INTEGRATED CIRCUITS

DATA SHEET

TEA1205AT High efficiency DC／DC converter

FEATURES

- Fully integrated DC/DC converter circuit
- Up conversion in 2 different modes
- High efficiency over wide load range
- Synchronizes to external high frequency clock
- Output power up to 3.6 W (typ.) continuous, 8 W in GSM burst mode
- Low quiescent power consumption
- True current limit for Li-ion battery compatibility
- Shut-down function
- 8-pin SO package.

APPLICATIONS

- Cellular and cordless phones PDAs and others
- Supply voltage source for low-voltage chip sets
- Portable computers
- Battery backup supplies
- Cameras.

GENERAL DESCRIPTION

The TEA1205AT (see Fig.1) is a fully integrated DC/DC converter circuit using the minimum amount of external components. It is intended to be used to supply electronic circuits with supply voltages of 3.3 or 5.5 V from 2,3 or 4 NiCd cell batteries or one Li-ion battery at an output power level up to 3.6 W (typ.) continuously, or 8 W in GSM TDMA $(1: 8)$ burst mode. The switching frequency of the converter can be synchronized to an external high-frequency clock. Efficient, compact and dynamic power conversion is achieved using a novel, digitally controlled Pulse Width and Frequency Modulation (PWFM) like control concept, integrated low $\mathrm{R}_{\mathrm{dsON}}$ CMOS power switches with low parasitic capacitances and synchronous rectification.

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
TEA1205AT	SO8	plastic small outline package; 8 leads; body width 3.9 mm	SOT96-1

High efficiency DC/DC converter

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies						
V_{O}	output voltage	VSEL = LOW	5.23	5.55	5.85	V
		VSEL = HIGH	3.13	3.34	3.54	V
$\mathrm{V}_{\text {start }}$	start-up voltage		1.6	2.0	2.2	V
Efficiency; see Figs 6 and 7						
η	efficiency up from 2.4 to 3.3 V up from 3.6 to 5.5 V	$\begin{aligned} & 1 \mathrm{~mA}<\mathrm{I}_{\mathrm{L}}<1.0 \mathrm{~A} \\ & 1 \mathrm{~mA}<\mathrm{I}_{\mathrm{L}}<1.0 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 80 \\ & 83 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 95 \\ & 94 \end{aligned}$	$\begin{aligned} & \mathrm{\%} \\ & \% \\ & \hline \end{aligned}$
Current levels						
I_{q}	quiescent current at pin 3		50	60	70	$\mu \mathrm{A}$
ISHDWN	shut-down current		-	2	10	$\mu \mathrm{A}$
$\mathrm{l}_{\text {limN }}$	NFET current limit	note 1	$0.9 \mathrm{I}_{\text {lim }}$	$\mathrm{l}_{\text {lim }}$	$1.1 \mathrm{I}_{\text {lim }}$	A
$\mathrm{I}_{1 \mathrm{x}}$	max. continuous current at pin 5		-	-	1.0	A
Power MOSFETS						
$\mathrm{R}_{\mathrm{ds} \text { ON(}}$ ($)$	pin-to-pin resistance NFET		0.08	0.12	0.20	Ω
$\mathrm{R}_{\mathrm{ds} \text { ON(P) }}$	pin-to-pin resistance PFET		0.10	0.16	0.25	Ω
Timing						
$\mathrm{f}_{\text {sw }}$	switching frequency		150	200	240	kHz
$\mathrm{t}_{\text {res }}$	response time from standby to $\mathrm{P}_{\max }$		-	25	-	$\mu \mathrm{s}$
$\mathrm{f}_{\text {sync }}$	synchronisation input frequency		-	13	-	MHz

Note

1. The NFET current limit is set by an external 1% accurate resistor $\mathrm{R}_{\text {lim }}$ connected between pin 7 and pin 6 (ground). The typical maximum instantaneous current is defined as: $l_{\text {lim }}=890 \mathrm{~V} / \mathrm{R}_{\text {lim }}$ so the use of $\mathrm{R}_{\text {lim }}=315 \Omega$ will lead to a typical maximum current value of 2.83 A . The average inductor current during current limit also depends on inductance value and resistive losses in all components in the power path. In normal application and when using $\mathrm{R}_{\text {lim }}=315 \Omega$, the average inductor current will be limited to 2.3 A typical.

BLOCK DIAGRAM

PINNING

SYMBOL	PIN	DESCRIPTION
VSEL	1	output voltage selection input
SYNC	2	synchronisation clock input
OUT	3	output voltage output
SENSE	4	output voltage sense input
LX	5	inductor connection
GND	6	ground
ILIM	7	current limit resistor connection
SHDWN	8	shut-down input

FUNCTIONAL DESCRIPTION

Control mechanism

The TEA1205AT DC/DC converter is able to operate in discontinuous or continuous conduction operation. All switching actions are completely determined by a digital control circuit which uses the output voltage level as its control input. This novel digital approach enables the use of a new pulse width and frequency modulation scheme, which ensures optimum power efficiency over the complete range of operation of the converter. The scheme works as follows. At low output power, a very small current pulse is generated in the inductor, and the pulse rate varies with a varying load. When the output voltage drops below a specific limit, which indicates that the converter's current capability is not sufficient, the digital controller switches to the next state of operation. The peak current in the inductor is made higher, and the pulse rate can again vary with a varying load. A third operation state is available for again higher currents.

When high output power is requested, the device starts operating in continuous conduction mode. This results in minimum AC currents in the circuit components and hence optimum efficiency, cost, and EMC. In this mode, the output voltage is allowed to vary between two predefined voltage levels. As long as the output voltage stays within this so-called window, switching continues in a fixed pattern. When the output voltage reaches one of the window borders, the digital controller immediately reacts by adjusting the pulse width and inserting a current step in such a way that the output voltage stays within the window with higher or lower current capability. This approach enables very fast reaction to load variations. Figure 3 shows the various coil current waveforms for low and high current capability in each power conversion mode.

Figure 4 shows the converter's response to a sudden load increase. The upper trace shows the output voltage.

Fig. 2 Pin configuration.

The ripple on top of the DC level is a result of the current in the output capacitor, which changes in sign twice per cycle, times the capacitor's internal Equivalent Series Resistance (ESR). After each ramp-down of the inductor current, i.e. when the ESR effect increases the output voltage, the converter determines what to do in the next cycle. As soon as more load current is taken from the output the output voltage starts to decay. When the output voltage becomes lower than the low limit of the window, a corrective action is taken by a ramp-up of the inductor current during a much longer time. As a result, the DC current level is increased and normal continuous conduction mode can continue. The output voltage (including ESR effect) is again within the predefined window.

Figure 5 depicts the spread of the output voltage window. The absolute value is most dependent on spread, while the actual window size is not affected. For one specific device, the output voltage will not vary more than 4%.

Start-up

A possible deadlock situation in boost configuration can occur after a sequence of disconnecting and reconnecting the input voltage source. If, after disconnection of the input source, the output voltage falls below 2.0 V , the device may not restart properly after reconnection of the input source, and may take continuous current from the input.

An external circuit to prevent the deadlock situation is shown in Chapter "Application information".

Shut-down

When the shut-down pin is made HIGH, the converter disables both switches and power consumption is reduced to a few $\mu \mathrm{A}$.

Synchronisation function

In continuous conduction mode, the converter switching frequency is synchronized to the signal at the SYNC input, provided that this signal is present and its frequency is 13 MHz . The switching frequency will than be 2^{6} times smaller than the applied input frequency at the sync pin. If no sync signal is applied (Sync pin H or L), the converter's switching frequency will be around 203 kHz , equally to behaviour at 13 MHz sync input frequency, but with a larger tolerance. When this function is not used, the SYNC pin must be tied to pin 3 or pin 6.

Power switches

The power switches in the IC are one N-type and one P-type MOSFET, having a typical pin-to-pin resistance of 0.12Ω and 0.16Ω respectively. The maximum average current in the switches is 1.0 A .

Temperature protection

At too high device temperature (typical $165^{\circ} \mathrm{C}$), the converter stops operating. It resumes operation when the device temperature falls below $165^{\circ} \mathrm{C}$ again. As a result, low-frequent cycling between on and off state will occur. It should be noted that in the event of device temperatures around the cut-off limit, the application differs strongly from maximum specifications.

Current limit

If the current in the N -type power switch exceeds the limit which is set by the value of the external resistor, current ramping is stopped immediately, and the next switching phase is entered. Current limitation is required to enable optimal use of energy in Li-ion batteries, and to keep power conversion efficient during temporary high loads. Furthermore, current limitation protects the IC against overload conditions, inductor saturation, etc.

Behaviour at input voltage exceeding the specified range

In general, an input voltage exceeding the specified range is not recommended since instability may occur. However, at an input voltage equal to or higher than the target output voltage plus the diode voltage drop, but lower than 6 V , the converter will stop switching and the external schottky diode will take over, resulting in V_{0} equalling V_{i} minus the diode voltage drop (see Fig.8).

Fig. 4 Response to load increase.

Fig. 5 Output voltage window position at typical, maximum and minimum specification.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{n}	voltage on any pin	shut-down mode	-0.2	+6.5	V
		operational mode	-0.2	+5.9	V
$\mathrm{~T}_{\mathrm{j}}$	junction temperature		-25	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	operating ambient temperature		-40	+80	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {es }}$	electrostatic handling	note 1	-3000	+3000	V

Note

1. Human body model: equivalent to discharging a 100 pF capacitor through a $1.5 \mathrm{k} \Omega$ series resistor.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
$R_{\mathrm{th}(\mathrm{j}-\mathrm{a})}$	thermal resistance from junction to ambient	in free air	150	K/W

QUALITY SPECIFICATION

In accordance with "SNW-FQ-611 part E". The numbers of the quality specification can be found in the "Quality Reference Handbook". The handbook can be ordered using the code 939775000192.

CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=-20$ to $+80^{\circ} \mathrm{C}$; all voltages with respect to ground; positive currents flow into the IC; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies						
V_{0}	output voltage	VSEL = LOW	5.23	5.55	5.85	V
		VSEL $=\mathrm{HIGH}$	3.13	3.34	3.54	V
$\mathrm{V}_{\text {start }}$	start-up voltage		1.6	2.0	2.2	V
Efficiency						
η	efficiency up from 2.4 to 3.3 V up from 3.6 to 5.5 V	$\begin{aligned} & 1 \mathrm{~mA}<\mathrm{I}_{\mathrm{L}}<1.0 \mathrm{~A} \\ & 1 \mathrm{~mA}<\mathrm{I}_{\mathrm{L}}<1.0 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 80 \\ & 83 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 95 \\ & 94 \end{aligned}$	$\begin{aligned} & \% \\ & \% \\ & \hline \end{aligned}$
Current levels						
I_{q}	quiescent current at pin 3		50	60	70	$\mu \mathrm{A}$
ISHDWN	shut-down current		-	2	10	$\mu \mathrm{A}$
$\mathrm{l}_{\mathrm{limN}}$	NFET current limit	note 1	$0.9 \mathrm{l}_{\text {lim }}$	$\mathrm{l}_{\text {lim }}$	$1.1 \mathrm{l}_{\text {lim }}$	A
$\mathrm{I}_{1 \times}$	max. continuous current at pin 5		-	-	1.0	A
Power MOSFETS						
$\left.\mathrm{R}_{\mathrm{ds} \text { ON(}} \mathrm{N}\right)$	pin-to-pin resistance NFET		0.08	0.12	0.20	Ω
$\mathrm{R}_{\mathrm{dsON}(\mathrm{P})}$	pin-to-pin resistance PFET		0.10	0.16	0.25	Ω

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Timing						
$\mathrm{f}_{\text {sw }}$	switching frequency		150	200	240	kHz
$\mathrm{t}_{\text {res }}$	response time from standby to $P_{\text {max }}$		-	25	-	$\mu \mathrm{S}$
$\mathrm{f}_{\text {sync }}$	synchronisation input frequency		-	13	-	MHz
Temperature						
$\mathrm{T}_{\text {amb }}$	operating ambient temperature		-20	+25	+80	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {max }}$	internal cut-off temperature		150	165	180	${ }^{\circ} \mathrm{C}$
Digital levels						
VIL	LOW-level input voltage pins 1,2, 7 and 8		0	-	0.4	V
$\mathrm{V}_{\text {IH }}$	HIGH-level input voltage pin 1	note 2	$V_{3}-0.4$	-	$V_{3}+0.3$	V
V_{IH}	HIGH-level input voltage pin 2	notes 2 and 3	2.0	-	$V_{3}+0.3$	V
V_{IH}	HIGH-level input voltage pin 8	notes 2 and 3	2.9	-	$\mathrm{V}_{3}+0.3$	V
Sense pin resistance						
$\mathrm{R}_{\text {SENSE }}$	SENSE pin resistance to GND	up to 3.3 V mode	437.2	546.5	655.8	$\mathrm{k} \Omega$
		up to 5.0 V mode	662.2	827.8	993.4	$\mathrm{k} \Omega$

Notes

1. The NFET current limit is set by an external 1% accurate resistor $R_{\text {lim }}$ connected between pin 7 and pin 6 (ground). The typical maximum instantaneous current is defined as: $l_{\text {lim }}=890 \mathrm{~V} / \mathrm{R}_{\text {lim }}$ so the use of $\mathrm{R}_{\text {lim }}=315 \Omega$ will lead to a typical maximum current value of 2.83 A . The average inductor current during current limit also depends on inductance value and resistive losses in all components in the power path. In normal application and when using $R_{\text {lim }}=315 \Omega$, the average inductor current will be limited to 2.3 A typical.
2. V_{3} is the voltage at pin 3 (OUT).
3. If the applied high level is less than $\mathrm{V}_{3}-1 \mathrm{~V}$, the quiescent current level of the device will increase. The maximum increase is $300 \mu \mathrm{~A}$ in the event that pin 2 is at 2.0 V .

Using a Coilcraft DO3308P $10 \mu \mathrm{H}$ inductor and a Sprague 595D $330 \mu \mathrm{~F}$ capacitor.
The dotted line represents the Pulse Frequency Modulation (PFM) and the solid line the Pulse Width Modulation (PWM).
Fig. 6 Efficiency as a function of load current $\mathrm{I}_{\mathrm{L}}(2.4$ to 3.3 V).

APPLICATION INFORMATION

Fig. 8 Complete application for upconversion.

A typical component choice for an upconverter from 3 NiCd cells or one Li-ion cell to 5.0 V in a GSM handset (peak power 7.5 W, peak current 2.7 A) is (see Fig.8):

- L1 = $10 \mu \mathrm{H}$; $\mathrm{I}_{\text {sat }}>2.3 \mathrm{~A}$; low DC resistance, e.g. Coilcraft DO3308-103
- C1 $=100 \mu \mathrm{~F}$; low ESR capacitor; necessity depends on type of input voltage source
- C2 $=330 \mu F ;$ ESR $=0.1 \Omega$; e.g. Sprague 595D series
- D1; medium power Schottky diode; e.g. Philips PRLL5819.

For lower power applications, the $I_{\text {sat }}$ and $R_{D C}$ values of the inductor can be scaled back by the scaling factor of the output current from the values above. The same holds for the ESR value of the output capacitor. A further improvement is increase of inductance and decrease of output capacitance.

An additional circuit to prevent start-up deadlock in upconversion is shown in Fig.9. The function of TR1, R1 and R2 is to put the converter into shut-down mode when the input source is suddenly disconnected. The circuit operates as follows. When V_{1} is present, TR1 conducts and the SHDWN pin is kept LOW. As soon as V_{1} falls below 1 V , TR1 no longer conducts and the device is put into shut-down before V_{O} falls below 2 V . In the event that a signal is available which indicates the presence of the input voltage source, this signal should be applied to the

SHDWN pin. TR1, R1 and R2 should be omitted in that case.

More application information can be found in the associated application note.

PACKAGE OUTLINE

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max }{\mathrm{A}}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(2)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{array}{\|l\|} \hline 0.010 \\ 0.004 \end{array}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0100 \\ 0.0075 \end{array}$	$\begin{aligned} & 0.20 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.050	$\begin{array}{\|l\|} \hline 0.244 \\ 0.228 \\ \hline \end{array}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{array}{l\|} \hline 0.028 \\ 0.024 \end{array}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT96-1	076E03S	MS-012AA		\square ¢	$\begin{aligned} & 95-02-04 \\ & 97-05-22 \end{aligned}$

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (order code 9398652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all SO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to $250^{\circ} \mathrm{C}$.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45^{\circ} \mathrm{C}$.

Wave soldering

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than $150^{\circ} \mathrm{C}$ within 6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

NOTES

Philips Semiconductors - a worldwide company

Argentina: see South America

Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010, Fax. +43160 1011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2689 211, Fax. +359 2689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 8002347381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +453288 2636, Fax. +4531570044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615800, Fax. +358961580920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 14894 339/239, Fax. +30 14814240

Hungary: see Austria

India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 8002347381
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +314027 82785, Fax. +31402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 2274 8000, Fax. +47 22748341
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11470 5911, Fax. +27 114705494
South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118212382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3301 6312, Fax. +34 33014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8632 2000, Fax. +46 86322745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1488 2686, Fax. +41 14883263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 22134 2865, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 8002347381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11625 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors, International Marketing \& Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825
© Philips Electronics N.V. 1998
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

