$\pm 15 \mathrm{kV}$ ESD－Protected +2.5 V to +5.5 V RS－232 Transceivers in UCSP

General Description

The MAX3230E／MAX3231E are +2.5 V to +5.5 V pow－ ered EIA／TIA－232 and V．28／V． 24 communications inter－ faces with low power requirements，high data－rate capabilities，and enhanced electrostatic discharge （ESD）protection，in a chip－scale package（UCSPTM）． All transmitter outputs and receiver inputs are protect－ ed to $\pm 15 \mathrm{kV}$ using IEC 1000－4－2 Air－Gap Discharge， $\pm 8 \mathrm{kV}$ using IEC 1000－4－2 Contact Discharge，and $\pm 15 \mathrm{kV}$ using the Human Body Model．
The MAX3230E／MAX3231E achieve a $1 \mu \mathrm{~A}$ supply cur－ rent with Maxim＇s AutoShutdownTM feature．They save power without changing the existing BIOS or operating systems by entering low－power shutdown mode when the RS－232 cable is disconnected，or when the trans－ mitters of the connected peripherals are off．
The transceivers have a proprietary low－dropout trans－ mitter output stage，delivering RS－232－compliant perfor－ mance from a +3.1 V to +5.5 V supply，and RS－232－ compatible performance with a supply voltage as low as +2.5 V ．The dual charge pump requires only four， small $0.1 \mu \mathrm{~F}$ capacitors for operation from a +3.0 V sup－ ply．Each device is guaranteed to run at data rates of 250kbps while maintaining RS－232 output levels．
The MAX3230E／MAX3231E offer a separate power－sup－ ply input for the logic interface，allowing configurable logic levels on the receiver outputs and transmitter inputs．Operating over a +1.65 V to VCc range，VL pro－ vides the MAX3230E／MAX3231E compatibility with mul－ tiple logic families．
The MAX3231E contains one receiver and one transmit－ ter．The MAX3230E contains two receivers and two trans－ mitters．The MAX3230E／MAX3231E are available in tiny chip－scale packaging and are specified across the extended industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ temperature range．

Applications

Personal Digital Assistants
Cell－Phone Data Lump Cables
Set－Top Boxes
Hand－Held Devices
Cell Phones
Typical Operating Circuits continued at end of data sheet．
Pin Configurations appear at end of data sheet．
UCSP is a trademark of Maxim Integrated Products，Inc．
AutoShutdown is a trademark of Maxim Integrated Products，Inc．找（2）PDF

Features
－ 6×5 Chip－Scale Packaging（UCSP）
－ESD Protection for RS－232 I／O Pins $\pm 15 k V$ —IEC 1000－4－2 Air－Gap Discharge $\pm 8 \mathrm{kV}$ —IEC 1000－4－2 Contact Discharge $\pm 15 \mathrm{kV}$ —Human Body Model
－ $1 \mu \mathrm{~A}$ Low－Power AutoShutdown
－250kbps Guaranteed Data Rate
－Meet EIA／TIA－232 Specifications Down to＋3．1V
－RS－232 Compatible to＋2．5V Allows Operation from Single Li＋Cell
－Small 0.1μ F Capacitors
－Configurable Logic Levels
Ordering Information

PART	TEMP RANGE	BUMP－PACKAGE
MAX3230EEBV－T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6×5 UCSP
MAX3231EEBV－T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6×5 UCSP

Typical Operating Circuits

$\pm 15 k V$ ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP

$V_{C C}$ to GND	-0.3V to +6.0V
V+ to GND ...-0.3V to +7.0V	
V- to GND ..+0.3V to -7.0V	
V+ to IV-I (Note 1)	+13V
V to GND...-0.3V to +6.0V	
Input Voltages	
T_IN_, FORCEON, $\overline{\text { FORCEOFF }}$ to GND-0.3V to (VL + 0.3V)	
R_IN_ to GND	$\pm 25 \mathrm{~V}$
Output Voltages	
T_OUT to GND	$\pm 13.2 \mathrm{~V}$
R_OUT INVALID to GND	. -0.3V to ($\left.\mathrm{V}_{\mathrm{L}}+0.3 \mathrm{~V}\right)$
NVALID to GND	0.3 V to ($\mathrm{VCC}+0.3 \mathrm{~V}$)

Short-Circuit Duration T_OUT to GND......................Continuous	
6×5 UCSP (derate $10.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)......... .805 mW	
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Junction Temperature ... $+150^{\circ} \mathrm{C}$	
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Bump Temperature (soldering)	
Infrared (15s)	$+200^{\circ} \mathrm{C}$

Note 1: $\mathrm{V}+$ and V - can have maximum magnitudes of 7 V , but their absolute difference cannot exceed 13 V .

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.65 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{C} 1-\mathrm{C} 4=0.1 \mu \mathrm{~F}$, tested at $+3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC CHARACTERISTICS						
VL Input Voltage Range	VL		1.65	V	+ 0.3	V
VCC Supply Current, AutoShutdown	IcC	$\begin{aligned} & \text { FORCEON }=\text { GND } \\ & \text { FORCEOFF }=V_{L} \text {, all RIN open } \end{aligned}$			10	$\mu \mathrm{A}$
		$\overline{\text { FORCEOFF }}=$ GND			10	
		FORCEON, $\overline{\text { FORCEOFF }}=\mathrm{V}_{\mathrm{L}}$			1	mA
VCC Supply Current, AutoShutdown Disabled	ICC	FORCEON $=\overline{\text { FORCEOFF }}=\mathrm{V}_{\mathrm{L}}$, no load		0.3	1	mA
VL Supply Current	T_IN, IL	FORCEON or $\overline{\text { FORCEOFF }}=\mathrm{GND}$ or V_{L}, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{L}}=+5 \mathrm{~V}$, no receivers switching		1		$\mu \mathrm{A}$
LOGIC INPUTS						
Input-Logic Low		T_IN, FORCEON, FORCEOFF			0.4	V
Input-Logic High		T_IN, FORCEON, FORCEOFF	$0.66 \times \mathrm{V}$			V
Transmitter Input Hysteresis				0.5		V
Input Leakage Current		T_IN, FORCEON, FORCEOFF		± 0.01	± 1	$\mu \mathrm{A}$
RECEIVER OUTPUTS						
Output Leakage Currents		R_OUT, receivers disabled, $\overline{\text { FORCEOFF }}=$ GND or in AutoShutdown			± 10	$\mu \mathrm{A}$
Output-Voltage Low		IOUT $=0.8 \mathrm{~mA}$			0.4	V
Output-Voltage High		IOUT $=-0.5 \mathrm{~mA}$	VL- 0.4	$\mathrm{V}_{\mathrm{L}}-0.1$		V

$\pm 15 \mathrm{kV}$ ESD－Protected＋2．5V to＋5．5V RS－232 Transceivers in UCSP

ELECTRICAL CHARACTERISTICS（continued）

$\left(\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.65 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{C} 1-\mathrm{C} 4=0.1 \mu \mathrm{~F}$ ，tested at $+3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$ ．Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$ ，unless otherwise noted．）（Note 2）

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
RECEIVER INPUTS							
Input Voltage Range				－25		＋25	V
Input－Threshold Low		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$	0.6	1.2		V
			$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$	0.8	1.7		
Input－Threshold High		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$V_{C C}=+3.3 \mathrm{~V}$		1.3	2.4	V
			$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$		1.8	2.4	
Input Hysteresis					0.5		V
Input Resistance				3	5	7	k Ω
AUTOMATIC SHUTDOWN							
Receiver Input Threshold to INVALID Output High		Figure 3a	Positive threshold			2.7	V
			Negative threshold	－2．7			
Receiver Input Threshold to INVALID Output Low				－0．3		＋0．3	V
Receiver Positive or Negative Threshold to INVALID High	tinvi	$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$ ，Figure 3b		1			$\mu \mathrm{s}$
Receiver Positive or Negative Threshold to $\overline{\text { INVALID }}$ Low	tINVL	$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$ ，Figure 3b		30			$\mu \mathrm{s}$
Receiver Edge to Transmitters Enabled	twu	$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$ ，Figure 3b		100			$\mu \mathrm{s}$
INVALID OUTPUT							
Output－Voltage Low		IOUT $=0.8 \mathrm{~mA}$				0.4	V
Output－Voltage High		I OUT $=-0.5 \mathrm{~mA}$		VCC－ 0.4	－	VCC－ 0.1	V
TRANSMITTER OUTPUTS							
Vcc Mode Switch Point （Vcc Falling）		T＿OUT $= \pm 5.0 \mathrm{~V}$ to $\pm 3.7 \mathrm{~V}$		2.85		3.10	V
VCC Mode Switch Point （VCC Rising）		T＿OUT $= \pm 3.7 \mathrm{~V}$ to $\pm 5.0 \mathrm{~V}$		3.3		3.7	V
VCC Mode Switch－Point Hysteresis					400		mV
Output Voltage Swing		All transmitter outputs loaded with $3 \mathrm{k} \Omega$ to ground	$\mathrm{V}_{\mathrm{CC}}=+3.1 \mathrm{~V}$ to +5.5 V ， $V_{C C}$ falling，$T_{A}=+25^{\circ} \mathrm{C}$	± 5	± 5.4		V
			$\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V} \text { to }+3.1 \mathrm{~V},$ $V_{C C}$ rising	± 3.7			
Output Resistance		$\mathrm{V}_{C C}=\mathrm{V}_{+}=\mathrm{V}$－$=$	，T＿OUT $= \pm 2 \mathrm{~V}$	300	10M		Ω
Output Short－Circuit Current						± 60	mA
Output Leakage Current		T＿OUT $= \pm 12 \mathrm{~V}$ ，	nsmitters disabled			± 25	$\mu \mathrm{A}$
ESD PROTECTION							
R＿IN，T＿OUT		Human Body Model			± 15		kV
		IEC 1000－4－2 Air－Gap Discharge			± 15		
		IEC 1000－4－2 Contact Discharge			± 8		

$\pm 15 \mathrm{KV}$ ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP

TIMING CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.65 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{C} 1-\mathrm{C} 4=0.1 \mu \mathrm{~F}$, tested at $+3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Maximum Data Rate		$R L=3 k \Omega, C_{L}=1000 \mathrm{pF}$, one transmitter switching	250			kbps
Receiver Propagation Delay		Receiver input to receiver output, $C_{L}=150 p F$		0.15		$\mu \mathrm{s}$
Receiver-Output Enable Time		$V_{C C}=V_{L}=+5 \mathrm{~V}$		200		ns
Receiver-Output Disable Time		$V_{C C}=V_{L}=+5 \mathrm{~V}$		200		ns
Transmitter Skew	\mid tPHL - tPLH \mid			100		ns
Receiver Skew	$\mid \mathrm{tPHL}$ - tPLH \|			50		ns
Transition-Region Slew Rate		$\begin{aligned} & R_{L}=3 k \Omega \text { to } 7 \mathrm{k} \Omega, C_{L}=150 \mathrm{pF} \text { to } \\ & 1000 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	6		30	V/us

Note 2: V_{CC} must be greater than V_{L}.

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, 250 \mathrm{kbps}\right.$ data rate, $0.1 \mu \mathrm{~F}$ capacitors, all transmitters loaded with $3 \mathrm{k} \Omega$ and $\mathrm{C}_{\mathrm{L}}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

$\pm 15 k V$ ESD－Protected＋2．5V to＋5．5V RS－232 Transceivers in UCSP

Typical Operating Characteristics（continued）
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, 250 \mathrm{kbps}\right.$ data rate， $0.1 \mu \mathrm{~F}$ capacitors，all transmitters loaded with $3 \mathrm{k} \Omega$ and $\mathrm{C}_{\mathrm{L}}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．）

Pin Description

BUMP		NAME	FUNCTION
MAX3230E	MAX3231E		
A1	A1	VCC	＋2．5V to＋5．5V Supply Voltage
A2	A2	C2＋	Inverting Charge－Pump Capacitor Positive Terminal
A3	A3	C2－	Inverting Charge－Pump Capacitor Negative Terminal
A4	A4	V－	Negative Supply Voltage（－5．5V／－4．0V）Generated by Charge Pump
A5	A5	VL	Logic Supply Input．Logic－level input for receiver outputs and transmitter inputs． Connect V_{L} to the system－logic supply voltage or V_{CC} if no logic supply is required．
A6，B6	A6	T＿IN	Transmitter Input（s）
B1	B1	V＋	Positive Supply Voltage（ $+5.5 \mathrm{~V} /+4.0 \mathrm{~V}$ ）Generated by Charge Pump．If charge pump is generating＋4．0V，the device has switched from RS－232－compliant to RS－232－ compatible mode．
$\begin{gathered} \text { B2, B3, B4, } \\ \text { C2, C3, C4, } \\ \text { D2-D5 } \end{gathered}$	$\begin{gathered} \text { B2, B3, B4, } \\ \text { C2, C3, C4, } \\ \text { D2-D5 } \end{gathered}$	N．C．	No Connection．These locations are not populated with solder bumps．
B5	B5	FORCEON	Active－High FORCEON Input．Drive FORCEON high to override automatic circuitry， keeping transmitters and charge pumps on．
C1	C1	C1＋	Positive Regulated Charge－Pump Capacitor Positive Terminal
C5	C5	FORCEOFF	Active－Low $\overline{\text { FORCEOFF }}$ Input．Drive $\overline{\text { FORCEOFF }}$ low to shut down transmitters， receivers，and on－board charge pump．This overrides all automatic circuitry and FORCEON．

$\pm 15 \mathrm{kV}$ ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP

Pin Description (continued)

BUMP		NAME	
MAX3230E	MAX3231E		
C6, D6	C6	R_OUT	Receiver Output(s)
D1	D1	C1-	Positive Regulated Charge-Pump Capacitor Negative Terminal
E1	E1	GND	Ground
E2	E2	INVALID	Valid Signal-Detector Output. INVALID is enabled low if no valid RS-232 level is present on any receiver input.
E3, E4	E3	T_OUT	RS-232 Transmitter Output(s)
E5, E6	E5	R_IN	RS-232 Receiver Input(s)
-	B6, D6, E4, E6	N.C.	No Connection. These locations are populated with solder bumps, but are electrically isolated.

Detailed Description

Dual Mode ${ }^{\text {TM }}$ Regulated Charge-Pump Voltage Converter

The MAX3230E/MAX3231E internal power supply consists of a dual-mode regulated charge pump. For supply voltages above +3.7 V , the charge pump generates +5.5 V at $\mathrm{V}+$ and -5.5 V at V -. The charge pumps operate in a discontinuous mode. If the output voltages are less than $\pm 5.5 \mathrm{~V}$, the charge pumps are enabled. If the output voltages exceed $\pm 5.5 \mathrm{~V}$, the charge pumps are disabled.
For supply voltages below +2.85 V , the charge pump generates +4.0 V at $\mathrm{V}+$ and -4.0 V at V -. The charge pumps operate in a discontinuous mode. If the output voltages are less than $\pm 4.0 \mathrm{~V}$, the charge pumps are enabled. If the output voltages exceed $\pm 4.0 \mathrm{~V}$, the charge pumps are disabled.
Each charge pump requires a flying capacitor (C1, C2) and a reservoir capacitor (C3, C4) to generate the $\mathrm{V}+$ and V - supply voltages.

Voltage Generation in the Switchover Region

The MAX3230E/MAX3231E include a switchover circuit between these two modes that have approximately 400 mV of hysteresis around the switchover point. The hysteresis is shown in Figure 1. This large hysteresis eliminates mode changes due to power-supply bounce.
For example, a three-cell NiMh battery system starts at $\mathrm{V}_{\mathrm{CC}}=+3.6 \mathrm{~V}$, and the charge pump generates an output voltage of $\pm 5.5 \mathrm{~V}$. As the battery discharges, the MAX3230E/MAX3231E maintain the outputs in regula-
tion until the battery voltage drops below +3.1 V . The output regulation points then change to $\pm 4.0 \mathrm{~V}$.
When V_{CC} is rising, the charge pump generates an output voltage of $\pm 4.0 \mathrm{~V}$, while V_{CC} is between +2.5 V and +3.5 V . When Vcc rises above the switchover voltage of +3.5 V , the charge pump switches modes to generate an output of $\pm 5.5 \mathrm{~V}$.
Table 1 shows different supply schemes and their operating voltage ranges.

RS-232 Transmitters
The transmitters are inverting level translators that convert CMOS logic levels to RS-232 levels. The MAX3230E/MAX3231E automatically reduce the RS-232-compliant levels ($\pm 5.5 \mathrm{~V}$) to RS-232-compatible levels ($\pm 4.0 \mathrm{~V}$) when V_{CC} falls below approximately +3.1 V . The reduced levels also reduce supply-current requirements, extending battery life. Built-in hysteresis of approximately 400 mV for V_{CC} ensures that the RS-

Figure 1. V+ Switchover for Changing VCC

$\pm 15 k V$ ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP

Table 1. Operating Supply Options

SYSTEM SUPPLY (V)	VCC (V)	VL (V)	RS-232 MODE
1 Li+ Cell	+2.4 to +4.2	Regulated system voltage	Compliant/Compatible
3 NiCad/NiMh Cells	+2.4 to +3.8	Regulated system voltage	Compliant/Compatible
Regulated Voltage Only (VCC falling)	+3.0 to +5.5	+3.0 to +5.5	Compliant
Regulated Voltage Only $($ VCC falling $)$	+2.5 to +3.0	+2.5 to +3.0	Compatible

Table 2. Output Control Truth Table

TRANSCEIVER STATUS	FORCEON	$\overline{\text { FORCEOFF }}$	RECEIVER STATUS	$\overline{\text { INVALID }}$
Shutdown (AutoShutdown)	Low	High	High impedance	Low
Shutdown (Forced Off)	X	Low	High impedance	\dagger
Normal Operation (Forced On)	High	High	Active	\dagger
Normal Operation (AutoShutdown)	Low	High	Active	High

$X=$ Don't care.
$t=\overline{\text { INVALID }}$ output state is determined by $R_{-} I N$ input levels.

232 output levels do not change if $\mathrm{V}_{C C}$ is noisy or has a sudden current draw causing the supply voltage to drop slightly. The outputs return to RS-232-compliant levels $(\pm 5.5 \mathrm{~V})$ when V_{CC} rises above approximately +3.5 V .
The MAX3230E/MAX3231E transmitters guarantee a 250 kbps data rate with worst-case loads of $3 \mathrm{k} \Omega$ in parallel with 1000pF.
When FORCEOFF is driven to ground, the transmitters and receivers are disabled and the outputs become high impedance. When the AutoShutdown circuitry senses that all receiver and transmitter inputs are inactive for more than $30 \mu \mathrm{~s}$, the transmitters are disabled and the outputs go to a high-impedance state. When the power is off, the MAX3230E/MAX3231E permit the transmitter outputs to be driven up to $\pm 12 \mathrm{~V}$.
The transmitter inputs do not have pullup resistors. Connect unused inputs to GND or VL.

RS-232 Receivers

The MAX3230E/MAX3231E receivers convert RS-232 signals to logic-output levels. All receivers have inverting tri-state outputs and can be active or inactive. In shutdown (FORCEOFF $=$ low) or in AutoShutdown, the MAX3230E/MAX3231E receivers are in a high-impedance state (Table 2).
The MAX3230E/MAX3231E feature an INVALID output that is enabled low when no valid RS-232 signal levels
have been detected on any receiver inputs. $\overline{\text { INVALID }}$ is functional in any mode (Figures 2 and 3).

AutoShutdown

The MAX3230E/MAX3231E achieve a $1 \mu \mathrm{~A}$ supply current with Maxim's AutoShutdown feature, which operates when FORCEON is low and FORCEOFF is high. When these devices sense no valid signal levels on all receiver inputs for 30μ s, the on-board charge pump and drivers are shut off, reducing V_{CC} supply current to $1 \mu \mathrm{~A}$. This occurs if the RS-232 cable is disconnected or the connected peripheral transmitters are turned off. The device turns on again when a valid level is applied to any RS-232 receiver input. As a result, the system saves power without changes to the existing BIOS or operating system.
Table 2 and Figure 2c summarize the MAX3230E/ MAX3231E operating modes. FORCEON and FORCEOFF override AutoShutdown. When neither control is asserted, the IC selects between these states automatically, based on receiver input levels. Figures 2a, 2b, and 3a depict valid and invalid RS-232-receiver levels. Figures 3a and 3b show the input levels and timing diagram for AutoShutdown operation.
A system with AutoShutdown can require time to wake up. Figure 4 shows a circuit that forces the transmitters on for 100 ms , allowing enough time for the other system to realize that the MAX3230E/MAX3231E are

$\pm 15 k V$ ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP

TRANSMITTERS ARE DISABLED, REDUCING SUPPLY CURRENT TO $1 \mu \mathrm{~A}$ IF ALL RECEIVER INPUTS ARE BETWEEN +0.3V AND -0.3V FOR AT LEAST 30us.

Figure 2a. MAX323_E Entering 1μ A Supply Mode with AutoShutdown

TRANSMITTERS ARE ENABLED IF:
ANY RECEIVER INPUT IS GREATER THAN +2.7V OR LESS THAN -2.7V. ANY RECEIVER INPUT HAS BEEN BETWEEN + 0.3 V AND $-0.3 V$ FOR LESS THAN $30 \mu \mathrm{~s}$.

Figure 2b. MAX323_E with Transmitters Enabled Using AutoShutdown
active. If the other system transmits valid RS-232 signals within that time, the RS-232 ports on both systems remain enabled.
When shut down, the device's charge pumps are off, V + is pulled to $V_{C C}$, V - is pulled to ground, and the transmitter outputs are high impedance. The time required to exit shutdown is typically 100μ s (Figure 3b).
V_{L} Logic Supply Input Unlike other RS-232 interface devices, where the receiver outputs swing between 0 and V_{Cc}, the MAX3230E/ MAX3231E feature a separate logic supply input (VL) that sets $\mathrm{VOH}_{\mathrm{OH}}$ for the receiver outputs. The transmitter inputs (T_IN), FORCEON, and FORCEOFF, are also referred to V_{L}. This feature allows maximum flexibility in interfacing to different systems and logic levels. Connect V_{L} to the system's logic supply voltage $(+1.65 \mathrm{~V}$ to +5.5 V), and bypass it with a $0.1 \mu \mathrm{~F}$ capacitor to GND. If the logic supply is the same as $\mathrm{V}_{C C}$, connect V_{L} to V_{CC}. Always enable $V_{C C}$ before enabling the V_{L} supply. $V_{C C}$ must be greater than or equal to the V_{L} supply.

Software-Controlled Shutdown

If direct software control is desired, connect FORCEOFF and FORCEON together to disable AutoShutdown. The

Figure 2c. MAX323_E AutoShutdown Logic
microcontroller $(\mu \mathrm{C})$ then drives $\overline{\mathrm{FORCEOFF}}$ and FORCEON like a SHDN input. $\overline{\text { INVALID }}$ can be used to alert the $\mu \mathrm{C}$ to indicate serial data activity.

$\pm 15 k V$ ESD Protection

As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The driver outputs and receiver inputs of the MAX3230E/MAX3231E have extra protection against static electricity. Maxim's engineers have developed state-of-the-art structures to protect these pins against ESD of $\pm 15 \mathrm{kV}$ without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown, and power-down. After an ESD event, Maxim's E-versions keep working without latchup, whereas competing RS-232 products can latch and must be powered down to remove latchup.
ESD protection can be tested in various ways; the transmitter outputs and receiver inputs of this product family are characterized for protection to the following limits:

1) $\pm 15 \mathrm{kV}$ using the Human Body Model
2) $\pm 8 \mathrm{kV}$ using the Contact Discharge method specified in IEC 1000-4-2
3) $\pm 15 \mathrm{kV}$ using the IEC 1000-4-2 Air-Gap method

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

Human Body Model

Figure 5a shows the Human Body Model. Figure 5b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100 pF capacitor charged to the ESD voltage of interest,

$\pm 15 \mathrm{kV}$ ESD－Protected＋2．5V to＋5．5V RS－232 Transceivers in UCSP

Figure 3．AutoShutdown Trip Levels

Figure 4．AutoShutdown with Initial Turn－On to Wake Up a Mouse or Another System
which is then discharged into the test device through a $1.5 \mathrm{k} \Omega$ resistor．

IEC 1000－4－2
The IEC 1000－4－2 standard covers ESD testing and per－ formance of finished equipment．It does not specifically refer to ICs．The MAX3230E／MAX3231E aid in designing equipment that meets Level 4 （the highest level）of IEC 1000－4－2，without the need for additional ESD－protection components．
The major difference between tests done using the Human Body Model and IEC 1000－4－2 is a higher peak current in IEC 1000－4－2，because series resistance is lower in the IEC 1000－4－2 model．Hence，the ESD with－ stands voltage measured to IEC 1000－4－2 and is gener－ ally lower than that measured using the Human Body Model．Figure 6a shows the IEC 1000－4－2 model，and Figure 6 b shows the current waveform for the $\pm 8 \mathrm{kV}$ IEC 1000－4－2 Level 4 ESD Contact Discharge test．
The Air－Gap test involves approaching the device with a charged probe．The Contact Discharge method connects the probe to the device before the probe is energized．

Machine Model

The Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resistance．Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufactur－ ing．Of course，all pins require this protection during manufacturing，not just RS－232 inputs and outputs． Therefore，after PC board assembly，the Machine Model is less relevant to I／O ports．

Applications Information

Capacitor Selection
The capacitor type used for $\mathrm{C} 1-\mathrm{C} 4$ is not critical for proper operation；either polarized or nonpolarized capacitors can be used．However，ceramic chip capaci－ tors with an X7R or X5R dielectric work best．The charge pump requires $0.1 \mu \mathrm{~F}$ capacitors for 3.3 V operation．For other supply voltages，see Table 3 for required capaci－ tor values．Do not use values smaller than those listed in Table 3．Increasing the capacitor values（e．g．，by a fac－ tor of 2）reduces ripple on the transmitter outputs and slightly reduces power consumption．C2，C3，and C4 can be increased without changing the vaue of C 1 ．
Caution：Do not increase C1 without also increasing the values of C2，C3，and C4 to maintain the proper ratios（C1 to the other capacitors）．
When using the minimum required capacitor values， make sure the capacitor value does not degrade exces－ sively with temperature．If in doubt，use capacitors with

$\pm 15 k V$ ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP

Figure 5a. Human Body ESD Test Models

Figure 5b. Human Body Model Current Waveform

Figure 6a. IEC 1000-4-2 ESD Test Model
a larger nominal value. The capacitor's equivalent series resistance (ESR) usually rises at low temperatures and influences the amount of ripple on $V+$ and V-.

Power-Supply Decoupling

In most circumstances, a $0.1 \mu \mathrm{~F}$ Vcc bypass capacitor is adequate. In applications that are sensitive to power-

Figure 6b. IEC 1000-4-2 ESD Generator Current Waveform
Table 3. Required Capacitor Values

$\mathbf{V} \mathbf{c \mathbf { C }} \mathbf{(V)}$	$\mathbf{C 1}, \mathbf{C}_{\text {BYPASs }}(\boldsymbol{\mu F})$	$\mathbf{C 2 , \mathbf { C 3 } , \mathbf { C 4 } (\boldsymbol { \mu F })}$
2.5 to 3.0	0.22	0.22
3.0 to 3.6	0.1	0.1
4.5 to 5.5	0.047	0.33
3.0 to 5.5	0.22	1

supply noise, use a capacitor of the same value as the charge-pump capacitor C1. Connect bypass capacitors as close to the IC as possible.

Transmitter Outputs when Exiting Shutdown

Figure 7 shows a transmitter output when exiting shutdown mode. The transmitter is loaded with $3 \mathrm{k} \Omega$ in parallel with 1000 pF . The transmitter output displays no ringing or undesirable transients as it comes out of shutdown, and is enabled only when the magnitude of V- exceeds approximately $-3 V$.

High Data Rates
The MAX3230E/MAX3231E maintain the RS-232 $\pm 5.0 \mathrm{~V}$ minimum transmitter output voltage even at high data rates. Figure 8 shows a transmitter loopback test circuit. Figure 9 shows a loopback test result at 120kbps, and Figure 10 shows the same test at 250kbps. For Figure 9, the transmitter was driven at 120kbps into an RS-232 load in parallel with 1000pF. For Figure 10, a single transmitter was driven at 250 kbps and loaded with an RS-232 receiver in parallel with 1000pF.

$\pm 15 \mathrm{kV}$ ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP

Figure 7. Transmitter Outputs Exiting Shutdown or Powering Up

Figure 8. Transmitter Loopback Test Circuit

UCSP Applications Information

For the latest application details on UCSP construction, dimensions, tape carrier information, PC board techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, refer to the Application Note UCSP-A Wafer-Level Chip-Scale Package available on Maxim's website at www.maxim-ic.com/ucsp.

Figure 9. Loopback Test Result at 120kbps

Figure 10. Loopback Test Result at 250kbps

TRANSISTOR COUNT: 698
PROCESS: CMOS
$\pm 15 \mathrm{KV}$ ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP
\qquad Typical Operating Circuits (continued)

$\pm 15 \mathrm{kV}$ ESD－Protected＋2．5V to＋5．5V RS－232 Transceivers in UCSP

Pin Configurations

$\pm 15 k V$ ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP

\qquad

TOP VIEW

土15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

