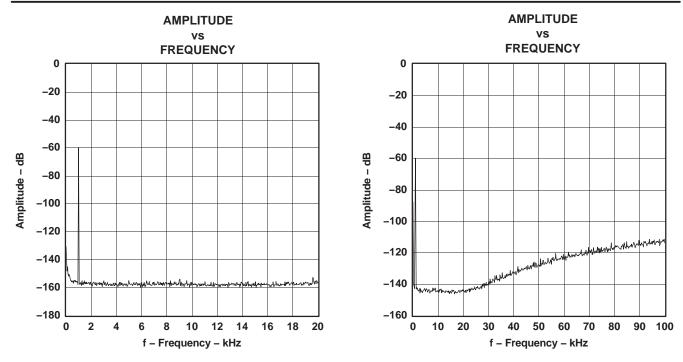


Temperature Characteristics


TOTAL HADMONIO DIOTORTION A

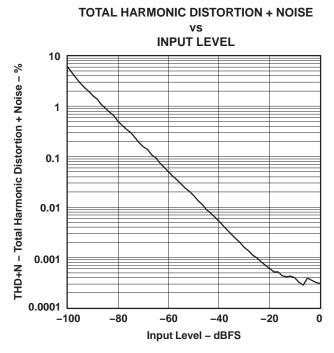

SIGNAL-to-NOISE RATIO

DYNAMIC RANGE vs FREE-AIR TEMPERATURE



CHANNEL SEPARATION vs

NOTE: PCM mode, $V_{DD} = 3.3 \text{ V}$, $V_{CC} = 5 \text{ V}$, measurement circuit is Figure 34 ($V_{OUT} = 4.5 \text{ V rms}$).



NOTE: PCM mode, $f_S = 48$ kHz, 32768 point 8 average, $T_A = 25^{\circ}\text{C}$, $V_{DD} = 3.3$ V, $V_{CC} = 5$ V, measurement circuit is Figure 34.

NOTE: PCM mode, fs = 48 kHz, 32768 point 8 average, T $_{A}$ = 25°C, V_{DD} = 3.3 V, V_{CC} = 5 V, measurement circuit is Figure 34.

Figure 19. -60-db Output Spectrum, BW = 20 kHz Figure 20. -60-db Output Spectrum, BW = 100 kHz

NOTE: PCM mode, $f_S = 48$ kHz, $T_A = 25^{\circ}C$, $V_{DD} = 3.3$ V, $V_{CC} = 5$ V, measurement circuit is Figure 34.

Figure 21. THD+N vs Input Level, PCM Mode

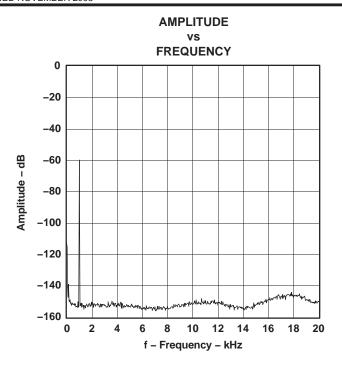


Figure 22. -60-dB Output Spectrum, DSD Mode

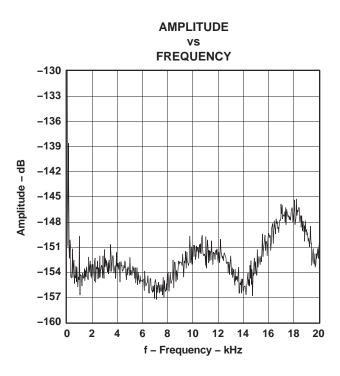


Figure 23. -150-dB Output Spectrum, DSD Mono Mode

SYSTEM CLOCK AND RESET FUNCTIONS

System Clock Input

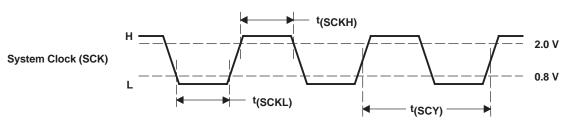

The DSD1794 requires a system clock for operating the digital interpolation filters and advanced segment DAC modulators. The system clock is applied at the SCK input (pin 7). The DSD1794 has a system clock detection circuit that automatically senses the frequency at which the system clock is operating. Table 1 shows examples of system clock frequencies for common audio sampling rates. If the oversampling rate of the delta-sigma modulator is selected as 128 f_S, the system clock frequency is required to be over 256 f_S.

Figure 24 shows the timing requirements for the system clock input. For optimal performance, it is important to use a clock source with low phase jitter and noise. One of the Texas Instruments PLL1700 family of multiclock generators is an excellent choice for providing the DSD1794 system clock.

OAMBUNO EDECUENOV	SYSTEM CLOCK FREQUENCY (FSCK) (MHz)								
SAMPLING FREQUENCY	128 fs	192 f _S	256 fs	384 fs	512 fg	768 f _S			
32 kHz	4.096(1)	6.144(1)	8.192	12.288	16.384	24.576			
44.1 kHz	5.6488(1)	8.4672	11.2896	16.9344	22.5792	33.8688			
48 kHz	6.144(1)	9.216	12.288	18.432	24.576	36.864			
96 kHz	12.288	18.432	24.576	36.864	49.152(1)	73.728(1)			
192 kHz	24.576	36.864	49.152(1)	73.728(1)	(2)	(2)			

Table 1. System Clock Rates for Common Audio Sampling Frequencies

⁽²⁾ This system clock rate is not supported for the given sampling frequency.

	PARAMETERS	MIN	MAX	UNITS
t(SCY)	System clock pulse cycle time	13		ns
t(SCKH)	System clock pulse duration, HIGH	0.4(SCY)		ns
t(SCKL)	System clock pulse duration, LOW	0.4(SCY)		ns

Figure 24. System Clock Input Timing

Power-On and External Reset Functions

The DSD1794 includes a power-on reset function. Figure 25 shows the operation of this function. With $V_{DD} > 2$ V, the power-on reset function is enabled. The initialization sequence requires 1024 system clocks from the time $V_{DD} > 2$ V. After the initialization period, the DSD1794 is set to its default reset state, as described in the *MODE CONTROL REGISTERS* section of this data sheet.

The DSD1794 also includes an external reset capability using the \overline{RST} input (pin 14). This allows an external controller or master reset circuit to force the DSD1794 to initialize to its default reset state.

Figure 26 shows the external reset operation and timing. The RST pin is set to logic 0 for a minimum of 20 ns. The RST pin is then set to a logic 1 state, thus starting the initialization sequence, which requires 1024 system clock periods. The external reset is especially useful in applications where there is a delay between the DSD1794 power up and system clock activation.

⁽¹⁾ This system clock rate is not supported in I²C fast mode.

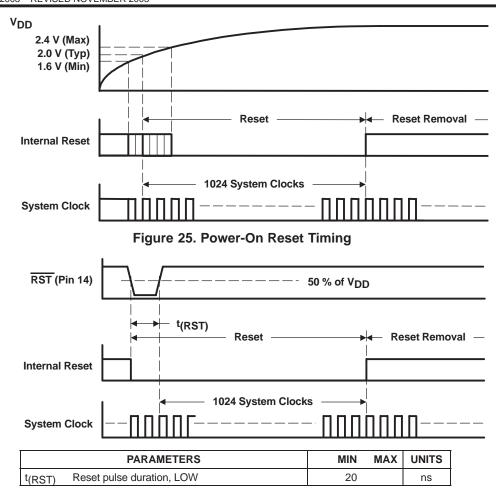
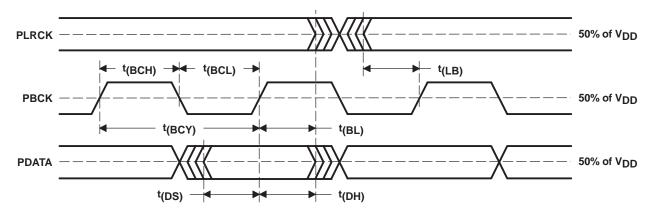


Figure 26. External Reset Timing

AUDIO DATA INTERFACE

Audio Serial Interface

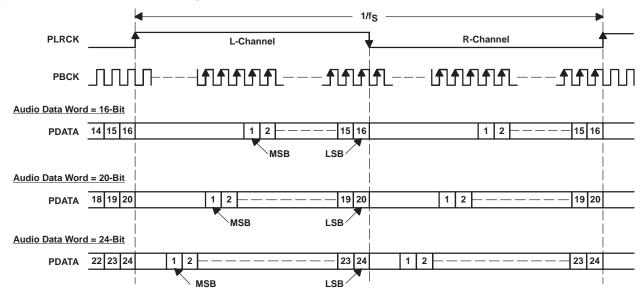

The audio interface port is a 3-wire serial port. It includes PLRCK (pin 4), PBCK (pin 6), and PDATA (pin 5). PBCK is the serial audio bit clock, and it is used to clock the serial data present on PDATA into the serial shift register of the audio interface. Serial data is clocked into the DSD1794 on the rising edge of PBCK. PLRCK is the serial audio left/right word clock.

The DSD1794 requires the synchronization of PLRCK and the system clock, but does not need a specific phase relation between PLRCK and the system clock.

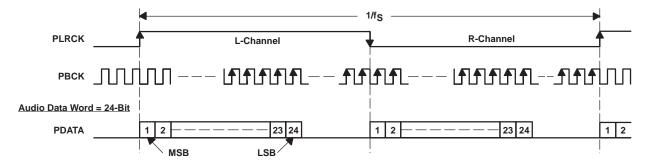
If the relationship between PLRCK and the system clock changes more than ± 6 PBCK, internal operation is initialized within $1/f_S$ and analog outputs are forced to the bipolar zero level until resynchronization between PLRCK and the system clock is completed.

PCM Audio Data Formats and Timing

The DSD1794 supports industry-standard audio data formats, including standard right-justified, I²S, and left-justified. The data formats are shown in Figure 28. Data formats are selected using the format bits, FMT[2:0], in control register 18. The default data format is 24-bit I²S. All formats require binary twos-complement, MSB-first audio data. Figure 27 shows a detailed timing diagram for the serial audio interface.



	PARAMETERS	MIN	MAX	UNITS
t(BCY)	PBCK pulse cycle time	70		ns
t(BCL)	PBCK pulse duration, LOW	30		ns
t(BCH)	PBCK pulse duration, HIGH	30		ns
t(BL)	PBCK rising edge to PLRCK edge	10		ns
t(LB)	PLRCK edge to PBCK rising edge	10		ns
t(DS)	PDATA Setup time	10		ns
t(DH)	PDATA hold time	10		ns
_	PLRCK clock data	50% ± 2 bit clocks		


Figure 27. Timing of Audio Interface

(1) Standard Data Format (Right Justified); L-Channel = HIGH, R-Channel = LOW

(2) Left Justified Data Format; L-Channel = HIGH, R-Channel = LOW

(3) I²S Data Format; L-Channel = LOW, R-Channel = HIGH

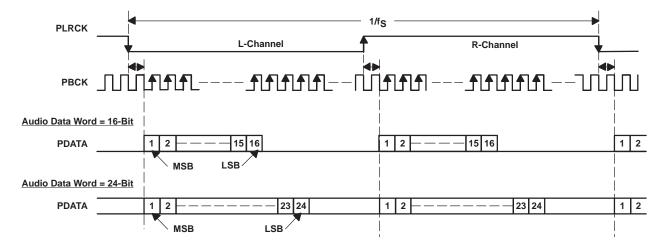


Figure 28. Audio Data Input Formats

External Digital Filter Interface and Timing

The DSD1794 supports an external digital filter interface with a 3- or 4-wire synchronous serial port, which allows the use of an external digital filter. External filters include the Texas Instruments DF1704 and DF1706, the Pacific Microsonics PMD200, or a programmable digital signal processor.

In the external DF mode, PLRCK (pin 4), PBCK (pin 6) and PDATA (pin 5) are defined as WDCK, the word clock; BCK, the bit clock; and DATA, the monaural data, respectively. The external digital filter interface is selected by using the DFTH bit of control register 20, which functions to bypass the internal digital filter of the DSD1794.

When the DFMS bit of control register 19 is set, the DSD1794 can process stereo data. In this case, DSDL (pin 1) and DSDR (pin 2) are defined as L-channel data and R-channel data input, respectively.

Detailed information for the external digital filter interface mode is provided in the *APPLICATION FOR EXTERNAL DIGITAL FILTER INTERFACE* section of this data sheet.

Direct Stream Digital (DSD) Format Interface and Timing

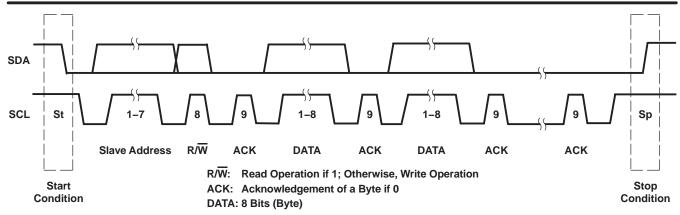
The DSD1794 supports the DSD-format interface operation, which includes out-of-band noise filtering using an internal analog FIR filter. The DSD-format interface consists of a 3-wire synchronous serial port, which includes DBCK (pin 3), DSDL (pin 1), and DSDR (pin 2). DBCK is the serial bit clock. DSDL and DSDR are the L-channel and R-channel DSD data inputs, respectively. They are clocked into the DSD1794 on the rising edge of DBCK. PLRCK (pin 4) and PBCK (pin 6) are connected to GND in the DSD mode. The DSD-format interface is activated by setting the DSD bit of control register 20.

Detailed information for the DSD mode is provided in the APPLICATION FOR DSD FORMAT (DSD MODE) INTERFACE section of this data sheet.

SERIAL CONTROL INTERFACE (I²C)

The DSD1794 supports the I²C serial bus and the data transmission protocol for standard and fast mode as a slave device. This protocol is explained in I²C specification 2.0.

Slave Address


MSB							LSB
1	0	0	1	1	ADR1	ADR0	R/W

The DSD1794 has 7 bits for its own slave address. The first five bits (MSBs) of the slave address are factory preset to 10011. The next two bits of the address byte are the device select bits which can be user-defined by the ADR1 and ADR0 terminals. A maximum of four DSD1794s can be connected on the same bus at one time. Each DSD1794 responds when it receives its own slave address.

Packet Protocol

A master device must control packet protocol, which consists of start condition, slave address, read/write bit, data if write or acknowledge if read, and stop condition. The DSD1794 supports only slave receivers and slave transmitters.

SLES077A - MARCH 2003 - REVISED NOVEMBER 2003

Write operation

Transmitter	М	М	М	S	М	S	М	S	 S	М
Data Type	St	Slave Address	R/W	ACK	DATA	ACK	DATA	ACK	 ACK	Sp

Read operation

Transmitter	М	М	М	S	S	М	S	М	 М	М
Data Type	St	Slave Address	R/W	ACK	DATA	ACK	DATA	ACK	 NACK	Sp

M: Master Device

S: Slave Device

St: Start Condition

Sp: Stop Condition

Figure 29. Basic I²C Framework

Write Register

A master can write to any DSD1794 registers using single or multiple accesses. The master sends a DSD1794 slave address with a write bit, a register address, and the data. If multiple access is required, the address is that of the starting register, followed by the data to be transferred. When the data are received properly, the index register is incremented by 1 automatically. When the index register reaches 0x7F, the next value is 0x0. When undefined registers are accessed, the DSD1794 does not send an acknowledgement. Figure 30 is a diagram of the write operation.

Transmitter	М	М	М	S	М	S	М	S	М	S	 S	М
Data Type	St	Slave Address	W	ACK	Reg Address	ACK	Write Data 1	ACK	Write Data 2	ACK	 ACK	Sp
	<i>M</i> : Ma	aster Device	S: SI	ave De	vice							
	St: St	art Condition	W: V	Vrite	ACK	: Ackno	owledge Sp:	Stop Co	ondition			

Figure 30. Write Operation

Read Register

A master can read the DSD1794 register. The value of the register address is stored in an indirect index register in advance. The master sends a DSD1794 slave address with a read bit after storing the register address. Then the DSD1794 transfers the data which the index register points to. When the data are transferred during a multiple access, the index register is incremented by 1 automatically. (When first going into read mode immediately following a write, the index register is not incremented. The master can read the register that was previously written.) When the index register reaches 0x7F, the next value is 0x0. The DSD1794 outputs some data when the index register is 0x10 to 0x1F, even if it is not defined in Table 3. Figure 31 is a diagram of the read operation.

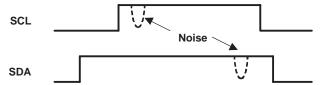
Transmitter	М	М	М	S	М	S	М	М	М	S	S	М	 М	М
Data Type	St	Slave Address	W	ACK	Reg Address	ACK	Sr	Slave Address	R	ACK	Data	ACK	 NACK	Sp

M: Master Device S: Slave Device

St: Start Condition Sr: Repeated Start Condition ACK: Acknowledge

Sp: Stop Condition NACK: Not Acknowledge W: Write R: Read

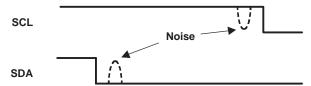
NOTE: The slave address after the repeat start condition must be the same as the previous slave address.


Figure 31. Read Operation

Noise Suppression

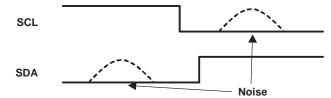
The DSD1794 incorporates noise suppression using the system clock (SCK). However, there must be no more than two noise spikes in 600 ns. The noise suppression works for SCK frequencies between 8 MHz and 40 MHz in fast mode. However, it works incorrectly in the following conditions.

Case 1:


- 1. $t_{(SCK)} > 120 \text{ ns } (t_{(SCK)}: \text{ period of SCK})$
- 2. $t_{(HI)} + t_{(D-HD)} < t_{(SCK)} \times 5$
- 3. Spike noise exists on the first half of the SCL HIGH pulse.
- 4. Spike noise exists on the SDA HIGH pulse just before SDA goes LOW.

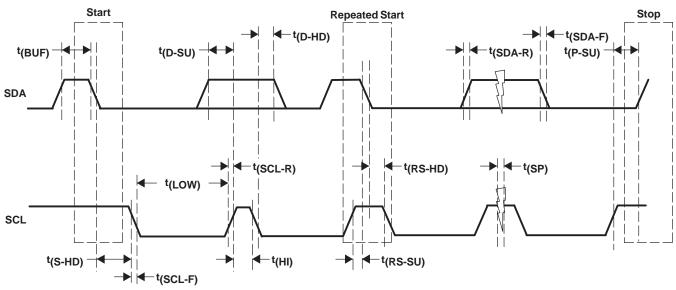
When these conditions occur at the same time, the data is recognized as LOW.

Case 2:


- 1. t(SCK) > 120 ns
- 2. $t_{(S-HD)}$ or $t_{(RS-HD)} < t_{(SCK)} \times 5$
- 3. Spike noise exists on both SCL and SDA during the hold time.

When these conditions occur at the same time, the DSD1794 fails to detect a start condition.

Case 3:


- 1. $t_{(SCK)} < 50 \text{ ns}$
- 2. $t_{(SP)} > t_{(SCK)}$
- 3. Spike noise exists on SCL just after SCL goes LOW.
- 4. Spike noise exists on SDA just before SCL goes LOW.

When these conditions occur at the same time, the DSD1794 erroneously detects a start or stop condition.

TIMING DIAGRAM

TIMING CHARACTERISTICS

	PARAMETER	CONDITIONS	MIN	MAX	UNIT
,	001 ded (0000000	Standard		100	1.11-
f(SCL)	SCL clock frequency	Fast		400	kHz
4	Due from time between step and step and step	Standard	4.7		
t(BUF)	Bus free time between stop and start conditions	Fast	1.3		μs
4	Law married of the CCL clock	Standard	4.7		
t(LOW)	Low period of the SCL clock	Fast	1.3		μs
4	High paried of the COL clock	Standard	4		μs
^t (HI)	High period of the SCL clock	Fast	600		ns
*·· ··	Catura time for (represent) start condition	Standard	4.7		μs
t(RS-SU)	Setup time for (repeated) start condition	Fast	600		ns
t(S-HD)	Hold time for (non-orted) start condition	Standard	4		μs
t(RS-HD)	Hold time for (repeated) start condition	Fast	600		ns
	Data catus time	Standard	250		
^t (D-SU)	Data setup time	Fast	100		ns
4	Data hald time	Standard	0	900	
t(D-HD)	Data hold time	Fast	0	900	ns
*******	Disa time of CCI signal	Standard	20 + 0.1 C _B	1000	
t(SCL-R)	Rise time of SCL signal	Fast	20 + 0.1 C _B	300	ns
	Rise time of SCL signal after a repeated start condition and after an	Standard	20 + 0.1 C _B	1000	
t(SCL-R1)	acknowledge bit	Fast	20 + 0.1 C _B	300	ns
t/0.01 =\	Fall time of SCL signal	Standard	20 + 0.1 C _B	1000	no
t(SCL-F)	Fall time of SCL signal	Fast	20 + 0.1 C _B	300	ns
t(00 t 0)	Rise time of SDA signal	Standard	20 + 0.1 C _B	1000	no
t(SDA-R)	Rise time of SDA signal	Fast	20 + 0.1 C _B	300	ns
t(00 t =)	Fall time of SDA signal	Standard	20 + 0.1 C _B	1000	nc
^t (SDA-F)	Fall time of SDA signal	Fast	20 + 0.1 C _B	300	ns
t/p 01 11	Setup time for stop condition	Standard	4		μs
t(P-SU)	Setup time for stop condition	Fast	600		ns
C _(B)	Capacitive load for SDA and SCL line			400	pF
t(SP)	Pulse duration of suppressed spike	Fast		50	ns
		Standard			
V_{NH}	Noise margin at high level for each connected device (including hysteresis)	Fast	0.2 V _{DD}		V

MODE CONTROL REGISTERS

User-Programmable Mode Controls

The DSD1794 includes a number of user-programmable functions which are accessed via mode control registers. The registers are programmed using the serial control interface, discussed in the SERIAL CONTROL INTERFACE (I^2C) section of this data sheet. Table 2 lists the available mode-control functions, along with their default reset conditions and associated register index.

Table 2. User-Programmable Function Controls

FUNCTION	DEFAULT	REGISTER	BIT	PCM	DSD	DF BYPASS
Digital attenuation control 0 dB to -120 dB and mute, 0.5 dB step	0 dB	Register 16 Register 17	ATL[7:0] (for L-ch) ATR[7:0] (for R-ch)	yes		
Attenuation load control—Disabled, enabled	Attenuation disabled	Register 18	ATLD	yes		
Input audio data format selection 16-, 20-, 24-bit standard (right-justified) format 24-bit MSB-first left-justified format 16-/24-bit I ² S format	24-bit I ² S format	Register 18	FMT[2:0]	yes		yes
Sampling rate selection for de-emphasis Disabled,44.1 kHz, 48 kHz, 32 kHz	De-emphasis disabled	Register 18	DMF[1:0]	yes	yes(1)	
De-emphasis control—Disabled, enabled	De-emphasis disabled	Register 18	DME	yes		
Soft mute control—Mute disabled, enabled	Mute disabled	Register 18	MUTE	yes		
Output phase reversal—Normal, reverse	Normal	Register 19	REV	yes	yes	yes
Attenuation speed selection $\times 1 \text{ fg}, \times (1/2) \text{fg}, \times (1/4) \text{fg}, \times (1/8) \text{fg}$	×1 f _S	Register 19	ATS[1:0]	yes		
DAC operation control—Enabled, disabled	DAC operation enabled	Register 19	OPE	yes	yes	yes
Zero flag pin operation control DSD data input, zero flag output	DSD data input	Register 19	ZOE	yes		yes
Stereo DF bypass mode select Monaural, stereo	Monaural	Register 19	DFMS			yes
Digital filter rolloff selection Sharp rolloff, slow rolloff	Sharp rolloff	Register 19	FLT	yes		
Infinite zero mute control Disabled, enabled	Disabled	Register 19	INZD	yes		yes
System reset control Reset operation , normal operation	Normal operation	Register 20	SRST	yes	yes	yes
DSD interface mode control DSD enabled, disabled	Disabled	Register 20	DSD		yes	
Digital-filter bypass control DF enabled, DF bypass	DF enabled	Register 20	DFTH			yes
Monaural mode selection Stereo, monaural	Stereo	Register 20	MONO	yes	yes	yes
Channel selection for monaural mode data L-channel, R-channel	L-channel	Register 20	CHSL	yes	yes	yes
Delta-sigma oversampling rate selection ×64 fg, ×128 fg, ×32 fg	×64 fs	Register 20	OS[1:0]	yes	yes(2)	yes
PCM zero output enable	Enabled	Register 21	PCMZ	yes		yes
DSD zero output enable	Disabled	Register 21	DZ[1:0]		yes	
Function available only for read	•	•	•		•	
Zero detection flag Not zero, zero detected	Not zero = 0 Zero detected = 1	Register 22	ZFGL (for L-ch) ZFGR (for R-ch)	yes	yes	yes

⁽¹⁾ When in DSD mode, DMF[1:0] is defined as DSD filter (analog FIR) performance selection.

⁽²⁾ When in DSD mode, OS[1:0] is defined as DSD filter (analog FIR) operation rate selection.

Register Map

The mode control register map is shown in Table 3. Registers 16–21 include an R/ \overline{W} bit, which determines whether a register read (R/ \overline{W} = 1) or write (R/ \overline{W} = 0) operation is performed. Register 22 is read-only.

Table 3. Mode Control Register Map

	B15	B14	B13	B12	B11	B10	В9	B8	В7	В6	B5	B4	В3	B2	B1	В0
Register 16	R/W	0	0	1	0	0	0	0	ATL7	ATL6	ATL5	ATL4	ATL3	ATL2	ATL1	ATL0
Register 17	R/W	0	0	1	0	0	0	1	ATR7	ATR6	ATR5	ATR4	ATR3	ATR2	ATR1	ATR0
Register 18	R/W	0	0	1	0	0	1	0	ATLD	FMT2	FMT1	FMT0	DMF1	DMF0	DME	MUTE
Register 19	R/W	0	0	1	0	0	1	1	REV	ATS1	ATS0	OPE	ZOE	DFMS	FLT	INZD
Register 20	R/W	0	0	1	0	1	0	0	RSV	SRST	DSD	DFTH	MONO	CHSL	OS1	OS0
Register 21	R/W	0	0	1	0	1	0	1	RSV	RSV	RSV	RSV	RSV	DZ1	DZ0	PCMZ
Register 22	R	0	0	1	0	1	1	0	RSV	RSV	RSV	RSV	RSV	RSV	ZFGR	ZFGL

Register Definitions

	B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	В0
Register 16	R/W	0	0	1	0	0	0	0	ATL7	ATL6	ATL5	ATL4	ATL3	ATL2	ATL1	ATL0
Register 17	R/W	0	0	1	0	0	0	1	ATR7	ATR6	ATR5	ATR4	ATR3	ATR2	ATR1	ATR0

R/W: Read/Write Mode Select

When $R/\overline{W} = 0$, a write operation is performed.

When $R/\overline{W} = 1$, a read operation is performed.

Default value: 0

ATx[7:0]: Digital Attenuation Level Setting

These bits are available for read and write.

Default value: 1111 1111b

Each DAC output has a digital attenuator associated with it. The attenuator can be set from 0 dB to -120 dB, in 0.5-dB steps. Alternatively, the attenuator can be set to infinite attenuation (or mute).

The attenuation data for each channel can be set individually. However, the data load control (the ATLD bit of control register 18) is common to both attenuators. ATLD must be set to 1 in order to change an attenuator setting. The attenuation level can be set using the following formula:

Attenuation level (dB) = $0.5 \text{ dB} \bullet (ATx[7:0]_{DFC} - 255)$

where $ATx[7:0]_{DFC} = 0$ through 255

For $ATx[7:0]_{DEC} = 0$ through 14, the attenuator is set to infinite attenuation. Table 4 shows attenuation levels for various settings.

Table 4. Digital Attenuation Levels

ATx[7:0]	Decimal Value	Attenuation Level Setting
1111 1111b	255	0 dB, no attenuation (default)
1111 1110b	254	-0.5 dB
1111 1101b	253	-1.0 dB
:	:	i
0001 0000b	16	–119.5 dB
0000 1111b	15	–120.0 dB
0000 1110b	14	Mute
:	:	i
0000 0000b	0	Mute

	B15	B14	B13	B12	B11	B10	B9	B8	B7	В6	B5	B4	В3	B2	B1	В0
Register 18	R/W	0	0	1	0	0	1	0	ATLD	FMT2	FMT1	FMT0	DMF1	DMF0	DME	MUTE

R/W: Read/Write Mode Select

When $R/\overline{W} = 0$, a write operation is performed. When $R/\overline{W} = 1$, a read operation is performed.

Default value: 0

ATLD: Attenuation Load Control

This bit is available for read and write.

Default value: 0

ATLD = 0	Attenuation control disabled (default)
ATLD = 1	Attenuation control enabled

The ATLD bit is used to enable loading of the attenuation data contained in registers 16 and 17. When ATLD = 0, the attenuation settings remain at the previously programmed levels, ignoring new data loaded from registers 16 and 17. When ATLD = 1, attenuation data written to registers 16 and 17 is loaded normally.

FMT[2:0]: Audio Interface Data Format

These bits are available for read and write.

Default value: 101

For the external digital filter interface mode (DFTH mode), this register is operated as shown in the *Application for Interfacing With an External Digital Filter* section of this data sheet.

FMT[2:0]	Audio Data Format Selection
000	16-bit standard format, right-justified data
001	20-bit standard format, right-justified data
010	24-bit standard format, right-justified data
011	24-bit MSB-first, left-justified format data
100	16-bit I ² S-format data
101	24-bit I ² S-format data (default)
110	Reserved
111	Reserved

The FMT[2:0] bits are used to select the data format for the serial audio interface.

DMF[1:0]: Sampling Frequency Selection for the De-Emphasis Function

These bits are available for read and write.

Default value: 00

DMF[1:0]	De-Emphasis Sampling Frequency Selection
00	Disabled (default)
01	48 kHz
10	44.1 kHz
11	32 kHz

The DMF[1:0] bits are used to select the sampling frequency used by the digital de-emphasis function when it is enabled by setting the DME bit. The de-emphasis curves are shown in the *TYPICAL PERFORMANCE CURVES* section of this data sheet.

For the DSD mode, analog FIR filter performance can be selected using this register. A register map and filter response plots are shown in the *APPLICATION FOR DSD FORMAT (DSD MODE) INTERFACE* section of this data sheet.

SLES077A - MARCH 2003 - REVISED NOVEMBER 2003

DME: Digital De-Emphasis Control

This bit is available for read and write.

Default value: 0

DME = 0	De-emphasis disabled (default)
DME = 1	De-emphasis enabled

The DME bit is used to enable or disable the de-emphasis function for both channels.

MUTE: Soft Mute Control

This bit is available for read and write.

Default value: 0

MUTE = 0	MUTE disabled (default)
MUTE = 1	MUTE enabled

The MUTE bit is used to enable or disable the soft mute function for both channels.

Soft mute is operated as a 256-step attenuator. The speed for each step to $-\infty$ dB (mute) is determined by the attenuation rate selected in the ATS register.

	B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	В3	B2	B1	В0
Register 19	R/W	0	0	1	0	0	1	1	REV	ATS1	ATS0	OPE	ZOE	DFMS	FLT	INZD

R/W: Read/Write Mode Select

When $R/\overline{W} = 0$, a write operation is performed.

When $R/\overline{W} = 1$, a read operation is performed.

Default value: 0

REV: Output Phase Reversal

This bit is available for read and write.

Default value: 0

REV = 0	Normal output (default)
REV = 1	Inverted output

The REV bit is used to invert the output phase for both channels.

ATS[1:0]: Attenuation Rate Select

These bits are available for read and write.

Default value: 00

ATS[1:0]	Attenuation Rate Selection
00	Every PLRCK (default)
01	PLRCK/2
10	PLRCK/4
11	PLRCK/8

The ATS[1:0] bits are used to select the rate at which the attenuator is decremented/incremented during level transitions.

OPE: DAC Operation Control

This bit is available for read and write.

Default value: 0

OPE = 0	DAC operation enabled (default)
OPE = 1	DAC operation disabled

The OPE bit is used to enable or disable the analog output for both channels. Disabling the analog outputs forces them to the bipolar zero level (BPZ) even if digital audio data is present on the input.

ZOE: Zero Flag Pin Operation Control

This bit is available for read and write.

Default value: 0

ZOE = 0	DSD data input (default)
ZOE = 1	Zero flag output

The ZOE bit is used to change the DSDL (pin 1) and DSDR (pin 2) pin assignments. When the ZOE bit is set to 0, DSDL and DSDR are inputs for L-channel and R-channel data. When the ZOE bit is set to 1, DSDL and DSDR become outputs for the L-channel and R-channel zero flags, respectively. See the PCMZ and DZ[1:0] bit descriptions of register 21.

DFMS: Stereo DF Bypass Mode Select

This bit is available for read and write.

Default value: 0

DFMS = 0	Monaural (default)
DFMS = 1	Stereo input enabled

The DFMS bit is used to enable stereo operation in DF bypass mode. In the DF bypass mode, when DFMS is set to 0, the pin for the input data is PDATA (pin 5) only, therefore the DSD1794 operates as a monaural DAC. When DFMS is set to 1, the DSD1794 can operate as a stereo DAC with inputs of L-channel and R-channel data on DSDL (pin 1) and DSDR (pin 2), respectively.

FLT: Digital Filter Rolloff Control

This bit is available for read and write.

Default value: 0

FLT = 0	Sharp rolloff (default)
FLT = 1	Slow rolloff

The FLT bit is used to select the digital filter rolloff characteristic. The filter responses for these selections are shown in the TYPICAL PERFORMANCE CURVES section of this data sheet.

INZD: Infinite Zero Detect Mute Control

This bit is available for read and write.

Default value: 0

INZD = 0	Infinite zero detect mute disabled (default)
INZD = 1	Infinite zero detect mute enabled

The INZD bit is used to enable or disable the zero detect mute function. Setting INZD to 1 forces muted analog outputs to hold a bipolar zero level when the DSD1794 detects zero data in both channels continuously for 1024 sampling periods (1/f_S). The infinite zero detect mute function does not work in the DSD mode.

SLES077A - MARCH 2003 - REVISED NOVEMBER 2003

	B15	B14	B13	B12	B11	B10	В9	B8	B7	В6	B5	В4	В3	B2	B1	В0
Register 20	R/W	0	0	1	0	1	0	0	RSV	SRST	DSD	DFTH	MONO	CHSL	OS1	OS0

R/W: Read/Write Mode Select

When $R/\overline{W} = 0$, a write operation is performed.

When $R/\overline{W} = 1$, a read operation is performed.

Default value: 0

SRST: System Reset Control

This bit is available for write only.

Default value: 0

SRST = 0	Normal operation (default)
SRST = 1	System reset operation (generate one reset pulse)

The SRST bit is used to reset the DSD1794 to the initial system condition.

DSD: DSD Interface Mode Control

This bit is available for read and write.

Default value: 0

DSD = 0	DSD interface mode disabled (default)
DSD = 1	DSD interface mode enabled

The DSD bit is used to enable or disable the DSD interface mode.

DFTH: Digital Filter Bypass (or Through Mode) Control

This bit is available for read and write.

Default value: 0

DFTH = 0	Digital filter enabled (default)
DFTH = 1	Digital filter bypassed for external digital filter

The DFTH bit is used to enable or disable the external digital filter interface mode.

MONO: Monaural Mode Selection

This bit is available for read and write.

Default value: 0

MONO = 0	Stereo mode (default)
MONO = 1	Monaural mode

The MONO function is used to change the operation mode from the normal stereo mode to the monaural mode. When the monaural mode is selected, both DACs operate in a balanced mode for one channel of audio input data. Channel selection is available for L-channel or R-channel data, determined by the CHSL bit as described immediately following.

CHSL: Channel Selection for Monaural Mode

This bit is available for read and write.

Default value: 0

This bit is available when MONO = 1.

CHSL = 0	L-channel selected (default)
CHSL = 1	R-channel selected

The CHSL bit selects L-channel or R-channel data to be used in monaural mode.

OS[1:0]: Delta-Sigma Oversampling Rate Selection

These bits are available for read and write.

Default value: 00

OS[1:0]	Operation Speed Select	
00	64 times f _S (default)	
01	32 times f _S	
10	128 times f _S	
11	Reserved	

The OS bits are used to change the oversampling rate of delta-sigma modulation. Use of this function enables the designer to stabilize the conditions at the post low-pass filter for different sampling rates. As an application example, programming to set 128 times in 44.1-kHz operation, 64 times in 96-kHz operation, and 32 times in 192-kHz operation allows the use of only a single type (cutoff frequency) of post low-pass filter. The 128 f_S oversampling rate is not available at sampling rates above 100 kHz. If the 128 f_S oversampling rate is selected, a system clock of more than 256 f_S is required.

In DSD mode, these bits are used to select the speed of the bit clock for DSD data coming into the analog FIR filter.

	B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
Register 21	R/W	0	0	1	0	1	0	1	RSV	RSV	RSV	RSV	RSV	DZ1	DZ0	PCMZ

R/W: Read/Write Mode Select

When $R/\overline{W} = 0$, a write operation is performed.

When $R/\overline{W} = 1$, a read operation is performed.

Default value: 0

DZ[1:0]: DSD Zero Output Enable

These bits are available for read and write.

Default value: 00

DZ[1:0]	Zero Output Enable
00	Disabled (default)
01	Even pattern detect
1x	96 _H pattern detect

The DZ bits are used to enable or disable the output zero flags, and to select the zero pattern in the DSD mode. The DSD1794 sets zero flags when the number of 1s and 0s are equal in every 8 bits of DSD input data, or the DSD input data is 1001 0110 continuously for 200 ms.

PCMZ: PCM Zero Output Enable

These bits are available for read and write.

Default value: 1

PCMZ = 0	PCM zero output disabled
PCMZ = 1	PCM zero output enabled (default)

The PCMZ bit is used to enable or disable the output zero flags in the PCM mode and the external DF mode. The DSD1794 sets the zero flags when the input data is continuously zero for 1024 LRCKs in the PCM mode or 1024 \times 8 WCKs in the external filter mode.

	B15	B14	B13	B12	B11	B10	B9	B8	B7	В6	B5	B4	В3	B2	B1	В0	
Register 22	R	0	0	1	0	1	1	0	RSV	RSV	RSV	RSV	RSV	RSV	ZFGR	ZFGL	

R: Read Mode Select

Value is always 1, specifying the readback mode.

ZFGx: Zero-Detection Flag

Where x = L or R, corresponding to the DAC output channel. These bits are available only for readback.

Default value: 00

ZFGx = 0	Not zero
ZFGx = 1	Zero detected

When the DSD1794 detects that audio input data is continuously zero, the ZFGx bit is set to 1 for the corresponding channel(s).

TYPICAL CONNECTION DIAGRAM

Figure 32. Typical Application Circuit

APPLICATION INFORMATION

APPLICATION CIRCUIT

The design of the application circuit is very important in order to actually realize the high S/N ratio of which the DSD1794 is capable. This is because noise and distortion that are generated in an application circuit are not negligible.

In the circuit of Figure 33, the output level is 2 V RMS and 127 dB S/N is achieved. The circuit of Figure 34 can realize the highest performance. In this case the output level is set to 4.5 V rms and 129 dB S/N is achieved (stereo mode). In monaural mode, if the output of the L-channel and R-channel is used as a balanced output, 132 dB S/N is achieved (see Figure 36).

Figure 35 shows a circuit for the DSD mode, which is a 4th-order LPF in order to reduce the out-of-band noise.

I/V Section

The current of the DSD1794 on each of the output pins (I_{OUT}L+, I_{OUT}L-, I_{OUT}R+, I_{OUT}R-) is 7.8 mA p-p at 0 dB (full scale). The voltage output level of the I/V converter (Vi) is given by following equation:

 $Vi = 7.8 \text{ mA p-p} \times R_f (R_f: \text{ feedback resistance of I/V converter})$

An NE5534 op amp is recommended for the I/V circuit to obtain the specified performance. Dynamic performance such as the gain bandwidth, settling time, and slew rate of the op amp affects the audio dynamic performance of the I/V section.

Differential Section

The DSD1794 voltage outputs are followed by differential amplifier stages, which sum the differential signals for each channel, creating a single-ended I/V op-amp output. In addition, the differential amplifiers provide a low-pass filter function.

The op amp recommended for the differential circuit is the Linear Technology LT1028, because its input noise is low.

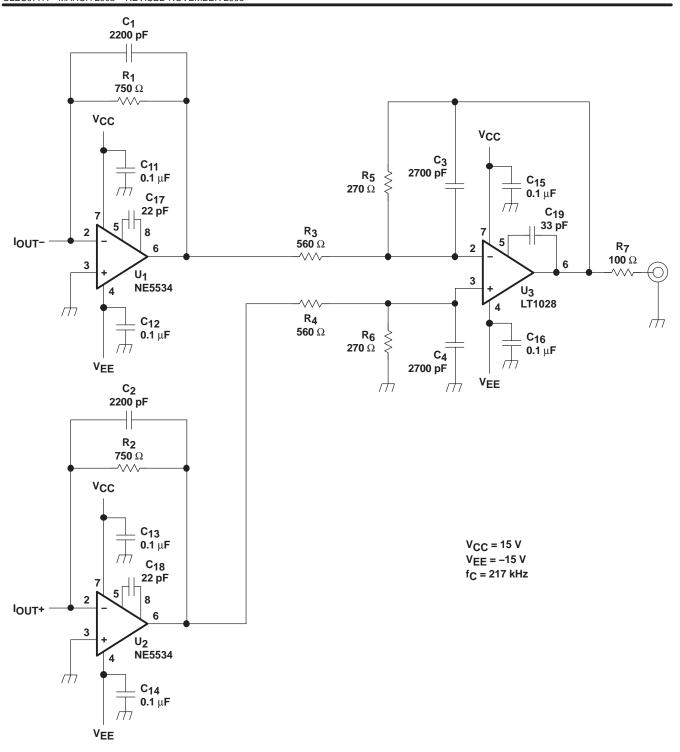


Figure 33. Measurement Circuit for PCM, V_{OUT} = 2 V RMS

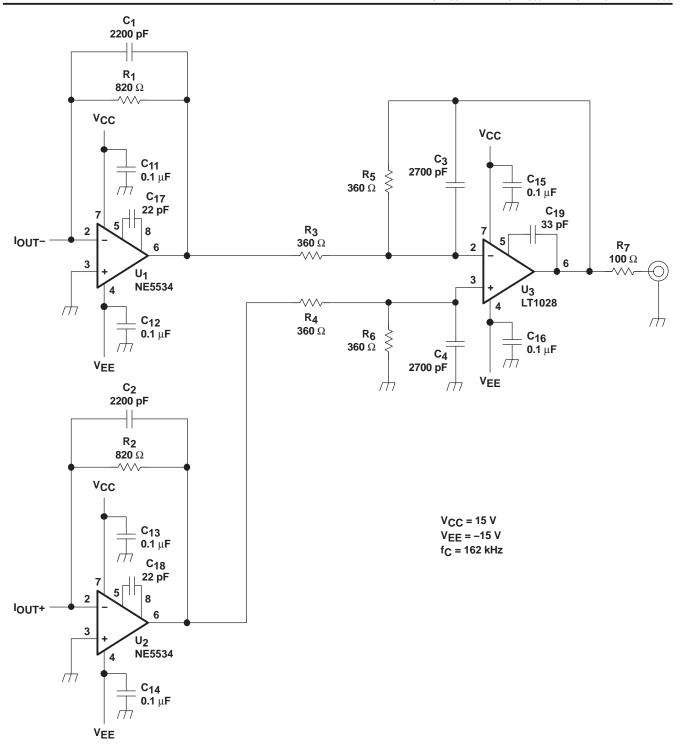


Figure 34. Measurement Circuit for PCM, V_{OUT} = 4.5 V RMS

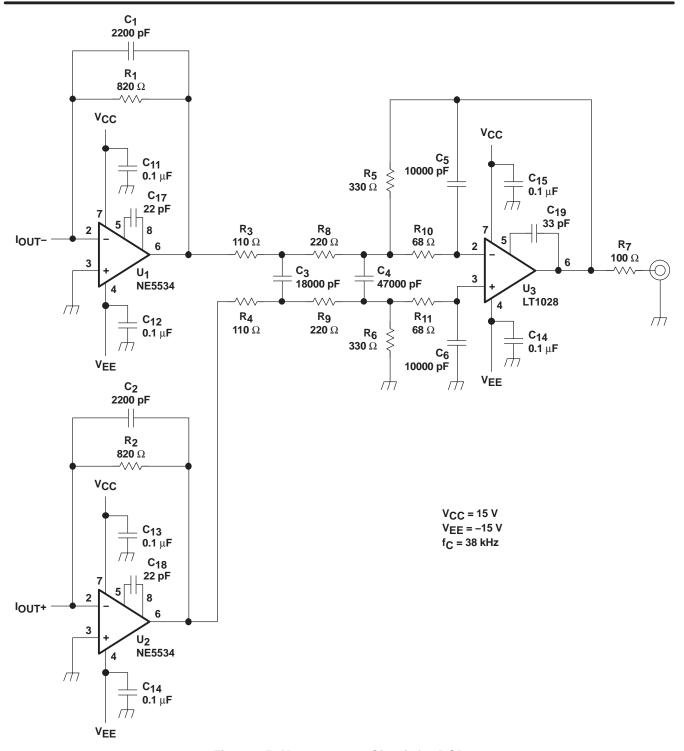


Figure 35. Measurement Circuit for DSD

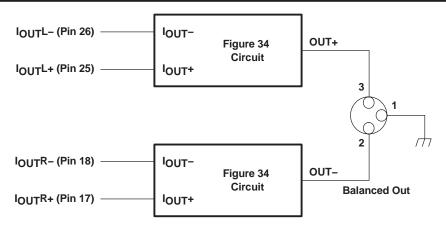
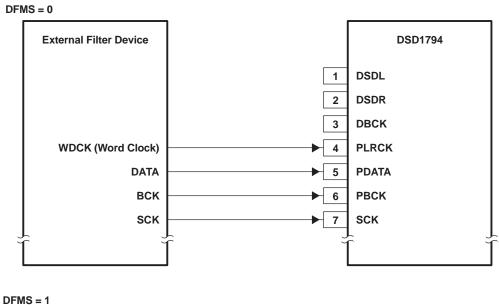



Figure 36. Measurement Circuit for Monaural Mode

APPLICATION FOR EXTERNAL DIGITAL FILTER INTERFACE

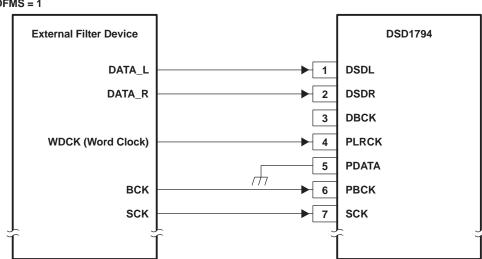


Figure 37. Connection Diagram for External Digital Filter (Internal DF Bypass Mode) Application

Application for Interfacing With an External Digital Filter

For some applications, it may be desirable to use an external digital filter to perform the interpolation function, as it can provide improved stop-band attenuation when compared to the internal digital filter of the DSD1794.

The DSD1794 supports several external digital filters, including:

- Texas Instruments DF1704 and DF1706
- Pacific Microsonics PMD200 HDCD filter/decoder IC
- Programmable digital signal processors

The external digital filter application mode is accessed by programming the following bit in the corresponding control register:

DFTH = 1 (register 20)

The pins used to provide the serial interface for the external digital filter are shown in the connection diagram of Figure 37. The word clock (WDCK) signal must be operated at $8\times$ or $4\times$ the desired sampling frequency, f_S .

System Clock (SCK) and Interface Timing

The DSD1794 in an application using an external digital filter requires the synchronization of WDCK and the system clock. The system clock is phase-free with respect to WDCK. Interface timing among WDCK, BCK, and DATA is shown in Figure 39.

Audio Format

The DSD1794 in the external digital filter interface mode supports right-justified audio formats including 16-bit, 20-bit, and 24-bit audio data, as shown in Figure 38. The audio format is selected by the FMT[2:0] bits of control register 18.



Figure 38. Audio Data Input Format for External Digital Filter (Internal DF Bypass Mode) Application

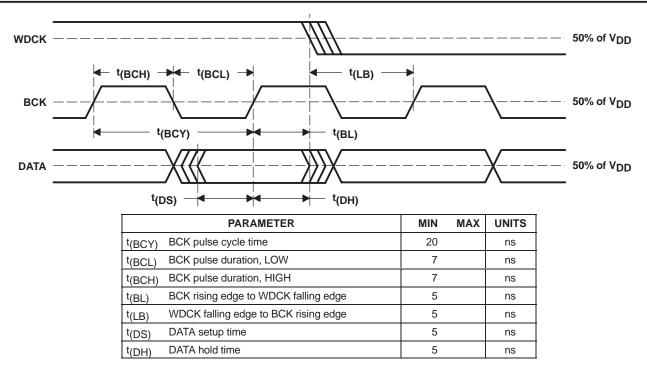


Figure 39. Audio Interface Timing for External Digital Filter (Internal DF Bypass Mode) Application

Functions Available in the External Digital Filter Mode

The external digital filter mode allows access to the majority of the DSD1794 mode control functions.

The following table shows the register mapping available when the external digital filter mode is selected, along with descriptions of functions which are modified when using this mode selection.

	B15	B14	B13	B12	B11	B10	В9	B8	В7	В6	B5	B4	В3	B2	B1	В0
Register 16	R/W	0	0	1	0	0	0	0	_	_	_	-	_	_	_	_
Register 17	R/W	0	0	1	0	0	0	1	_	-	_	-	_	_	-	-
Register 18	R/W	0	0	1	0	0	1	0	_	FMT2	FMT1	FMT0	-	_	_	_
Register 19	R/W	0	0	1	0	0	1	1	REV	_	_	OPE	_	DFMS	_	INZD
Register 20	R/W	0	0	1	0	1	0	0	_	SRST	0	1	MONO	CHSL	OS1	OS0
Register 21	R/W	0	0	1	0	1	0	1	_	_	_	_	_	_	_	PCMZ
Register 22	R	0	0	1	0	1	1	0	-	_	_	-	_	_	ZFGR	ZFGL

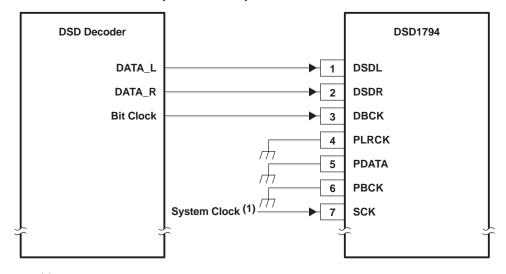
NOTE: 1 indicates that the bit is required for selection of external digital filter mode.

FMT[2:0]: Audio Data Format Selection

Default value: 000

FMT[2:0]	Audio Data Format Select
000	16-bit right-justified format (default)
001	20-bit right-justified format
010	24-bit right-justified format
Other	N/A

⁻ indicates that function is disabled. No operation even if data bit is set


OS[1:0]: Delta-Sigma Modulator Oversampling Rate Selection

Default value: 00

OS[1:0]	Operation Speed Select
00	8 times WDCK (default)
01	4 times WDCK
10	16 times WDCK
11	Reserved

The effective oversampling rate is determined by the oversampling performed by both the external digital filter and the delta-sigma modulator. For example, if the external digital filter is $8\times$ oversampling, and the user selects OS[1:0] = 00, then the delta-sigma modulator oversamples by $8\times$, resulting in an effective oversampling rate of $64\times$. The $16\times$ WDCK oversampling rate is not available above a 100-kHz sampling rate. If the oversampling rate selected is $16\times$ WDCK, the system clock frequency must be over $256\ \text{f}_{\text{S}}$.

APPLICATION FOR DSD FORMAT (DSD MODE) INTERFACE

(1) The system clock is necessary for the initilaization sequence and the I²C interface operation.

Figure 40. Connection Diagram in DSD Mode

Feature

This mode is used for interfacing directly to a DSD decoder, which is found in Super Audio CD™ (SACD) applications.

The DSD mode is accessed by programming the following bit in the corresponding control register.

$$DSD = 1$$
 (register 20)

The DSD mode provides a low-pass filtering function to convert the 1-bit oversampled data stream to the analog domain. The filtering is provided using an analog FIR filter structure. Four FIR responses are available, and are selected by the DMF[1:0] bits of control register 18.

The DSD bit must be set before inputting DSD data, otherwise the DSD1794 erroneously detects the TDMCA mode, and commands are not accepted through the serial control interface.

Pin Assignment When DSD Format Interface

- DSDL (pin 1): L-channel DSD data input
- DSDR (pin 2): R-channel DSD data input
- DBCK (pin 3): Bit clock (BCK) for DSD data

Super Audio CD is a trademark of Sony Kabushiki Kaisha TA Sony Corporation, Japan.

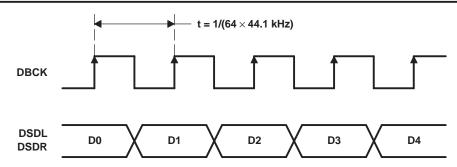
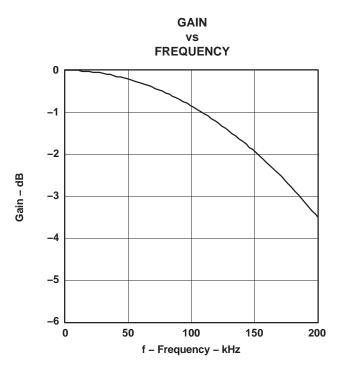


Figure 41. Normal Data Output Form From DSD Decoder


	PARAMETER	MIN	MAX	UNITS
t(BCY)	DBCK pulse cycle time	85(1)		ns
t(BCH)	DBCK high-level time	30		ns
t(BCL)	DBCK low-level time	30		ns
t(DS)	DSDL, DSDR setup time	10		ns
t(DH)	DSDL, DSDR hold time	10		ns

⁽¹⁾ 2.8224 MHz × 4. (2.8224 MHz = 64 × 44.1 kHz. This value is specified as a sampling rate of DSD.)

Figure 42. Timing for DSD Audio Interface

ANALOG FIR FILTER PERFORMANCE IN DSD MODE

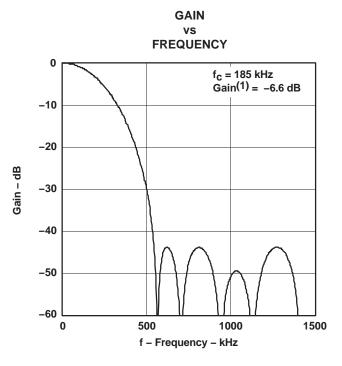
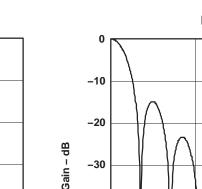



Figure 44. DSD Filter-1, High BW

GAIN

Figure 43. DSD Filter-1, Low BW

GAIN

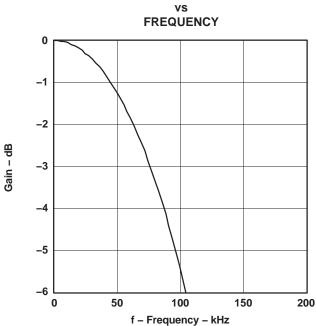


Figure 45. DSD Filter-2, Low BW

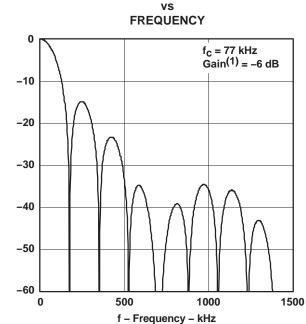


Figure 46. DSD Filter-2, High BW

⁽¹⁾ This gain is in comparison to PCM 0 dB, when the DSD input signal efficiency is 50%.

ANALOG FIR FILTER PERFORMANCE IN DSD MODE (CONTINUED)

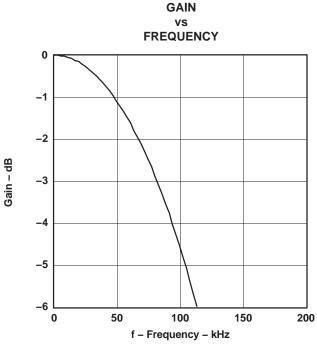


Figure 47. DSD Filter-3, Low BW

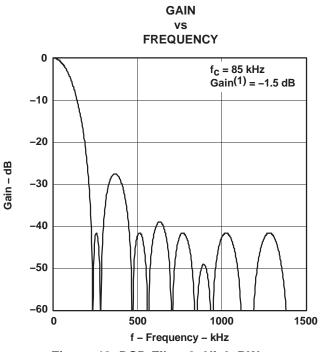


Figure 48. DSD Filter-3, High BW

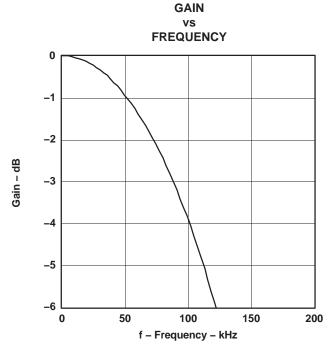


Figure 49. DSD Filter-4, Low BW

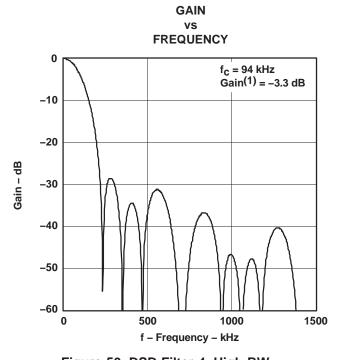


Figure 50. DSD Filter-4, High BW

⁽¹⁾ This gain is in comparison to PCM 0 dB, when the DSD input signal efficiency is 50%.

DSD MODE CONFIGURATION AND FUNCTION CONTROLS

Configuration for the DSD Interface Mode

DSD = 1 (Register 20, B5)

	B15	B14	B13	B12	B11	B10	В9	B8	В7	В6	B5	B4	В3	B2	B1	В0
Register 16	R/W	0	0	1	0	0	0	0	_	-	-	-	_	_	-	_
Register 17	R/W	0	0	1	0	0	0	1	_	-	_	-	_	-	-	_
Register 18	R/W	0	0	1	0	0	1	0	_	-	-	-	DMF1	DMF0	-	-
Register 19	R/W	0	0	1	0	0	1	1	REV	-	-	OPE	_	_	-	-
Register 20	R/W	0	0	1	0	1	0	0	_	SRST	1	_	MONO	CHSL	OS1	OS0
Register 21	R	0	0	1	0	1	0	1	_	-	ı	_	_	DZ1	DZ0	_
Register 22	R	0	0	1	0	1	1	0	_	_	_	_	_	_	ZFGR	ZFGL

NOTE: - indicates that function is disabled. No operation even if data bit is set

DMF[1:0]: Analog FIR Performance Selection

Default value: 00

DMF[1:0]	Analog-FIR Performance Select
00	FIR-1 (default)
01	FIR-2
10	FIR-3
11	FIR-4

Plots for the four analog FIR filter responses are shown in the *TYPICAL PERFORMANCE CURVES* section of this data sheet.

OS[1:0]: Analog-FIR Operation-Speed Selection

Default value: 00

OS[1:0]	Operation Speed Select
00	f _{DBCK} (default)
01	f _{DBCK} /2
10	Reserved
11	f _{DBCK} /4

The OS bit in the DSD mode is used to select the operating rate of the analog FIR. The OS bits must be set before setting the DSD bit to 1.

Requirements for System Clock

The bit clock (DBCK) for the DSD mode is required at pin 3 of the DSD1794. The frequency of the bit clock can be N times the sampling frequency. Generally, N is 64 in DSD applications.

The interface timing between the bit clock and DSDL and DSDR is required to meet the same setup-and hold-time specifications as shown in Figure 42.

THEORY OF OPERATION

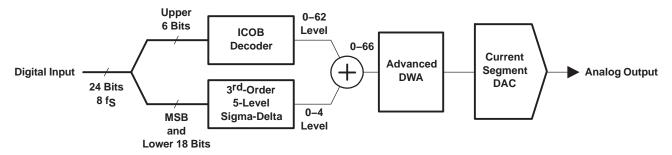


Figure 51. Advanced Segment DAC

The DSD1794 uses TI's advanced segment DAC architecture to achieve excellent dynamic performance and improved tolerance to clock jitter. The DSD1794 provides balanced current outputs.

Digital input data via the digital filter is separated into 6 upper bits and 18 lower bits. The 6 upper bits are converted to inverted complementary offset binary (ICOB) code. The lower 18 bits, associated with the MSB, are processed by a five-level third-order delta-sigma modulator operated at 64 f_S by default. The 1 level of the modulator is equivalent to the 1 LSB of the ICOB code converter. The data groups processed in the ICOB converter and third-order delta-sigma modulator are summed together to an up to 66-level digital code, and then processed by data-weighted averaging (DWA) to reduce the noise produced by element mismatch. The data of up to 66 levels from the DWA is converted to an analog output in the differential-current segment section.

This architecture has overcome the various drawbacks of conventional multibit processing and also achieves excellent dynamic performance.

Analog output

The following table and Figure 52 show the relationship between the digital input code and analog output.

	800000 (-FS)	000000 (BPZ)	7FFFFF (+FS)
IOUTN [mA]	-2.3	-6.2	-10.1
IOUTP [mA]	-10.1	-6.2	-2.3
V _{OUT} N [V]	-1.725	-4.65	-7.575
V _{OUT} P [V]	-7.575	-4.65	-1.725
Vout [V]	-2.821	0	2.821

NOTE: V_{OUT}N is the output of U1, V_{OUT}P is the output of U2, and V_{OUT} is the output of U3 in the application circuit of Figure 33.

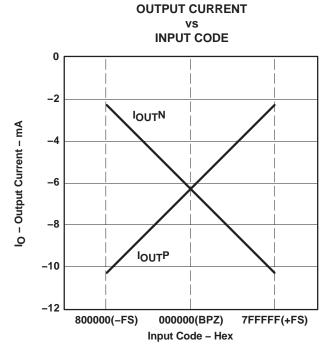


Figure 52. The Relationship Between Digital Input and Analog Output

PACKAGE OPTION ADDENDUM

19-May-2005

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
DSD1794DB	ACTIVE	SSOP	DB	28	47	Pb-Free (RoHS)	CU SNBI	Level-1-250C-UNLIM
DSD1794DBR	ACTIVE	SSOP	DB	28	2000	Pb-Free (RoHS)	CU SNBI	Level-1-250C-UNLIM

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

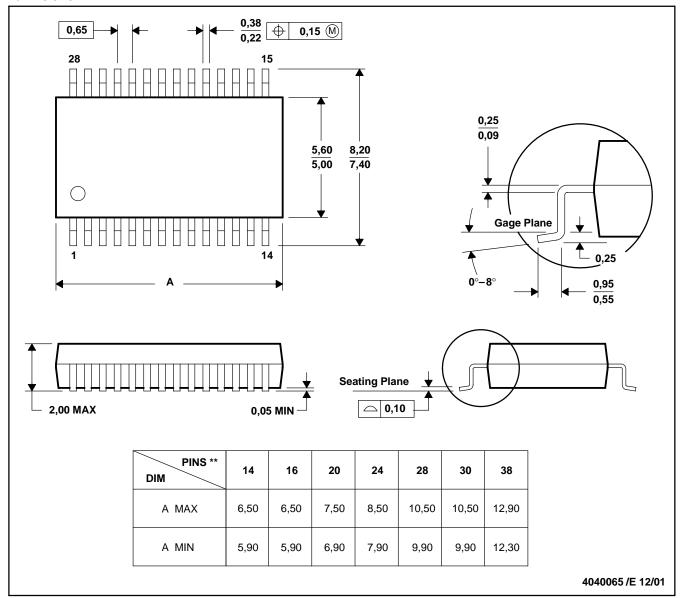
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265