Low Skew, 1-to-16 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER #### GENERAL DESCRIPTION The ICS8530-01 is a low skew, 1-to-16 Differential-to-3.3V LVPECL Fanout Buffer and a member of the HiPerClockS™ family of High Performance Clock Solutions from ICS. The CLK, nCLK pair can accept most standard differential input levels. The high gain differential amplifier accepts peak-to-peak input voltages as small as 150mV as long as the common mode voltage is within the specified minimum and maximum range. Guaranteed output and part-to-part skew characteristics make the ICS8530-01 ideal for those clock distribution applications demanding well defined performance and repeatability. #### **F**EATURES - 16 differential 3.3V LVPECL outputs - CLK, nCLK input pair - CLK, nCLK pair can accept the following differential input levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL - Maximum output frequency up to 500MHz - Translates any single-ended input signal to 3.3V LVPECL levels with a resistor bias on nCLK input - Output skew: 75ps (maximum) - Part-to-part skew: 250ps (maximum) - 3.3V output operating supply - 0°C to 70°C ambient operating temperature - Industrial temperature information available upon request #### **BLOCK DIAGRAM** #### PIN ASSIGNMENT 48-Pin LQFP 7mm x 7mm x 1.4mm package body Y Package Top View Low Skew, 1-to-16 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER TABLE 1. PIN DESCRIPTIONS | Number | Name | Ту | /pe | Description | |----------------------------------|------------------|--------|----------|--| | 1, 11, 14, 24,
25, 35, 38, 48 | V _{cco} | Power | | Output supply pins. Connect to 3.3V. | | 2, 3 | Q11, nQ11 | Output | | Differential output pair. LVPECL interface levels. | | 4, 5 | Q10, nQ10 | Output | | Differential output pair. LVPECL interface levels. | | 6, 19, 30, 43 | V_{EE} | Power | | Negative supply pins. Connect to ground. | | 7, 8 | Q9, nQ9 | Output | | Differential output pair. LVPECL interface levels. | | 9, 10 | Q8, nQ8 | Output | | Differential output pair. LVPECL interface levels. | | 12, 13 | V_{cc} | Power | | Positive supply pins. Connect to 3.3V. | | 15, 16 | Q7, nQ7 | Output | | Differential output pair. LVPECL interface levels. | | 17, 18 | Q6, nQ6 | Output | | Differential output pair. LVPECL interface levels. | | 20, 21 | Q5, nQ5 | Output | | Differential output pair. LVPECL interface levels | | 22, 23 | Q4, nQ4 | Output | | Differential output pair. LVPECL interface levels. | | 26, 27 | Q3, nQ3 | Output | | Differential output pair. LVPECL interface levels. | | 28, 29 | Q2, nQ2 | Output | | Differential output pair. LVPECL interface levels. | | 36 | CLK | Input | Pulldown | Non-inverting differential clock input. | | 37 | nCLK | Input | Pullup | Inverting differential clock input. | | 39, 40 | Q15, nQ15 | Output | | Differential output pair. LVPECL interface levels. | | 41, 42 | Q14, nQ14 | Output | | Differential output pair. LVPECL interface levels. | | 44, 45 | Q13, nQ13 | Output | | Differential output pair. LVPECL interface levels. | | 46, 47 | Q12, nQ12 | Output | | Differential output pair. LVPECL interface levels. | NOTE: Pullup and Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values. TABLE 2. PIN CHARACTERISTICS | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------|----------------------|-----------|-----------------|---------|---------|---------|-------| | C _{IN} | Input Capacitance | CLK, nCLK | | | | 4 | pF | | R _{PULLUP} | Input Pullup Resisto | r | | | 51 | | ΚΩ | | R _{PULLDOWN} | Input Pulldown Resi | stor | | | 51 | | ΚΩ | TABLE 3. FUNCTION TABLE | Inp | outs | Ou | tputs | Innut to Output Made | Dolority | |----------------|----------------|-------------|---------------|------------------------------|---------------| | CLK | nCLK | Q0 thru Q15 | nQ0 thru nQ15 | Input to Output Mode | Polarity | | 0 | 1 | LOW | HIGH | Differential to Differential | Non Inverting | | 1 | 0 | HIGH | LOW | Differential to Differential | Non Inverting | | 0 | Biased; NOTE 1 | LOW | HIGH | Single Ended to Differential | Non Inverting | | 1 | Biased; NOTE 1 | HIGH | LOW | Single Ended to Differential | Non Inverting | | Biased; NOTE 1 | 0 | HIGH | LOW | Single Ended to Differential | Inverting | | Biased; NOTE 1 | 1 | LOW | HIGH | Single Ended to Differential | Inverting | NOTE 1: Please refer to the Application Information section on page 7, Figure 8, which discusses wiring the differential input to accept single ended levels. 10000000V.c. Low Skew, 1-to-16 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER #### ABSOLUTE MAXIMUM RATINGS Supply Voltage, V_{CCx} 4.6V Inputs, V_1 -0.5V to V_{cc} + 0.5V Outputs, V_0 -0.5V to V_{cco} + 0.5V $\begin{array}{ll} \mbox{Package Thermal Impedance, } \theta_{\mbox{\tiny JA}} & 47.9 \mbox{°C/W} \\ \mbox{Storage Temperature, } T_{\mbox{\tiny STG}} & -65 \mbox{°C to } 150 \mbox{°C} \end{array}$ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. Table 4A. Power Supply DC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$, Ta = 0°C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|---------------------------|-----------------|---------|---------|---------|-------| | V _{cc} | Input/core Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | V _{cco} | Output Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | I _{EE} | Power Supply Current | | | | 120 | mA | Table 4B. Differential DC Characteristics, $V_{cc} = V_{cco} = 3.3V \pm 5\%$, Ta = 0°C to 70°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|---|---------|--------------------------------|-----------------------|---------|------------------------|-------| | | | | $V_{CC} = V_{IN} = 3.465V$ | | | 150 | μΑ | | ¹ _{IH} | Input High Current | nCLK | $V_{CC} = V_{IN} = 3.465V$ | | | 5 | μA | | | I _{IL} Input Low Current | CLK | $V_{CC} = 3.465V, V_{IN} = 0V$ | -5 | | | μA | | ¹ _{IL} | | nCLK | $V_{CC} = 3.465V, V_{IN} = 0V$ | -150 | | | μΑ | | V _{PP} | Peak-to-Peak Input | Voltage | | 0.15 | | 1.3 | V | | V _{CMR} | Common Mode Input Voltage;
NOTE 1, 2 | | | V _{EE} + 0.5 | | V _{CC} - 0.85 | V | NOTE 1: For single ended applications, the maximum input voltage for CLK, nCLK is V_{CC} + 0.3V. NOTE 2: Common mode voltage is defined as $V_{\rm in}$. Table 4C. LVPECL DC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$, Ta = 0°C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |--------------------|-----------------------------------|-----------------|------------------------|---------|------------------------|-------| | V _{OH} | Output High Voltage; NOTE 1 | | V _{cco} - 1.4 | | V _{cco} - 1.0 | V | | V _{OL} | Output Low Voltage; NOTE 1 | | V _{cco} - 2.0 | | V _{cco} - 1.7 | V | | V _{SWING} | Peak-to-Peak Output Voltage Swing | | 0.6 | | 0.85 | V | NOTE 1: Outputs terminated with 50Ω to V_{cco} -2V. Low Skew, 1-to-16 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER Table 5. AC Characteristics, $V_{cc} = V_{cco} = 3.3V \pm 5\%$, Ta = 0°C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|------------------------------|--------------------|---------|---------|---------|-------| | f _{MAX} | Maximum Output Frequency | | | | 500 | MHz | | t _{PD} | Propagation Delay; NOTE 1 | <i>f</i> ≤ 500MHz | 1 | | 2 | ns | | tsk(o) | Output Skew; NOTE 2, 4 | | | | 75 | ps | | tsk(pp) | Part-to-Part Skew; NOTE 3, 4 | | | 88 | 250 | ps | | t _R | Output Rise Time | 20% to 80% @ 50MHz | 300 | | 700 | ps | | t _F | Output Fall Time | 20% to 80% @ 50MHz | 300 | | 700 | ps | | odc | Output Duty Cycle | | 47 | 50 | 53 | % | All parameters measured at 250MHz unless noted otherwise. NOTE 1: Measured from the differential input crossing point to the differential output crossing point. NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points. NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points. NOTE 4: This parameter is defined in accordance with JEDEC Standard 65. unus jast aamlavadustalkinavalaaka html # PARAMETER MEASUREMENT INFORMATION Low Skew, 1-to-16 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER # ICS8530-01 Low Skew, 1-to-16 Differential-to-3.3V LVPECL Fanout Buffer #### **APPLICATION INFORMATION** #### WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS Figure 8 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_REF \simeq V_{CC}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{CC} = 3.3V$, V_REF should be 1.25V and R2/R1 = 0.609. # Low Skew, 1-to-16 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER #### Power Considerations This section provides information on power dissipation and junction temperature for the ICS8530-01. Equations and example calculations are also provided. #### 1. Power Dissipation. The total power dissipation for the ICS8530-01 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{CC} = 3.3V + 5\% = 3.465V$, which gives worst case results. **NOTE:** Please refer to Section 3 for details on calculating power dissipated in the load. - Power (core)_{MAX} = V_{CC MAX} * I_{EE MAX} = 3.465V * 120mA = 415.8mW - Power (outputs)_{MAX} = 30.2mW/Loaded Output pair If all outputs are loaded, the total power is 16 * 30.2mW = 483.2mW Total Power MAX (3.465V, with all outputs switching) = 415.8mW + 483.2mW = 899mW #### 2. Junction Temperature. Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS TM devices is 125°C. The equation for Tj is as follows: $Tj = \theta_{JA} * Pd_total + T_A$ Tj = Junction Temperature θ_{JA} = junction-to-ambient thermal resistance Pd_total = Total device power dissipation (example calculation is in section 1 above) T_{Λ} = Ambient Temperature In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 47.9°C/W per Table 6 below. Therefore, Tj for an ambient temperature of 70° C with all outputs switching is: 70° C + 0.899W * 47.9° C/W = 113.1° C. This is well below the limit of 125° C This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer). Table 6. Thermal Resistance θ_{JA} for 48-pin LQFP, Forced Convection ### $\boldsymbol{\theta}_{\text{JA}}$ by Velocity (Linear Feet per Minute) 0 200 500 Single-Layer PCB, JEDEC Standard Test Boards 67.8°C/W 55.9°C/W 50.1°C/W Multi-Layer PCB, JEDEC Standard Test Boards 47.9°C/W 42.1°C/W 39.4°C/W NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. COSTORDIVAL # Low Skew, 1-to-16 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER #### 3. Calculations and Equations. The purpose of this section is to derive the power dissipated into the load. LVPECL output driver circuit and termination are shown in Figure 9. To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of V_{CC} - 2V. Pd_H is power dissipation when the output drives high. Pd_L is the power dissipation when the output drives low. $$\begin{split} & Pd_H = [(V_{OH_MAX} - (V_{CC_MAX} - 2V))/R_{L}]^*(V_{CC_MAX} - V_{OH_MAX}) \\ & Pd_L = [(V_{OL_MAX} - (V_{CC_MAX} - 2V))/R_{L}]^*(V_{CC_MAX} - V_{OL_MAX}) \end{split}$$ • For logic high, $$V_{OUT} = V_{OH_MAX} = V_{CC_MAX} - 1.0V$$ Using $V_{CC_MAX} = 2.625$, this results in $V_{OH_MAX} = 1.625V$ • For logic low, $$V_{OUT} = V_{OL_MAX} = V_{CC_MAX} - 1.7V$$ Using $V_{CC_MAX} = 2.625$, this results in $V_{OL_MAX} = 0.925V$ $$\begin{array}{ll} Pd_H = & [(1.625 \text{V} - (2.625 \text{V} - 2 \text{V}))/50 \ \Omega]^*(1 \text{V}) = \textbf{20mW} \\ Pd_L = & [(0.925 \text{V} - (2.625 \text{V} - 2 \text{V}))/50 \ \Omega]^*(1.7) = \textbf{10.2mW} \end{array}$$ Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW www.jest.com/products/biporologks.htm # ICS8530-01 Low Skew, 1-to-16 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER # **RELIABILITY INFORMATION** # Table 7. $\theta_{_{JA}} \text{vs. A} \text{ir Flow Table}$ #### $\boldsymbol{\theta}_{\text{JA}}$ by Velocity (Linear Feet per Minute) | | 0 | 200 | 500 | |--|----------|----------|----------| | Single-Layer PCB, JEDEC Standard Test Boards | 67.8°C/W | 55.9°C/W | 50.1°C/W | | Multi-Layer PCB, JEDEC Standard Test Boards | 47.9°C/W | 42.1°C/W | 39.4°C/W | NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. #### TRANSISTOR COUNT The transistor count for ICS8530-01 is: 930 TABLE 8. PACKAGE DIMENSIONS | | JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS | | | | | | | |---------|---|------------|---------|--|--|--|--| | SYMBOL | BBC | | | | | | | | STWIBOL | MINIMUM NOMINAL | | MAXIMUM | | | | | | N | | 48 | | | | | | | Α | | | 1.60 | | | | | | A1 | 0.05 | | 0.15 | | | | | | A2 | 1.35 | 1.40 | 1.45 | | | | | | b | 0.17 | 0.22 | 0.27 | | | | | | С | 0.09 0.20 | | | | | | | | D | | 9.00 BASIC | | | | | | | D1 | | 7.00 BASIC | | | | | | | D2 | | 5.50 Ref. | | | | | | | E | | 9.00 BASIC | | | | | | | E1 | | 7.00 BASIC | | | | | | | E2 | | 5.50 Ref. | | | | | | | е | | 0.50 BASIC | | | | | | | L | 0.45 | 0.60 | 0.75 | | | | | | θ | 0° | | 7° | | | | | | ccc | | | 0.08 | | | | | Reference Document: JEDEC Publication 95, MS-026 # ICS8530-01 Low Skew, 1-to-16 Differential-to-3.3V LVPECL Fanout Buffer #### TABLE 9. ORDERING INFORMATION | Part/Order Number | Marking | Package | Count | Temperature | |-------------------|--------------|-------------------------------|--------------|-------------| | ICS8530DY-01 | ICS8530DY-01 | 48 Lead LQFP | 250 per tray | 0°C to 70°C | | ICS8530DY-01T | ICS8530DY-01 | 48 Lead LQFP on Tape and Reel | 1000 | 0°C to 70°C | While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments. JOSEPH STATE OF THE TH