

ELECTRONICS, INC.
44 FARRAND STREET
BLOOMFIELD, NJ 07003
(973) 748-5089

NTE975 & NTE975SM Integrated Circuit Operational Amplifier

Description:

The NTE975 and NTE975SM are general purpose operational amplifiers built on a single chip. The resulting close match and tight thermal coupling gives low offsets and temperature drift as well as fast recovery from thermal transients.

The unity-gain compensation specified makes the circuit stable for all feedback configurations, even with capacitive loads. However, it is possible to optimize compensation for the best high frequency performance at any gain. As a comparator, the output can be clamped at any desired level to make it compatible with logic circuits.

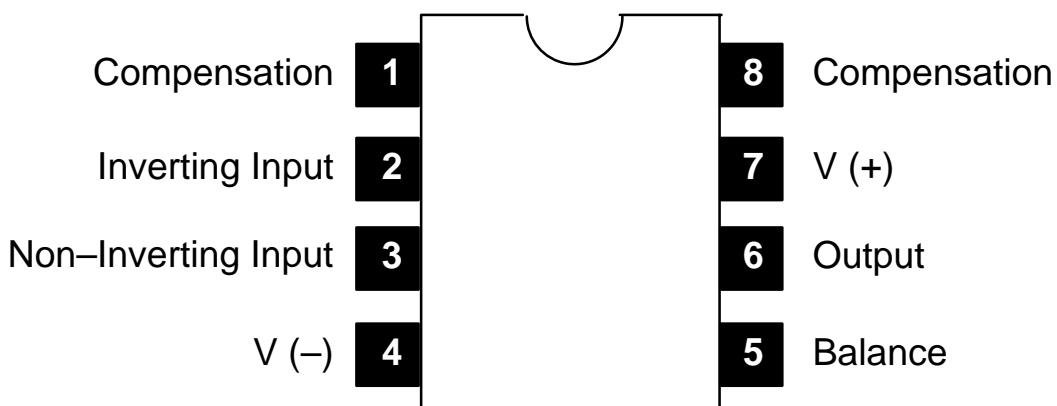
Features:

- Available in 8-Lead Mini DIP (NTE975) and Surface Mount, SOIC-8 (NTE975SM)
- Frequency Compensation with a Single 30pF Capacitor
- Operation From $\pm 5V$ to $\pm 20V$
- Low Current Drain: 1.8mA @ $\pm 20V$
- Continuous Short-Circuit Protection
- Operation as a Comparator with Differential Inputs as High as $\pm 30V$
- No Latch-Up when Common Mode Range is Exceeded

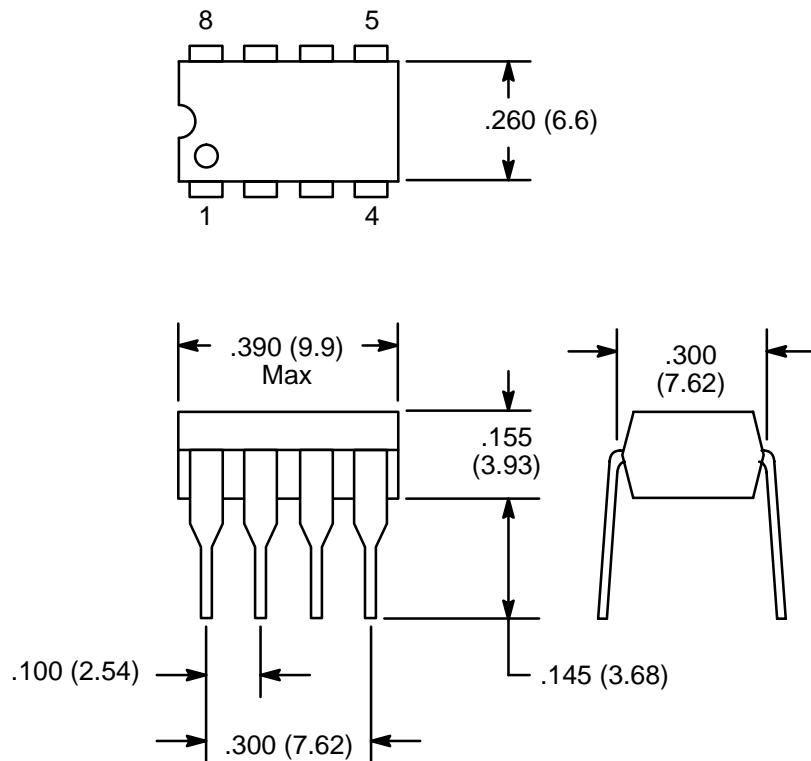
Absolute Maximum Ratings:

Supply Voltage, V_S	$\pm 22V$
Power Dissipation (Note 1), P_D	500mW
Differential Input Voltage, V_{ID}	$\pm 30V$
Input Voltage (Note 2), V_{IN}	$\pm 15V$
Output Short-Circuit Duration (Note 3), t_S	Indefinite
Operating Temperature Range, T_A	0° to +70°C
Storage Temperature Range, T_{stg}	-65° to +150°C
Lead Temperature (During Soldering, 10sec), T_L	+300°C

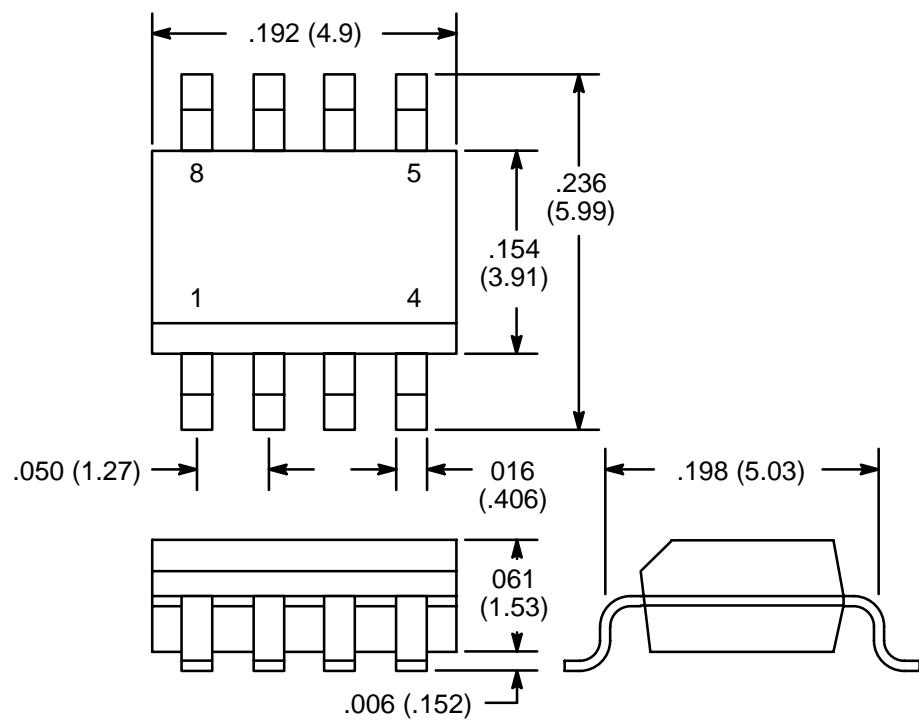
Note 1. For operating at elevated temperatures the devices must be derated based on a maximum junction to case thermal resistance of +45°C/W, or +150°C/W junction to ambient.


Note 2. For supply voltages less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage.

Note 3. Continuous short circuit is allow for ambient temperatures to +70°C.


Electrical Characteristics: ($0^\circ \leq T_A \leq +70^\circ\text{C}$, $\pm 5\text{V} \leq V_S \leq \pm 15\text{V}$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Input Offset Voltage	V_{IO}	$T_A = +25^\circ\text{C}$, $R_S \leq 10\text{k}\Omega$	—	1.0	5.0	mV
		$R_S \leq 10\text{k}\Omega$	—	—	6.0	mV
Input Offset Current	I_{IO}	$T_A = +25^\circ\text{C}$	—	40	200	nA
			—	—	300	nA
Input Bias Current	I_{IB}	$T_A = +25^\circ\text{C}$	—	120	500	nA
			—	—	0.8	μA
Input Resistance	r_i	$T_A = +25^\circ\text{C}$	300	800	—	$\text{k}\Omega$
Supply Current	I_D	$T_A = +25^\circ\text{C}$, $V_S = \pm 15\text{V}$	—	1.8	2.8	mA
		$T_A = +125^\circ\text{C}$, $V_S = \pm 15\text{V}$	—	1.2	2.25	mA
Large Signal Voltage Gain	A_V	$T_A = +25^\circ\text{C}$, $V_S = \pm 15\text{V}$, $V_{OUT} = \pm 10\text{V}$, $R_L \geq 2\text{k}\Omega$	50	160	—	V/mV
		$V_S = \pm 15\text{V}$, $V_{OUT} = \pm 10\text{V}$, $R_L \geq 2\text{k}\Omega$	25	—	—	V/mV
Average Temperature Coefficient of Input Offset Voltage	TCV_{IO}	$R_S \leq 50\Omega$	—	3.0	—	$\mu\text{V/}^\circ\text{C}$
		$R_S \leq 10\text{k}\Omega$	—	6.0	—	$\mu\text{V/}^\circ\text{C}$
Output Voltage Swing	V_O	$V_S = \pm 15\text{V}$, $R_L = 10\Omega$	± 12	± 14	—	V
		$V_S = \pm 15\text{V}$, $R_L = 2\text{k}\Omega$	± 10	± 13	—	V
Input Voltage Range	V_{ICR}	$V_S = \pm 15\text{V}$	± 12	—	—	V
Common Mode Rejection Ratio	CMRR	$R_S \leq 10\text{k}\Omega$	70	90	—	dB
Supply Voltage Rejection Ratio	PSRR	$R_S \leq 10\text{k}\Omega$	77	90	—	dB


Pin Connection Diagram

NTE975

NTE975SM

NOTE: Pin1 on Beveled Edge

