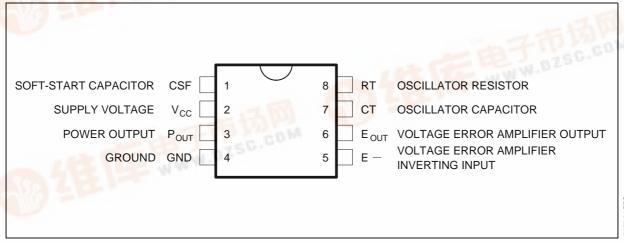
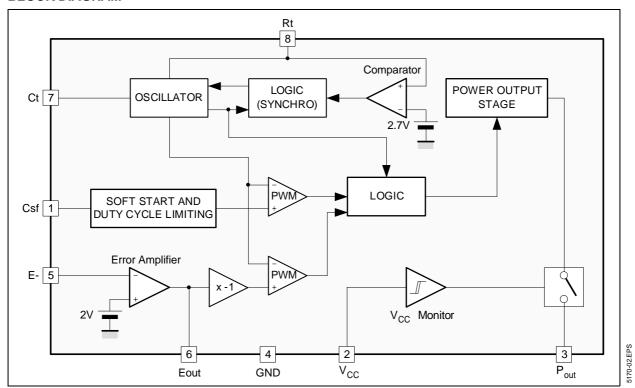


TEA5170

SWITCH MODE POWER SUPPLY SECONDARY CIRCUIT


- INTERNAL PWM SIGNAL GENERATOR
- POWER SUPPLY WIDE RANGE 4.5V 14.5V
- SOFT START
- REFERENCE VOLTAGE 2V ± 5%
- WIDE FREQUENCY RANGE 250kHz
- MINIMUM OUTPUT PULSE WIDTH 500nS
- MAXIMUM PRESET DUTY CYCLE
- SYNCHRONIZATION WINDOW
- OUTPUT SWITCH
- UNDERVOLTAGE LOCKOUT
- FREQUENCY RANGE WITH SYNCHRONIZA-TION 64kHz

The TEA5170 is designed to work in the secondary part of an off-line SMPS, sending pulses to the slaved TEA2260/61 which are located on the primary side of the main transformer. An accurate regulated voltage is obtained by duty cycle control. The TEA5170 can be externally synchronized by higher or lower frequency signal, then it could be used in applications like TV set ones. For more details, refer to application note AN408/0591.



PIN CONNECTIONS

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	15	V
Tj	Operating Junction Temperature	150	°C
T _{stg}	Storage Temperature Range	- 40, + 150	°C

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th (j-a)}	Junction-ambient Thermal Resistance	90	°C/W

RECOMMANDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Power Supply Voltage	5		14	V
RT	Timing Resistor	47		180	kΩ
СТ	Timing Capacitor	0.12		1.8	nF
Fosc	Oscillator Frequency	12		250	kHz
Fsy	Synchro Frequency	12		64	kHz
T_{amb}	Operating Ambient Temperature	- 20		70	Ô
VRT	Voltage on Pin RT (8)			7	Volt
VCT	Current on Pin CT (1)			100	μΑ
Isource	Output Current		30	60	mA

SGS-THOMSON MICROELECTRONICS

ELECTRICAL CHARACTERISTICS (TA = 25°C, Vcc = 12V, unless otherwise specified) Symbol Parameter Test Conditions Min. Typ. Max. Unit

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
OSCILLATOR	2					
TA	Free Period	RT = $100k\Omega \pm 0\%$ CT = $1.2nF \pm 0\%$, Vcc = $12V$	60.40	65.60	70.80	μS
ТВ		RT = $100k\Omega \pm 0\%$ CT = $560pF \pm 0\%$, Vcc = $12V$	29.18	31.70	34.22	μS
ΔF _{OSC} (T)	Frequency drift due to ambient temperature variation from 0°C to 70°C $\frac{F_{OSC} (70^{\circ}C) - F_{OSC} (0^{\circ}C)}{70^{\circ}C \times F_{OSC} (25^{\circ}C)}$ RT = 100k $\Omega \pm 0\%$ CT = 1.2nF $\pm 0\%$, Vcc = 12V			0.01		%/°C
ΔF_{OSC} (V _{CC})	Frequency drift due to V _{CC} variation from 5V to 12V Fosc (12V) - Fosc (5V) 7V x Fosc (12V)	$RT = 100k\Omega \pm 0\%$ $CT = 1.2nF \pm 0\%$		0.07		%/V
ERROR VOL	TAGE AMPLIFIER (V _{CC} = 12V)					
Ibias	Input Bias Current	Ein = 2V	0	0.2	1	μΑ
Gvol	Voltage Gain			80		dB
GB	Gain Bandwidth			2		MHz
	Slew Rate			2		V/μs
INTERNAL V	OLTAGE REFERENCE					
V _{REF}	Voltage Reference	Using the voltage error amplifier as a follower	1.9	2	2.1	V
ΔV_{REF} (Vcc)	Line Regulation $\frac{V_{REF} (12V) - V_{REF} (5V)}{7V}$	V _{CC} = 5V to 12V	-3	0.4	3	mV/V
ΔV _{REF} (T)	V _{REF} drift with temperature V _{REF} (70°C) – V _{REF} (0°C) 70°C	T _A = 0°C to 70°C		0.2		mV/°
-	70°C					
T _{ON MIN} T _{ONMIN A}	Minimum Duty Cycle	Ct = 1.2nF ± 0%	1.77	2.53	3.29	μs
T _{ONMIN B}	Minimum Duty Cycle	Rt = 100kΩ ± 0% Ct = 560pf ± 0% Rt = 100kΩ ± 0%	1.04	1.49	1.94	μs
POWER OUT	PUT STAGE					
V _{POUTH}	Output High Level	I _{load} = 1mA	6.3	6.9	7.5	V
VPOUTL	Output Low Level	$I_{load} = -1mA$	0.5	0.8	1.1	V
Isink	Sink Current	V _{POUT} = 3V	30	60	190	mA
I _{SOURCE}	Source Current	V _{POUT} = 3V	30	110	190	mA
SYNCHRONI	SATION					
F _{trig Max}	Maximum Synchro Frequency		64			kHz
V _{trig}	Synchro Triggering Threshold		1	2.7	3	V
T _{trigp}	Synchro Triggering Pulse Width	at VRT = 2.7Volt (fig 5)	800			nS
Wtrig +	Positive Triggering Window $\frac{T_{trig+} - T_O}{T_O}$	$CT = 1.2nF \pm 0\%$ $RT = 100k\Omega \pm 0\%$	25	35	40	%
Wtrig –	Negative Triggering Window $\frac{T_O - T_{trig}}{T_O}$	$\begin{aligned} \text{CT} &= 1.2 \text{nF} \pm 0\% \\ \text{RT} &= 100 \text{k}\Omega \pm 0\% \end{aligned}$	9	29	42	%
SOFT START	-	1	1	1	1	1
I _{csf}	*Csf Load Current	$V_{csf} = 1V$	2.5	3.7	6	μА
Donmax	Maximum Duty Cycle	$V_{CS} > 2.5V, V_{CC} = 12V$ $CT = 1.2nf \pm 0\%$ $RT = 100k\Omega \pm 0\%$	60	78	95	%

*Csf is a high impedance capacitor

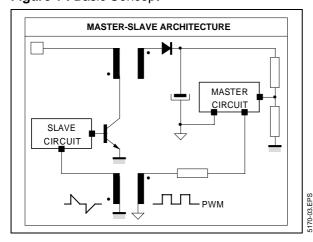
ELECTRICAL CHARACTERISTICS (T_A = 25°C, V_{CC} = 12V, unless otherwise specified) (continued)

Symbol	Parameter	Test Conditions Min. Typ.				Unit
Vcc MONITO	R					
VSTART	Turn-on Threshold		3.60	4	4.40	V
V _{HYST}	Hysteresis Voltage		100			mV
V_{STOP}	Turn-off Threshold		3.50			V
TOTAL DEVI	CE					
Icc	Supply Current	RT = $100k\Omega \pm 0\%$, CT = $1.2nf \pm 0\%$ No Load on Pin 3, V_{CC} = $12V$	7	12	25	mA

GENERAL DESCRIPTION

The TEA5170 takes place in the secondary part of an isolated off-line SMPS. During normal mode operation, it sends pulses to the slave circuit located in the primary side (TEA2164, TEA2260/61) through a pulse transformer to achieve a very precisely regulated voltage by duty cycle control.

The main blocs of the circuit are:

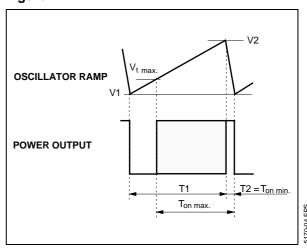

- an error voltage amplifier
- an RC oscillator
- an output stage
- a V_{CC} monitor
- a voltage reference bloc
- a pulse width modulator
- two logic blocs
- a soft start and Duty cycle limiting bloc

PRINCIPLE OF OPERATION

The TEA5170 sends pulses continuously to the slave circuit in order to insure a proper behaviour of the primary side.

- According to this, the output duty cycle is varying between D_{ON} $_{(min.)}$ (0.05) and D_{ON} $_{(max.)}$ (0.75) : then even in case of open load, pulses are still sent to the slave circuit.

Figure 1: Basic Concept

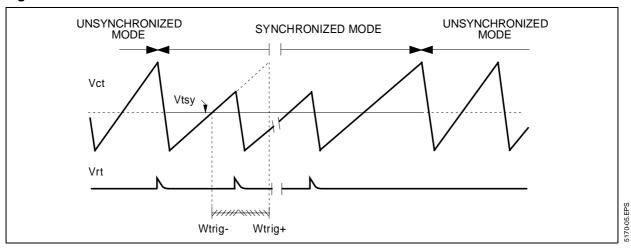


ASYNCHRONIZED MODE (Figure 2)

The regulated voltage image is compared to 2V vol-tage reference. The error voltage amplifier output and the RC oscillator voltage ramp are applied to the internal Pulse Width Modulator Inputs.

The PWM logic Output is connected to a logic bloc which behaves like a RS latch, sets by the PWM output and resets when Ct downloading occurs. Finally, the push-pull output bloc delivers square wave signal whom output leading edge occurs during Ct uploading time, and output trailing edge at Ct downloading time end. The duty cycle is limited to 75% of oscillator period as maximum value and to Ct downloading time/oscillator period as minimum value (Figure 2).

Figure 2


SYNCHRONIZED MODE (see Figure 3)

The TEA5170 will enter the Synchronized Mode when it receives one pulse through Rt during Ct discharge.

At that time Ct charging current will be multiplied by 0.75 and period will increase up to To x 1.26. A pulse occuring during the synchro window, commands the Ct downloading. If none, the TEA5170 will return to normal mode at the end of the period.

Figure 3

Remark: In case of an application between TEA5170 and TEA2164, to optimize the synchronization windows of these circuits, the following relations have to

be used :
$$T_m = \frac{T_{SYNC}}{1.06} T_e = \frac{T_m}{1.223}$$

with T_e : Free period of the TEA2164 oscillator, and T_m : Free period of the TEA5170 oscillator.

BLOCK DESCRIPTION

The error voltage amplifier inverting-input and output are accessible to use different feed-back network and allowing parasitic filtering network. The non-inverting input is internally connected to 2V reference voltage.

The RC oscillator is designed to work at high frequency (up to 250 kHz). R_T sets the capacitor charging current $Io = 2/R_T$.

The capacitor C_T is loaded from $V_1\approx 1V$ to $V_2=2V$ during $T1=\frac{C_T~R_T}{1.985}$ and then down loaded through an integrated resistor $R_2\approx 1k\Omega$ during $T_2=1300~C_T$ The ramp is used to limit the duty cycle. Then the maximum duty cycle is

DONMAX =
$$\frac{1}{T1 + T2} (0.73 T1 + T2)$$

The output level is V_{CC} independant when V_{CC} is over 8V.

The V_{CC} monitoring switches the circuit on when V_{CC} is over 4V and switches it off when under 3.8V. This function insures a proper starting procedure (made by the primary side circuit).

SYNCHRONIZATION

(see Figures 4 and 5)

Figure 4: Triggering Schematic

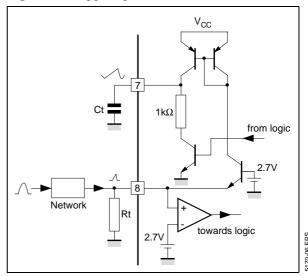
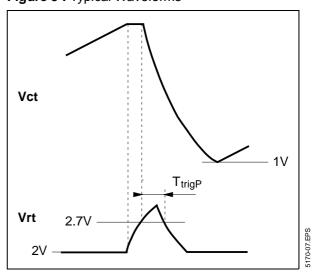
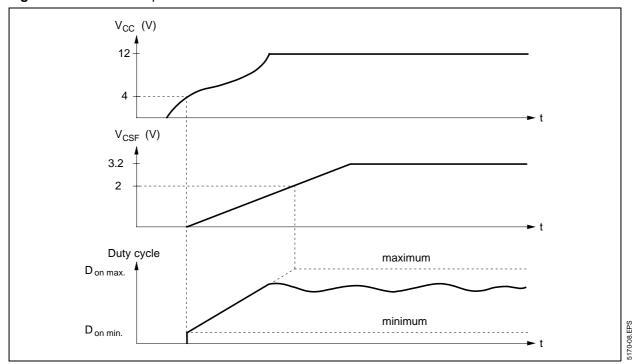



Figure 5: Typical Waveforms

STARTING


When V_{CC} is under 4V, output pulses are not allowed and the slave circuit keeps its own mode. When V_{CC} is going over 4V, output pulses are sent via the pulse transformer (or an optical device) to the slave circuit which is synchronizing and entering the slaved mode. Output pulses can be shut down only if V_{CC} goes below 3.8 Volt.

SOFT START

Using Csf, it is possible to make a soft start sequence. When V_{CC} grows from 0V to 4V, voltage on Csf equals 0V. When V_{CC} is higher than 4V, Csf is loaded by a $3.7\mu A$ current, then TonMAX (Vcsf) will vary linearly from Tonmin to Tonmax according to Csfst bias.

When Vcc will go low (3.8 Volt threshold), Csf will be downloaded by an internal transistor.

Figure 6: Soft-Start Sequence

POWER OUTPUT STAGE

Figure 7: Electrical Schematic

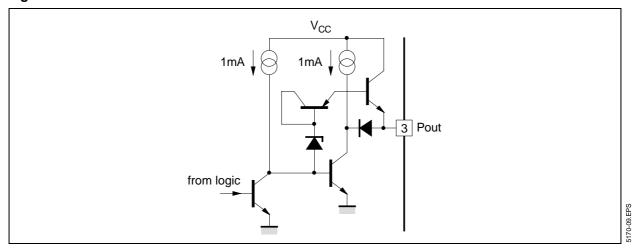


Figure 8

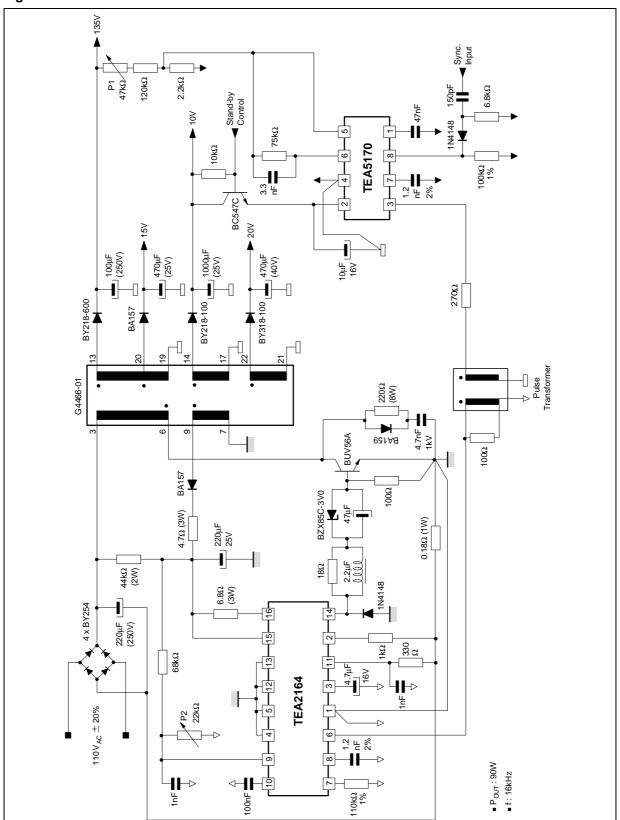
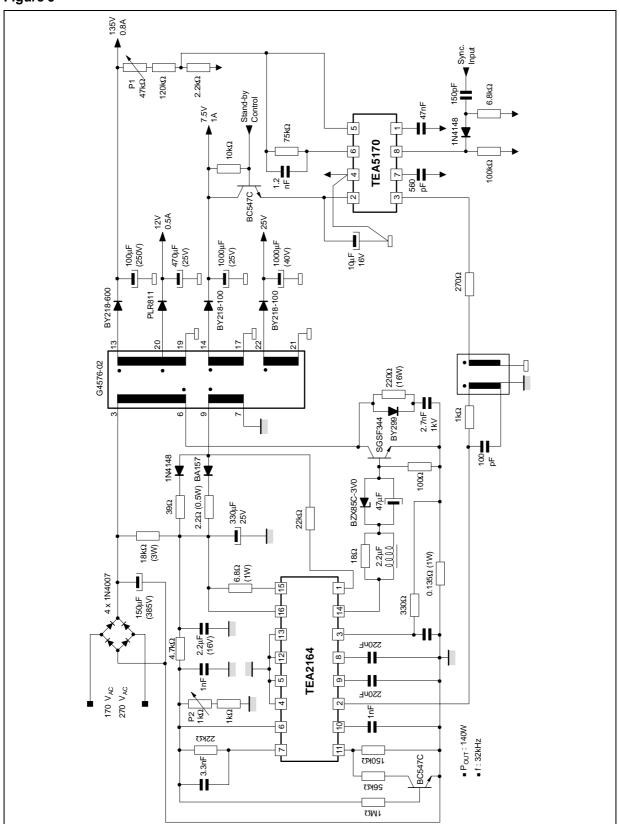
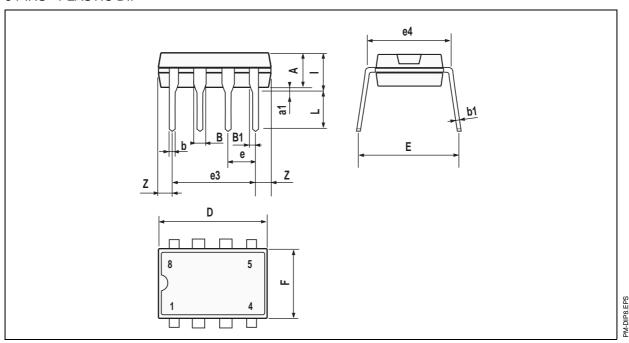




Figure 9

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC DIP

Dimensions		Millimeters			Inches	
Dimensions	Min.	Тур.	Max.	Min.	Тур.	Max.
Α		3.32			0.131	
a1	0.51			0.020		
В	1.15		1.65	0.045		0.065
b	0.356		0.55	0.014		0.022
b1	0.204		0.304	0.008		0.012
D			10.92			0.430
E	7.95		9.75	0.313		0.384
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			6.6			0260
i			5.08			0.200
L	3.18		3.81	0.125		0.150
Z			1.52			0.060

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of l^2C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips l^2C Patent. Rights to use these components in a l^2C system, is granted provided that the system conforms to the l^2C Standard Specifications as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

