COMPON

ENTS |

EF6809E

The EFG809E is a revolutionary high performance 8-bit microprocessor
which supports modern programming techniques such as position independ
ence, reentrancy. and modular programming

This third-generation addition to the 6800 Family has major architecturat
improvements which include additional registers, instructions, and addressing
modes

The basic instructions of any computer are greatly enhanced by the

presence of powerful addressing modes. The EFB6809E has the most com-

plete set of ‘addressing modes available on any 8-bit microprocessor today
The EFB809E has hardware and software features which make it an ideal
processor for higher level language execution or standard controller applica
tions External clock inputs are provided to allow synchronization weth
penpherals, systems, or other MPUs
EF6800 COMPATIBLE
® Hardware — Interfaces with All 6800 Peripherals
® Software -~ Upward Source Code Compatible Instruction Set and
Addressing Modes
ARCHITECTURAL FEATURES
® Two 16-B1t Index Registers
® Two 16-Bit Indexable Stack Pointers
® Two 8-Bit Accumulators can be Concatenated to Form One 16 81t
Accumulator
® Direct Page Register Allows Direct Addressing Throughout Memory
HARDWARE FEATURES
External Clock Inputs, E and Q, Allow Synchronization
TSC Input Controls Internal Bus Buffers
LIC indicates Opcode Fetch
AVMA Allows Efficient Use of Common Resources in a Multiprocessor
System
BUSY 1s a Status Line for Multiprocessing
Fast interrupt Request Input Stacks Only Condition Code Register and
Program Counter
Interrupt Acknowledge Output Allows Vectoring By Devices
Sync Acknowledge Output Allows for Synchronization to External Event
Single Bus-Cycle RESET
Smgle 5-Volt Supply Operation
NMI Inhibited After RESET Until After First Load of Stack Pointer
Early Address Valid Atlows Use With Slower Memories
Early Write Data for Dynamic Memories
SOFTWARE FEATURES
® 10 Addressing Modes
* 6800 Upward Compatible Addressing Modes
Direct Addressing Anywhere in Memory Map
Long Relative Branches
Program Counter Relative
True Indirect Addressing
Expanded Indexed Addressing
0-, 5-, 8-, or 16-Bit Constant Offsets
8- or 16-Bit Accumulator Offsets
Auto-Increment/ Decrement by 1 or 2
® Improved Stack Manipulfation
® 1464 instruction with Unique Addressing Modes
® 8 x 8 Unsigned Multiply
® 16-Bit Arithmetic
o
[]
o

Transter/Exchange Al Registers
Push/Pull Any Registers or Any Set of Registers
Load Effective Address

HMOS

{HIGH-DENSITY N-CHANNEL, SILICON-GATE)

8-BIT
MICROPROCESSING
UNIT

ALSO AVAILABLE

JSUFFIX
CERDIP PACKAGE

C SUFFIX
CERAMIC PACKAGE

FN SUFFIX
PLCC 44

PIN ASSIGNMENT

vsslh @ mE»TrLT
NMifQ 2 RATSC
ILIels K] BALC
FIRGQ 4 37 DRESET
BSOS B [JAVMA
BA(ls kLT s ol
veel? (e
Ao{l 8 33{I8USY
Al[le 20R/W
A2[]0 31 [Jo0
A3 301D}
Aafli2 29302
AS(j13 28[]03
AB[J14 27{104
A7fis 26[]05
asflie Q06
XT8N 24{107
A10[18 230A15
Ao 20A14
A2fjc 211a13

.

1-151

http://www.dzsc.com/ic/sell_search.html?keyword=EF6809E
http://www.jdbpcb.com/J/
http://www.jdbpcb.com/J/
http://pdf.dzsc.com/

MAXIMUM RATINGS

Rating Symbol Value Unit
Supply Voltage vee -031w0 +70 \Y
Input Voltage Vin -0310 +70 v
Operating Temperature Range T to Ty
EF6809E, EF68A09E, EFG8BOSE Ta Oto +70 °C
EF6809E, EFBBAQ9E, EFEBBOYE, V suffix -40 to +85
EFB809E, EF6BA09E : M suffix —55 10 + 1256
Storage Temperature Range Tslg ~-55 10 + 90 “C
THERMAL CHARACTERISTICS
Characteristic Symboi Value Unit
Thermal Resistance
Cerarmic 80
Cerdip AT 60 °C/W
Plastic 100
PLCC 100

POWER CONSIDERATIONS

The average chip-junction temperature, T, in °C can be obtained from
Ty=TaA+(Pped A}
Where:
TA=Ambient Temperature, °C
8 A= Package Thermal Resistance, Junction-to-Ambient, °C/W
PD=P\NT+PPORT
PINT=iCcC x VCC. Watts — Chip internal Power
PPORT = Port Power Dissipation, Watts — User Determined

For most applications PPORT < PINT and can be neglected. PPORT may become significant if the device is configured to

drive Darlington bases or sink LED loads
An approximate relationship between Pp and T (if PPQRT is neglected) 1s
PD=K=+ (T +273°C)
Solving equations 1 and 2 for K gives
K =Ppe(Ta +273°C) + 8 a*PD2

Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring Pp (at equilibrium)
for a known T . Using this value of K the values of Pp and T j can be obtained by solving equations (1) and (2} iteratively for any

value of Ta

This device contains circuitry 1o protect the
inputs against damage due to high static
voltages or electric fields; however, 1t is ad-
vised that normai precautions be taken to
avoid application of any voltage higher than
maximum rated voltages to this high im-
pedance circunt

Reliability of operation is enhanced if unus-
ed nputs are tied to an appropnate logic
voltage level (e.g., either Vgg or V)

(1}

(2)

(3)

DC ELECTRICAL CHARACTERISTICS (Vcc=50V £5%, V§s=0Vdc, TA=T| to Ty unless otherwise noted!

Characteristic Symbol Min Typ Max Unit
Logic, Q. Vi Vgs + 20 vce
input High Voltage ggﬁ VINR vas + 40| - vee v
E VIHC Vee-075 | — Vcc+03
Input Low Voltage Logic, RESET Vi Vgg-03 - Vgs+08 A
E ViLe Vgs~03 - Vgs+04 \
Q viLg Vgg—-03 - Vgs+0.6 3
Input Leakage Current Ltogic. Q, RESET \ - - 25 A
(Vin, = 0106.25 V., Vg = max) E n - - 100 Ly
dc Output High Voltage
(ILoad = —205 kA, VcC = min} 00-D7 v Vgs + 24 | — — v
(ILoag = — 145 kA, VCC = min) AO-A15. R/ W OH Vgs + 24| — -
(lLoad = — 100 A, VcC = min) BA, BS. LIC. AVMA_ BUSY Vgg + 24| — -
dc Output Low Voltage VoL _ _ Vss + 05 v

I gad = 20 mA, Vcc = min)

internal Power Dissipation {Measured at T =0°C in Steady State Operation} PINT - - 1.0 w
Capacitance Cin

Vin = 0. Ta = 25°C, { = 1.0 MHz) D0-D7. Logic inputs, Q. RESET - 10 15

_ E - 30 50 oF
AD-A15 R/W, BA BS
LC. AVMA. Busy | Cout - 10 ® PF

Frequency of Operation EF6809E - 10

(E and Q inputs) EF68A09E f 01 - 15 MHz

EF68B09E 0.1 = 20

Hi-Z (Off Statel Input Current DO D7 | - 20 10

Vin = 081024 V. VCC = max) Aa0A15 R[S - - 100 KA

* Capacitances are penodically tested rather than 100% tested

1-152

BUS TIMING CHARACTERISTICS iSee Notes 1. 2. 3. and 4

Ident M EFBB809E | EFG8A09E | EF68BO9E

Number Characteristics Symbol Min | Max | Min | Max | Min | Max | “"*t
1 Cycle Time [Y0 | 10 [0667] 10 {05 10 | as
Pulse Width, E Low PWeg 1 450 [9500] 295 [9500 [210 | 9500] ns

3 Pulse Width, E High PWeg | 450 [9500 280 | 9500 | 220 | 9500 ns
4 Ciock Rise and Fall Time [T - 25 25 - 20 ns
5 Pulse Width. Q High PWQH | 450 [9500 280 [9500 | 220 | 9500 [ns
7 Delay T'me. € 10 Q Rise 1eQl 200 - 130 - 100 = ns
7A Detay Time, Q High to £ Rise EQ2 200 - 130 - 100 - ns
78 Delay Time. E High 10 Q fall €Q3 200 130 - 100 - ns
7C Delay Time, Q High to E Fall (EQ4 200 130 - 100 - ns
9 Address Hold Time tAH 20 - 20 - 20 - ns
" Address Delay Time trom E Low (BA BS. R W) TAD 200[- 140 - 10| ns
17 Read Data Setup Time 'DSR 80 60 - 40 - ns
18 Read Data Hold Time 'DHR 10 10 - 10 - ns
20 Data Delay Time trom Q 1DDQ 200 - 140 10 ns
21 Wiate Data Hold Time "DHW 30 30 - 30 - ns
29 Usable Access Time TACC 635 440 - 330 ns
30 Control Delay Time 'CD 300 - 250 - 200 ns
Interrupts, HALT, RESET. and TSC Setup Time pcs | 200 140 ¢ - oy - ns

tFigures 6, 7, 8,9, 12, and 13)

1SC Dnive to Valid Logic Level (Figure 131 TSV 210 - 150 - 120 ns

TSC Release MOS Butfers to High Impedance tFigure 13) TSR - 200 - 140 1o ns

TSC Hi-Z Delay Time (Figure 13) 11sD 120 - 85 - 80 ns
Processor Control Rise and Fall Time (Figure 7} (“;((::" 100 100 100 | ns

FIGURE 1 — READ/WRITE DATA TO MEMORY OR PERIPHERALS TIMING DIAGRAM
J—
B VIHR v ¢

O 7

——H»—@

R/W, Address,
BA, BS

4—@—«»

- 18
Read Data X

Non-Muxed ______ ¥

T\
Write Data /
<21;
BUSY, LIC,
AVMA

NOTES

1 Voltage levels shown are V{ <04 V, Viy22 4 V, unless otherwise specriied
2 Measurement points shown are 0 8 V and 2 0 V, unless otherwise specified
3 Hold time ¢ (@) for BA and BS 15 not specitied

4 Usable access time 1s computed by 1-4- 11 max - 17

1-153

FIGURE 2 — EXPANDED BLOCK DIAGRAM

T DO-D7

A0-A15
- * -« VCC
-«— Vgg
y
1
6 8
- PC fnstruction
Register
- U
> s RESET
r———NMI
< Y
interrupt [FIRQ
- Control fae—TRQ
X — LIC
—— AVMA
R/W
j€&——— D T
% y r‘— sC
< op cc Bus e HALT
Controi BA
b1 L85
. BUSY
y Y
ALU Timing

* internal Three- State Control

FIGURE 3 — BUS TIMING TEST LOAD

50V

1N4148
or Equiv.
Test Point

1N916
or equiv.

C=230 pfF for BA, BS, LIC, AVMA, BUSY
130 pF for DO-D7 -
90 pF for AQ-A15, R/W
R = 11.7 k@ for DO-D7 _
16.6 k@2 for AO-A15, R/W
24 k@ for BA, 8S, LIC, AVMA, BUSY

RL=22kB

PROGRAMMING MODEL

As shown in Figure 4, the EF6809E adds three registers
to the set available in the E F6800. The added registers in-
ciude a direct page register, the user stack pointer, and a
second index register.

ACCUMULATORS (A, B, D)

The A and B registers are general purpose accumulators
which are used for arithmetic calculations and manipulation
of data.

Certain instructions concatenate the A and B registers to
form a single 16-bit accumulator. This is referred to as the D
register, and is formed with the A register as the most signifi-
cant byte.

DIRECT PAGE REGISTER (DP)

The direct page register of the EF6809E serves toenhan-
ce the direct addressing mode. The content of this register
appears at the higher address outputs {(A8-A15} during direct
addressing instruction execution. This allows the direct
mode to be used at any place in memory, under program
control. To ensure 6800 compatibility, all bits of this
register are cleared during processor reset.

1-154

FIGURE 4 -

PROGRAMMING MODEL OF THE MICROPROCESSING UNIT

15]
X — index Register
Y - Index Register
U — User Stack Pointer Pomnter Registers
S — Hardware Stack Pointer
PC Program Counter
A 1 B Accumutators
D
7 0
L op —l Drrect Page Register

AL

CC - Condition Code Register

INDEX REGISTERS (X, Y}

The index registers are used in indexed mode of address-
ing. The 16-bit address in this register takes part in the cal-
culation of effective addresses. This address may be used to
point to data directly or may be modified by an optional con-
stant or register offset. During some indexed modes, the
contents of the index register are incremented and decre-
mented to point to the next item of tabular type data. All four
pointer registers (X, Y, U, S) may be used as index registers.

STACK POINTER (U, S)

The hardware stack pointer {S) is used automaticaily by
the processor during subroutine calls and interrupts. The
user stack pointer (U} is controlled exclusively by the pro-
grammer. This allows arguments to be passed to and from
subroutines with ease. The U register is frequently used as a
stack marker. Both stack pointers have the same indexed
mode addressing capabilities as the X and Y registers, but
also support Push and Pull instructions. This allows the
EF6809E to be used efficiently as astack processor, greatly
enhancing its ability to support higher level languages and
modular programming.

NOTE

The stack pointers of the EF6809E point to the top of
the stack in contrast to the EF6800 stack pointer,
which pointed to the next free iocation on stack.

PROGRAM COUNTER

The program counter is used by the processor to point to
the address of the next instruction to be executed by the pro-
cessor. Relative addressing is provided allowing the program
counter to be used like an index register in some situations.

CONDITION CODE REGISTER

The condition code register defines the state of the pro-
cessor at any given time. See Figure 4.

FIGURE 5§ — CONDITION CODE REGISTER FORMAT

e[e]n] i In[z]Vv]c]

Carry
Overfiow
Zero
Negative
IRQ Mask
Halt Carry
FIRQ Mask
Enure Flag

CONDITION CODE REGISTER
DESCRIPTION

BIT 0 (C)

8it 0 is the carry flag and is usually the carry from the
binary ALU. C is also used to represent a “borrow” from
subtract like instructions {CMP, NEG, SUB, SBC) and is the
complement of the carry from the binary ALU.

BIT 1 (V)

Bit 1 is the overflow flag and is set 10 a one by an operation
which causes a signed twos complement arithmetic over-
flow. This overflow is detected in an operation in which the
carry from the MSB in the ALU does not match the carry
from the MSB-1.

8IT2(2)

Bit 2 is the zero flag and is set to a one if the result of the
previous operation was identicaily zero

BIT 3 (N}

Bit 3 1s the negative flag. which contains exactly the value
of the MSB of the result of the preceding operation Thus, &
negative twos complement result will leave N set to a one

BIT 4 (1)

Bit 4 is the TRQ mask bit The processor will not recognize
interrupts from the TRQ line if this Dit is set to a one. NMI,
FIRQ, TRQ. RESET, and SW! all set | to a one. SWI2 and
SWI3 do not affect |

BIT 5 (H)

Bit 5 is the half-carry bit, and is used to indicate a carry
from bit 3 1n the ALU as a result of an 8-bit addition only
(ADC or ADD) This bit is used by the DAA instruction to
perform a BCD decimal add adjust operation. The state of
this flag is undefined in all subtract-like instructions

BIT 6 (F)

Bit 6 1s the FIRQ mask bit. The processor wili not
recognize interrupts from the FIRQ hine if this bit is a one
NMI, FIRQ, SWI, and RESET all set F to a one. TRQ, SWI2,
and SWI3 do not affect F

BIT 7 (E}

Bit 7 1s the entire flag, and when set to a one indicates that
the complete machine state (all the registers) was stacked,
as opposed to the subset state (PC and CC). The E bit of the
stacked CC is used on a return from interrupt (RTI} to deter
mine the extent of the unstacking. Therefore, the current E
left in the condition code register represents past action

PIN DESCRIPTIONS

POWER (Vss, V¢!
Two pins are used to supply power to the part: VSS is
ground or 0 volts, while Vccis +5.0V +5%

ADDRESS BUS (A0-A15)

Sixteen pins are used to output address information from
the MPU onto the address bus. When the processor does
not require the bus for a data transfer, it will output address
FFFF1g, R/W=1, and BS=0; this is a “dummy access” or
VMA cycle. All address bus drivers are made high-
impedance when output bus available (BA) is high or when
TSC is asserted. Each pin will drive one Schottky TTL load or
four LSTTL loads and 90 pF

DATA BUS (D0-D7)

These eight pins provide communication with the system
bidirectional data bus. Each pin will drive one Schottky TTL
load or four LSTTL loads and 130 pF

READ/WRITE (R/W)

This signal indicates the direction of data transfer on the
data bus. A low indicates that the MPU is writing data onto
the data bus. R/W is made high impedance when BA is high
or when TSC is asserted

RESET
A low level on this Schmitt-trigger input for greater than
one bus cycle will reset the MPU, as shown in Figure 6. The

1-156

reset vectors are fetched from locations FFFE1p and FFFF1g
:Table 1) when interrupt acknowledge is true, (BA®BS = 1}
During initial power on, the reset fine should be held low until
the clock input signals are fully operational

Because the EF6809E RESET pin has a Schmitt-trigger
input with a threshold voltage higher than that of standard
peripherals, a ssmple R/C network may be used to reset the
entire system. This higher threshold voltage ensures that all
penpherals are out of the reset state before the processor

HALT

A low level on this input pin will cause the MPU to stop
running at the end of the present instruction and remain
halted indefinitely without loss of data. When halted, the BA
output is driven high indicating the buses are high im
pedance. BS is also high which indicates the processor is in
the halt state. While halted, the MPU will not respond to ex-
ternal real-time requests (FIRG, I1RQ) although NMI or
RESET will be latched for later response During the halt
state, Q and E should continue to run-normally. A halted
state (BA®BS=1) can be achieved by pulling HALT low
while RESET 1s stdl low. See Figure 7

BUS AVAILABLE, BUS STATUS (BA, 8S)

The bus available output is an indication of an internal
control signal which makes the MOS buses of the MPU high
impedance. When BA goes low, a dead cycle will elapse
before the MPU acquires the bus. BA wili not be asserted
when TSC is active, thus allowing dead cycle consistency

The bus status output signal, when decoded with BA,
represents the MPU state (valid with leading edge of Q)

MPY State MPU State Definition
BA 8BS

0 0 Normal (Running)

0 1 Interrupt or Reset Acknowledge
1 0 Sync Acknowledge

1 1 Halt Acknowledge

Interrupt Acknowledge is indicated during both cycles of a
hardware vector fetch {RESET, NMI, FIRQ, IRQ, SWI,
SWI2, SWI3). This signal, plus decoding of the lower four
address lines, can provide the user with an indication of
which interrupt level is being serviced and atfow vectoring by
device. See Table 1.

TABLE ' — MEMORY MAP FOR INTERRUPT VECTORS

Memory Map For

Vector Locations Imerrupt. YBCQO'
MS LS Description
FFFE FFFF RESET
FFFC FFFD NMI
FFFA FFFB SWiI
FFF8 FFFS TRG
FFF6 FFF7 FIRQ
FFFa FFFS SWi2
FFF2 FFF3 Swi3
FFFO FFF1 Reserved

R - ! v HR T

'PAI0U BSIMIBYIO SSB(UN 'SIIOA (' JO 3Bel0A UBIY € pue S1iOA g0 JO 8BR10A MO| € WOI) PUB O} PAOUSIBE: BJ8 SIUBWAINSEBW BUII| ‘31 ON

_/ [D S G G S T 4sne

e N A I e TN se

YA 10d MaN Hog man v) 8poodQ 1s| A 12d MaN Hog mapn

1-157

Od MON 3343§ 33346 34348 34448 344% 34338 mu&w

+Ua MINDd MBN 4494% 4444$ 3444¢% 3344¢ wu&m 3434¢% 3443¢

> 54

ONIWIL L3534 — 9 34N9I4

- ! el

PBIOU 9SIMIBUIO SSAJUN 'S1I0A (2 JO 3BE10A UBIY © PUB SII0A g0 JO 8beloA MO} B WO Pue 01 peousIele; ale siusweinsesw Buiwi| 310N

[\

.]/

3p02dQ
uonaNASU|

T A X

—C)
- \

(X X X

S| \

—

anoax3 Yoiay4

10d1 0dy

sl >l] e

paven T 31940 ‘_‘w:_uwxu\ql ynay (D 810AD N

peag uoNONISU| UONDMAISU| peaq

aj9A) 1su|
peaq lueund
0

RV

wakng
10 9PA)
appA) 1se iseq 01 pug

9NE30 WILSAS HOJ ONIWIL NOILNJ3IXI NOILONYLSNI F1ONIS QNY LIVH — £ JHNOId

on

YINAY

sng
eleg

S8

ve

$521pPY

1-158

Sync Acknowledge i1s indicated while the MPU is waiting
for external synchronization on an interrupt hne

Halt Acknowledge is indicated when the E F6809E isina
halt condition

NON MASKABLE INTERRUPT (NMI)*

A negative transition on this input requests that a non-
maskable interrupt sequence be generated. A non-maskable
interrupt cannot be inhibited by the program and also has a
higher prionty than FIRQ, TRQ, or software interrupts. Dur-
ing recognition of an NMI, the entire machine state is saved
on the hardware stack. After reset, an NM1 will not be recog-
nized until the first program load of the hardware stack
pointer (S). The pulse width of NMi low must be at least one
E cycle If the NMI input does not meet the minimum set up
with respect 1o Q, the interrupt will not be recognized until
the next cycle See Figure 8

FAST-INTERRUPT REQUEST (FIRQ)"

A low ievel on this input pin will initiate a fast interrupt se-
quence, provided its mask bit (F} in the CC is ciear Thxwr
quence has pniority over the standard interrupt request (IRQ!}
and 1s fast in the sense that it stacks only the contents of the
condition code register and the program counter. The inter-
rupt service routine should clear the source of the interrupt
before doing an RTI See Figure @

INTERRUPT REQUEST (iRQ)"

A Jow level input on this pin will initiate an interrupt re-
quest sequence provided the mask bit {1} in the CC is clear
Since [RQ stacks the entire machine state, it provides a
slower response to interrupts than FIRQ. /RQ also has a
jower priority than FIRQ. Again, the interrupt service routine
should clear the source of the interrupt before doing an RTI
See Figure 8

CLOCK INPUTS E, Q

E and Q are the clock signals required by the EF6809E. Q
must lead E, that is, a transition on Q must be followed by a
similar transition on E after a minimum delay. Addresses will
be valid from the MPU, taop after the falling edge of E. and
data will be latched from the bus by the faling edge of E
While the Q input is fully TTL compatible, the E input directly
drives internal MOS circuitry and, thus, requires a high leve!
above normal TTL levels. This approach minimizes clock
skew inherent with an internal buffer. Refer 1o BUS TIMING
CHARACTERISTICS for E and Q and to Figure 10 which
shows a simple clock generator for the EFG68CIE.

BUSY

BUSY will be high for the read and modify cycles of a
read-modify-write instruction and during the access of the
first byte of a double-byte operation (e.g., LDX, STD,
ADDD}. BUSY is also high during the first byte of any in-
direct or other vector fetch (e.g., jump extended, SW! in-
direct, etc.)

In @ muitiprocessor system, BUSY indicates the need to

defer the rearbitration of the next bus cycle to insure the in-
tegrity of the above operations This difference provides the
indivisible memory access required for a "test-and-set”
primitive, using any one of severat read-modify-write instruc-
tions.

BUSY does not become active during PSH or PUL opera-
tons. A typical read-modity-write instruction (ASL) is shown
in Figure 11. Timing information is given in Figure 12. BUSY
is valid tcp atter the rising edge of Q

AVMA

AVMA is the advanced VMA signa! and indicates that the
MPU will use the bus in the following bus cycle. The predic-
tive nature of the AVMA signal aliows efficient shared-bus
multiprocessor systems. AVMA is iow when the MPU is in
either a HALT or SYNC state. AVMA is valid tcp after the
nsing edge of Q

LIC

LIC (last instruction cycle) is high during the last cycle of
every instruction, and its transition from high to low will indi-
cate that the first byte of an opcode will be latched at the end
of the present bus cycle. LIC will be high when the MPU 1s
haited at the end of an instruction (i.e., not in CWAI or
RESET), in sync state, or while stacking during interrupts.
LIC 1s valid tcp after the rising edge of Q.

TSC

TSC (three-state control) will cause MOS address, data,
and R/W butfers to assume a high-impedance state. The
control signals (BA, BS, BUSY, AVMA, and LIC) will not go
to the high-impedance state. TSC is intended to allow a
single bus to be shared with other bus masters (processors
or DMA controllers)

While E is low, TSC controls the address buffers and R/W
directly. The data bus buffers during a write operation are in
a high-impedance state until Q rises at which time, if TSC is
true, they will remain in a high-impedance state. If TSC is
held beyond the rising edge of E, then it wili be internally
latched, keeping the bus drivers in a high-impedance state
for the remainder of the bus cycle. See Figure 13

MPU OPERATION

During normal operation, the MPU fetches an instruction
tfrom memory and then executes the requested function
This sequence begins after RESET and is repeated indefinite-
ly unless altered by a special instruction or hardware occur-
rence. Software instructions that alter normal MPU opera-
tion are: SWI, SWI2, SWI3, CWAL, RTI, and SYNC. An
nterrupt or HALT input can also alter the normal execution
of instructions. Figure 14 is the flowchart for the EF6809E .

* NM1, FIRQ. and TRQ requests are sampled on the faling edge of Q. One cycie 1s required for synchronization before these Interrupts are recog-
nized The gendmg interrupt(s) will not be serviced untit completion of the current instruction unless 3 SYNC or CWAI condition 1s present. 1
1

IRQ and

1-159

do not remain low untii completion of the current instruction. they may not be recognized. However, NMI is latched and need
only remain low for one cycle. No interrupts are recognized or iatched between the falling edge of
REgE acknowledge. See RESET sequence in the MPU flowchart in Figure 14

and the rising edge of 8S indicating

b

.

oo et o ! v AR

"PBIOU BSIMIBLIO §SBIUN ‘SIOA ('Z JO 86.1I0A By e pue $)10A g'() JO BBRIOA MO] B WOJ) PUR O PEOUIB)B) I8 SlUBWeINSeW Buiwi) (3 ON
AJUO 80UBIB§B1 JO} UMOYS Y0P 3
.

S e G s e e s e U e e s e Y e e Y I o O
T\ ST on
_ 7 _f __Asns
D W 2 W A AR Y S S a1
R Y X s
X Xve

/ \ X s

d

104 HOd
VWA MON MAN YINA HDD YOOV 800V dd

1 HSN 1SN HOd 12

HAL Al

1-160

eleq

QU0 (i) AT
6443 0 QY1
1+0d Jd {WN) (IWN) SJds.
M3N MON 4444 J33d JJ34 4344 21 -dSUL -dS0L-dS6-dS 8-dS £~dS 9-dS G-dS ¥~dS £€-dS Z-dS 1-dS 4444 Od d

sng
S X O X C X O I X0 X 0 X I X T X X O ssap
[U A e e Y
[s e e e Y e e Y Y I o
.

[1+u] wu _m:E_D¢E_o_.+E_m_+E_3¢Emm_.+£~,+E_:+E_o—+svm+E_m+E_n+E~m+E_m+E_v+E_m+E_N+E__.+E_ woj-w|z-w|
o >
4184 80uaNbag YAy J0108A pue Bunoelg 1dnusaly| uononasy|
uonannsuy wauny jo
3oAD 1587

DNIWIL LdNYHILNI INN OGNV DYl — 8 JHNOI4

L - ! v HR T

'PRIOU BSIMIBLIO SSBIUN “SI0A (7 40 8BeYOA YBIY € PUE S1jOA §') JO BBRIOA MO) B WL} PUE O} PADLSIBA! BIE SIUBWAINSEaU Bulwi| 310N
AUO 90UBJ3JB1 JO} UMOYS XO0(0 3
.

pipSnlninlnlnlininlnlnlnlnlnlnE
N\ [/ o
— J e
| S | A x x S8
I

/ L -

YA 10d MON HOd MeN

%D*xxxxxxxxxxg

Quld
S2dy
1+0d MBN Dd MaN 4444¢ 13348 9434% 3434% - 1 -dS EEEE]
xxxxxxEExxxxﬁz
O Y Y Y Y e e Y e I e O e A B P
S U e e e Y e 0 Y I

_+:__+c_w+e_m+s_~+e_o+s_m+s_v+£~m+E_N+E_:E_ E_TE_N»E_

Mot e ——>
yaie4 8ousnbag yala4 J0109A pue Bunoels 1dnuBluy uonONIISU|
UONONJISU| wauny jo
9jOAD 15€7

ONIWIL LdNYY3LNI DYIJ — 6 3HNOIL

1-161

FIGURE 10 — CLOCK GENERATOR

|
+5V |
|
|
1 STRETCH
CLR |s Optional
o] Q pm—
RDY
74L574 MRD 'Cucun
U1t

£ =4 -

{>Q to System and Processor

CDE to System
1500

Ob
@2
oz
S
)
S
|
=)
<|

pago 14 "CLRG 3.3 k0@

2N2222A

NOTE: If optional circuit is not included the CLR and PRE
inputs of U2 and U3 must be tied high.

MROY

STRETCH

FIGURE 11 — READ-MODIFY-WRITE INSTRUCTION EXAMPLE (ASL EXTENDED INDIRECT)

Memory Memory
Location Contents Contants Description
PC — $0200 $68 ASL Indexed Opcode
$0201 $OF Extended indirect Postbyte
$0202 463 Indirect Address Hi-Byte
$0203 $00 Indirect Address Lo-Byte
$0204 Next Main instruction
/‘—\

$6300 $E3 Effective Address Hi-Byte
$6301 $D8 Effective Address Lo-Byte
$E306 $5C Target Data

1-162

Ao e b oL e e TR -

PaIOU 3SIMIBUIO SS3IUN "SI0 0'Z J0 8BetioA UBIY e pue s10A g0 j0 36EII0A MO| B WOJ) PuE OF PaDUBIBJas BJe SIUBWAINSERW Bulil] 7
Buum
40 S35B3 150W BAIB 01 UMOYS $1 3[0A0 SNQ BIISOTWOD v "yYBIY Si (D) 10 J) PUB MO| SI M /Y BNIYM [BAIAIUI 341 BULIAD AJUD NI AUl AQ PaLIdssE aqmeleq |

1 310N wmml/

(
RN

‘S31ON

eeqg Ndn

SSAIPPY ‘M/H

SJds:

ONIWIL OS1 — €1 34NOI4

£ YWAY

b}

A ASNng

88% YA 26$

X X X

YWA oS €35 ymn 008 £95
XX X X X X

L4 90¢E3$ 3434¢ 9QE3s 34348 10£98 00€9$ Jd444¢

£0208

—X X X

X X X XX

2020¢

“ u _ oL+w _ 6+W _ g+w _ L+w _ 9+w _ G+w _ pw _

ONIWIL ASNS — Zi 3HNOI4

[oemw]

“118U| WeLN)
10 BjOAD 158

1-163

ot o ! v AR

‘910AD Y8y J030eA 1s1y Buunp ubiy st ASNA T

! ! 3Bpamoudy uen 1Jeyomoyy ayi ul uiod Aue wos 9dusnbas

0 L abpajmouypy Jus 10801 a1 Buuslue Ut nsal (1M 353y Bunessy ‘| 'SILON
| 0 |abpajmouxoy 18say 10 idnuau|

0 o] Buiuuny

S8 | va aeg sng

B
Ne

1-164

I s

SNOILLONYLISNI 3608943 HOd4 LHVHIMOT4 — v1 3HNOI4

ADDRESSING MODES

The basic instructions of any computer are greatly en-
hanced by the presence of powertul addressing modes. The
EFB809E has the most complete set of addressing modes
*available on any microcomputer today. For example, the
EFBBOYE has 59 basic instructions; however, it recognizes
1464 different vanations of instructions and addressing
modes. The addressing modes support modern program-
ming techniques. The following addressing modes are avail-
able on the EF6809E :

Inherent (includes Accumulator)

immediate

Extended

Extended Indirect

Direct

Register

Indexed

Zero-Offset
Constant Oftset
Accumutator Offset
Auto Increment/Decrement
Indexed Indirect
Relative
Short/Long Relative Branching
Program Counter Relative Addressing

INHERENT (INCLUDES ACCUMULATOR)

In this addressing mode, the opcode of the instruction
contains all the address information necessary. Examples of
inherent addressing are: ABX, DAA, SWi, ASRA, and
CLRB

IMMEDIATE ADDRESSING

In immediate addressing, the effective address of the data
1S the location immediately following the opcode (i.e., the
data 1o be used in the instruction immediately following the
opcode of the instruction). The EFB809E uses both 8- and
16-bit immediate values depending on the size of argument
specified by the opcode. Examples of instructions with im-
mediate addressing are

LDA #$20
LDX #$F000
LDY #CAT

NOTE

signifies immediate addressing; $ signifies hexadeci-
mal value to the EF6809 assembiler.

EXTENDED ADDRESSING

In extended addressing, the contents of the two bytes
immediately following the opcode fully specify the 16-bit
effective address used by the instruction. Note that the
address generated by an extended instruction defines an
absolute address and is not position independent. Examples
of extended addressing include

LDA CAT
STX MOUSE
LOD $2000

EXTENDED INDIRECT

As a special case of indexed addressing (discussed
below), one level of indirection may be added to extended
addressing. In extended indirect, the two bytes following the
postbyte of an indexed instruction contain the address of the
data

LOA [CAT)
LDX [$FFFE]
STU {DOG)

DIRECT ADDRESSING
Direct addressing is similar to extended addressing except

that only one byte of address follows the opcode. This byte
specifies the lower eight bits of the address to be used The
upper eight bits of the address are supplied by the direct
page register. Since only one byte of address is required in
direct addressing, this mode requires less memory and exe-
cutes faster than extended addressing. Of course, only 256
locations (one pagel can be accessed without redefining the
contents of the DP register. Since the DP register 1s set to
$00 on reset, direct addressing on the E F6809E is upward
compatible with direct addressing on the 6800. Indirection
is not allowed in direct addressing. Some examples of direct
addressing are

LDA where DP = $00

LOB where DP=$10

LDD < CAT

NOTE

< 1s an assembler directive which forces direct
addressing

REGISTER ADDRESSING

Some opcodes are followed by a byte that defines a
register or set of registers to be used by the instruction This
1s called a postbyte. Some examples of register addressing
are

TFR X, Y Transfers X into Y

EXG A B Exchanges A with B

PSHS A, B, X, Y PushY, X, Band A onto S
stack

PULU X, Y, D Pull D, X, and Y from U
stack

INDEXED ADDRESSING

in all indexed addressing, one of the pointer registers (X,
Y. U, S, and sometimes PC) is used in a calcuiation of the ef-
fective address of the operand to be used by the instruction
Five basic types of indexing are available and are discussed
befow. The postbyte of an indexed instruction specifies the
basic type and variation of the (addressmg mode, as well as
the pointer register to be used. Figure 15 Iists the legal for-
mats for the postbyte. Table 2 gives the assembler form and
the number of cycles and bytes added to the basic values for
indexed addressing for each variation

b

e

FIGURE 15 — INDEXED ADDRESSING POSTBYTE
REGISTER BIT ASSIGNMENTS

ZERO-OFFSET INDEXED — !n this mode, the selected
pointer register contains the effective address of the data to

- ndexed be used by the instruction. This is the fastest indexing mode.
Post-Byte Register B A i Examples are:
Fle[s[a]3]2]1]¢0 Mode DD O, X
0f R!R|[d] d] o] d] d]|EA=_R+ 5BitOffset LDA S
1 RIR|OG] O 0j]o0o] o0 R+
y[R|R[iJ]O]JO]oO] 1 R+ + CONSTANT OFFSET INDEXED — In this mode, twos
" TRIRIlO|O]O]| 1] 0 -R complement offset and the contents of one of the pointer
vl RIR]| ol ol 1 1 _-R registers are added to form the effective address of the
1T RIR] :loli1]o]o EA = .R +0 Offset operand. The pointer register’s initial content is unchanged
" RIR] 1] 0] 1]0]1[EA=RG+ ACCBOffset by the addition.)
T RT R T ol 1111 0]J€EA=.R + ACCA Offset Three §ozes of offset are available:
"I R{ R] 1] 0] 0] 0] €A = R +8BiOffset 5-bit {16 to +15)
"I R]A| i] 1] 0] 0] 1 |EA=_R+16BitOffset 8-bit (-128 to +127)
) R| R i 1 0 1 1 EA = ,R + D Offset 16-bit (— 32768 to + 32767)
1 x x i 1 1 G| O | EA = .PC +8 Bit Offset The twos complement 5-bit offset is included in the post-
TT <1 <1 [77110/ 1] €EA=.PC +16 Bt Offset byte and, therefore, is most efficient in use of bytes and
T RTRI AT [[0 EA = [Address) cycles. The twos compiement 8-bit offset is contained in a
e single byte following the postbyte. The twos complement
'——Addressing Mode Field 16-bit offset is in the two bytes following the postbyte. in
most cases the programmer need not be concerned with the
Indirect Field size of this offset since the assembler will select the optimal
{Sign Bit when b7 = 0} size automatically.
Examples of constant-offset indexing are:
g Field: RR LDA 23.X
00 = X LDX ~-28
x = Don't Care 01 =Y LDY 300,X
d = Offset Bit 10 =
i=0=Nm Indirect 1(1) = ls) LU CATY
1= Indirect
TABLE 2 — INDEXED ADDRESSING MODE
Non indirect Indirect
Type Forms Assembiler Postbyte +|+ Assembler Postbyte + |+
Form Opcode ~| ¢ Form Opcode ~1f
Constant Offset From R No Offset R 1RRO0100 0l0 LRl JRR10100 3
{2s Complement Offsets) 6-Bit Otfset n, R QORRnnnNN 110 defaults to 8-bit
8-Bit Offset n, R 1RR01000 11 [n, R] t1RR11000 411
16-8it Offset n, R 1RR0O1001 412 {n, R] 1RR11001 712
Accumulator Offset From R A Register Offset A, R 1RR00110 1/0 {A, Rl 1RR10110 410
(2s Complement Offsets} B Register Offset B, R 1RR00101 110 (B, R) 1RR10101 410
D Register Offset D. R 1RR01011 4/0 (D, R} 1RR11011 710
Auto Increment/Decrement R Increment By 1 R+ 1RRO0000 210 not allowed
increment By 2 R+ + TRRO0001 | 310 | LRA++1 | 1RRi1000t | 6]0
Decrement By 1 ,—R 1RRO0010 2{0 not allowed
Decrement By 2 .~ -R 1RRO0011 3]0 {.— -Rl] 1RR10011 610
Constant Offset From PC 8-Bit Offset n, PCR 1xx01100 111 [n, PCR] 1xx11100 411
{2s Complement Offsets) 16-Bit Offset n, PCR 1xx01101 5|2 [n, PCR] 1xx11101 8|2
Extended Indirect 16-Bit Address - - -] - in} 10011111 512
R=X Y UorS RR:
x = Don't Care 00=X
01=Y
10=U
M=Ss

+

1-166

and * indicate the number of additional cycles and bytes respectively for the particular indexing variation.

ACCUMULATOR-OFFSET INDEXED — This mode is
similar to constant offset indexed except that the twos com-
plement vaiue in one of the accumulators (A, B, or D) and
the contents of one of the pointer registers are added to form
the effective address of the operand. The contents of both
the accumulator and the pointer register are unchanged by
the addition. The postbyte specifies which accumulator to
use as an offset and no additional bytes are required. The ad-
vantage of an accumuiator offset 1s that the value of the off-
set can be calculated by a program at run-time

Some examples are

LbA B, Y
LDX D, Y
LEAX B, X

AUTO INCREMENT/DECREMENT INDEXED - In the
auto increment addressing mode, the pointer register con-
tains the address of the operand. Then, after the pointer
register is used, it is incremented by one or two. This ad-
dressing mode is useful in stepping through tables, moving
data, or creating software stacks. In auto decrement, the
pointer register is decremented prior to use as the address of
the data. The use of auto decrement is similar to that of auto
increment, but the tables, etc., are scanned from the high to
tow addresses. The size of the increment/decrement can be
either one or two to allow for tables of either 8- or 16-bit data
to be accessed and is selectable by the programmér‘ The
pre-decrement, post-increment nature of these modes
allows them to be used to create additional software stacks
that behave identically to the U and S stacks

Some examples of the auto increment/decrement
addressing modes are:

LDA X+
STD Y+ +
Lo, -Y
LDX --S

Care should be taken in performing operations on 16-bit
pointer registers (X, Y, U, S) where the same register is used
to calculate the effective address.

Consider the foltowing instruction:

STX 0,X+ + (X initialized to 0)
The desired result is to store a zero in locations $0000 and
$0001, then increment X to point to $0002. In reality, the fol-
lowing occurs:

0~—temp caiculate the EA; temp is a holding register
X+2—+X perform auto increment
X~ {temp) do store operation

INDEXED INDIRECT
All of the indexing modes, with the exception of auto in-
crement/decrement by one or a + 5-bit offset, may have an
additional level of indirection specified. In indirect address-
ing, the effective address is contained at the location
specified by the contents of the index register plus any off-
set. In the example below, the A accumulator is loaded in-
directly using an effective address calculated from the index
register and an offset.
Before Execution
A=XX (don't care)
X = $FO00

$0100 LDA {$10,X] EA is now $F010

$FO10 $F1 $F150 is now the
$FO11 $50 new EA
$F150 $AA

After Execution
A=$AA (actual data loaded)
X = $F000

All modes of indexed indirect are included except those
which are meaningless {e.g., auto increment/ decrement by
1 indirect}. Some examples of indexed indirect are:

LDA [X]
LDD (10,8]
LDA [B.Y]
LDD [X+ +]

RELATIVE ADDRESSING

The bytels) following the branch opcode is (are) treated as
a signed offset which may be added to the program counter
It the branch condition is true, then the caiculated address
(PC + signed offset) is loaded intd the program counter.
Program execution continues at the new location as indi-
cated by the PC; short {one byte offset) and long (two bytes
offset) relative addressing modes are available. All of
memory can be reached in long relative addressing as an ef-
fective address interpreted modulo 216, Some examples of
relative addressing are:

BEQ CAT {short)
BGT DOG (short}
CAT LBEQ RAT (tong)
DOG LBGT RABBIT {long)
.
.
L]
RAT NOP

RABBIT NOP

PROGRAM COUNTER RELATIVE
The PC can be used as the pointer register with 8- or 16-bit
signed offsets. As in relative addressing, the offset is added
to the current PC to create the effective address. The effec-
tive address is then used as the address of the operand or
data. Program counter relative addressing is used for writing
position independent programs. Tables related to a particular
routine wilt maintain the same relationship after the routine is
moved, if referenced relative to the program counter
Examples are:
LDA CAT, PCR
LEAX TABLE, PCR
Since program counter relative is a type of indexing, an
additional level of indirection is available.
LDA [CAT, PCR]
LDU [DOG, PCR)

INSTRUCTION SET

The instruction set of the EFB809E is similar to that of
the E £6800 and is upward compatible at the source code le-
vel. The number of opcodes has been reduced from 72 to
59, but because of the expanded architecture and additional
addressing modes, the number of available opcodes (with
different addressing modes) has risen from 197 to 1464.

Some of the new instructions are described in detall
befow.

PSHU/PSHS

The push instructions have the capability of pushing onto
either the hardware stack (S) or user stack (U} any single
register or set of registers with a single instruction

PULU/PULS

The pull instructions have the same capability of the push
instruction, in reverse order. The byte immediately following
the push or pull opcode determines which register or
registers are to be pushed or pulled. The actual push/pull se-
quence is fixed, each bit defines a unique register to push or
pull, as shown below.

Push/Puil Postbyte Stacking Order

r_[I l l] l l J Pull Order
| C . ccn cc
A A
L B B
DPR oP
X X Hi
v X Lo
S/U Y Hi
pC Y Lo
U/S Ri
U/S Lo
PC Hi
PC Lo
t
Push Order
Increasing
Memory

TFR/EXG

Within the EFB809E, any register may be transferred to
or exchanged with another of like size; i.e., 8-bitto8-bitor
16-bit to 16-bit. Bits 4-7 of postbyte define the source
register, while bits 0-3 represent the destination register
These are denoted as follows

Transfer/Exchange Postbyte
[lSou'vceI TD'esllr;ano‘n]
r b Sy

Register Field

0000=D (A:8} 1000= A
0001 =X 1001=8
0010=Y 1010=CCR
oo1=u 1011=DPR
0100=S8
0101=PC
NOTE
Al other combinations are undefined and INVALID.
LEAX/LEAY/LEAU/LEAS

The LEA (load eftective address} works by calculating the
effective address used in an indexed instruction and stores
that address value, rather than the data at that address, in a
pointer register. This makes all the features of the internal
addressing hardware available to the programmer. Some of
the implications of this instruction are illustrated in Table 3

The LEA instruction also allows the user to access data
and tables in a position independent manner. For example:

LEAX MSGI1, PCR
LBSR PDATA (Print message routine}
L
.
MSG1 FCC ‘MESSAGE’

This sample program prints: ‘MESSAGE’. By writing
MSG1, PCR, the assembler computes the distance between
the present address and MSG1. This result is placed as a
constant into the LEAX instruction which will be indexed
from the PC value at the time of execution. No matter where
the code is located when it is executed, the computed offset
from the PC will put the absolute address of MSG1 into the X
pointer register. This code is totally position independent.

The LEA instructions are very powerful and use an internal
holding register (temp). Care must be exercised when using
the LEA instructions with the auto increment and auto
decrement addressing modes due to the sequence of internal
operations. The LEA internal sequence is outlined as follows

tEAa b+ {any of the 16-bit pointer registers X, Y,
U, or S may be substituted for 3 and b.)

1. b—temp (calculate the EA)

2. b+1—b {modify b, postincrement)

3 temp—a (load a)

LEAa ,-b

(calculate EA with predecrement)
{modity b, predecrement}

{load a)

1. b-1—temp
2 b-1—b
3 temp—a

TABLE 3 — LEA EXAMPLES

Instruction Opr Comment
LEAX 10X | X+ 10 =X Adds 5-Bit Constant 10 to X N
LEAX 500, X | X + 500 —= X Adds 16-Bit Constant 500 to X -
LEAY AY | Y+A —Y Adds 8-Bit A Accumulator to Y
LEAY D,Y | Y+D —Y Adds 16-Bit D Accumuiator to Y
LEAU —-10, U u-1 —~U Substracts 10 from U
LEAS -10,S | S-10 —~S Used to Reserve Area on Stack
LEAS 10,S | S+ 10 —~S Used to ‘Clean Up’ Stack
LEAX 5, S| S+5 —X Transters As Well As Adds

[——

1-168

Auto increment-by-two and auto decrement-by-two instruc-
tions work similarly. Note that LEAX ,X+ does not change
X, however LEAX, — X does decrement X.LEAX 1,X should
be used to increment X by one

MUL

Multiplies the unsigned binary numbers in the A and B ac-
cumulator and places the unsigned result into the 16-bit D
accumulator. This unsigned multiply also allows multiple-
precision multiplications

LONG AND SHORT RELATIVE BRANCHES

The EF6809E has the capability of program counter
refative branching throughout the entire memory map. In
this mode, if the branch is to be taken, the 8- or 16-bit signed
offset is added to the value of the program counter to be
used as the effective address. This allows the program to
branch anywhere in the 84K memory map. Position indepen-
dent code can be easily generated through the use of relative
branching. Both short (8 bit) and fong (16 bit) branches are
available

SYNC

After encountering a sync instruction, the MPU enters a
sync state, stops processing instructions, and waits for an
interrupt. if the pending interrupt is non-maskable (NMH} or
maskable (FIRQ, IRQ) with its mask bit (F or) clear, the pro-
cessor will clear the sync state and perform the normal inter-
rupt stacking and service routine. Since FIRQ and IRQ are
not edge-triggered, a low levet with a minimum duration of
three bus cycles is required to assure that the interrupt will
be taken. If the pending interrupt is maskable (FIRQ, IRQ)
with its mask bit (F or 1) set, the processor will clear the sync
state and continue processing by executing the next in-line
instruction. Figure 16 depicts sync timing

SOFTWARE INTERRUPTS

A software interrupt is an instruction which will cause an
interrupt and its associated vector fetch. These software in-
terrupts are useful in operating system calls, software
debugging, trace operations, memory mapping, and soft-
ware development systems. Three levels of SWI are available
on this EFB809E and are prioritized in the following order:
SWI, SWI2, SWI3.

16-BIT OPERATION

The EFG809E has the capability of processing 16-bit
data. These instructions include loads, stores, compares,
adds, subtracts, transfers, exchanges, pushes, and pulls.

CYCLE-BY-CYCLE OPERATION

The address bus cycle-by-cycle performance chart (Figure
16) illustrates the memory-access sequence corresponding
to each possibie instruction and addressing mode in the
EFB809E. Each instruction begins with an opcode fetch.
While that opcode is being internally decoded, the next pro-
gram byte is always fetched. (Most instructions will use the
next byte, so this technique considerably speeds through-
put.) Next, the operation of each opcode will follow the
fliowchart. VMA is an indication of FFFF1g on the address
bus, R/W=1 and BS = 0. The tollowing examples iitustrate
the use of the chart

1-169

Example 1: LBSR (Branch Taken)
Before Execution SP = FOOO

.
$8000 LBSR CAT

$A000 CAT

CYCLE-BY-CYCLE FLOW

Cycle # | Address | Data | R/W |Description
1 8000 17 1 |Opcode Fetch
2 8001 20 1 [Offset High Byte
3 8002 00 1 Offset Low Byte
4 FFFF - 1 |VMA Cycle
5 FFFF . 1 |VMA Cycle
6 AQ00 * 1 |Computed Branch Address
7 FFFF * 1 |VMA Cycle
8 EFFF 80 0 {Stack High Order Byte of
Return Address
9 EFFE 03 0 [Stack Low Order Byte of
Return Address
Example 2: DEC (Extended)
$8000 DEC $A000

$A000 FCB $80

CYCLE-BY-CYCLE FLOW

Cycle # | Address | Data | R/W [Description
1 8000 7A 1 Opcode Fetch
2 8001 AQ 1 |Operand Address, High Byte
3 8002 00 1 Operand Address, Low Bvte
4 FFFF * 1 |[VMA Cycle
5 A000 80 1 Read the Data
6 FFFF - 1 VMA Cycle
7 FFFF JF O [Store the Decremented Data

* The data bus has the data at that particular address.

INSTRUCTION SET TABLES

The instructions of the EF6809E have been broken
down into five different categories. They are as foliows:

8-bit operation {Table 4)

16-bit operation {Table &)

Index register/stack pointer instructions (Tabie 6)

Relative branches {long or short) {Table 7)

Muiscellaneous instructions (Table 8)

Hexadecimal values for the instructions are given in
Table 9

PROGRAMMING AID

Figure 18 contains a compilation of data that will assist
you in programming the £ F6809E.

b

e

PaI0U SIMIBYIO SSAYUN ‘SHOA () 40 @Be1joA yBIY e pue SHOA g JO 3B.IOA MO| e WOJ§ pue O} PAOUIBa) BJE SJUBWBINSEAW Bului] €

‘INAS 1O 100 10553001d 3y} Buuq 01 Asessadau si

81PAD U0 Ajuo YBNOYLje uaxe) aq |iim 1dnualu 18y} 3aluesend 01 $3[OAD 8BIYL JO) MO| PieY 3Q ISNW DY LY PUe DY) Jeejo e Silq Ysew §| 7

{Buiwr | 1dnusdIU)) § pue g SeING14 Lo W SB JJDAD SIYL YUM LIBIS ([IM

6urssa001d 1dnuBIUl pue ybiy urewsd) 1M D1 (DH] JO QHIJ POASEWIUN UE 10 NN} PAIGEIE S1 1ANLIBIUN BUL i JOABMOH | +)d UOUEdD]|
SSAIPPE WOJ) YO13} UOHDNMIISUI U 3q |[IM 3jOAD SIYL PUe MO} 06 jjim 31 “Palsanbes si 1dn1iaiul 3yl UBYM 13§ S1 1 YSBUS PAIIOOSSE 3yl 4| *| “STLON

Sodi—m fe—

L @lON 295

Z 910N 865 | N
_um_r _\Al M
I / \

—
\ XX
_
_

i G G G
) G - T

\ \ X
XX

|
_
|
\ |) I
|
I
|

et A | et »le »l
Tuononnsu’™ M TTanoexy | yoway uononasuy'

2UAS Jo abpaimouxdy duks apood(snoIaLg JO
BOAD 1587 QUAG BPPA] 15

ONIWIL ONAS — 91 3HNOH

=
Z I

]
=

an

VYINAY
S8
ve

M/Y

eleq

ssa1ppy

0

! el o

1-170

FIGURE 17 — CYCLE-BY-CYCLE PERFORMANCE (Sheet 1 of 9)

Opcode Fetch -
NNNN -

Opcode = ‘

10 oy T E

No Opcode, 2nd Byte
NNNN +1

2nd Byte=
10 or 112

Relative Addressing

Mode v @

8CC. BCS. BEQ. BGE, BGT, BH!,
) J BHS, BLE, BLD, BLS, BLT. BMI, y

Offset High gg; SCLC %F\(/AS BRN. Offset
NNNN +1(2) NNNN + 1
Y s
Offset Low '
NNNN + 2(3} Don't Care
+ FFFF :
Don't Care :
FFFF

Take Don't Care
Branch? No
Sub Dest Addr 7
Don't Care)
NOTES FFFF :
1. Each state shows { :
Data Bus Ottset High Return Addr Low
Address Bus NNNN +1(2} Stack -
2. Address NNNN is location of opcode +
Return Addr High
3. If opcode is a two byte opcode subsequent Stack
addresses are in parenthesis (—) ‘
Y

4. Two-byte opcodes are highhighted

1-171

FIGURE 17 — CYCLE-BY-CYCLE PERFORMANCE (Sheet 2 of 9}

Q

inherent Addressing Mode

!

ABX RTS ASLA/B MULI I
ASRA/B
Oon’t Care Don't Care CLRA/B Don’t Care Don't Care Direct Page
COMA/B Register
NNNN+ 1 NNNN + 1 DAA NNNN + 1 NNNN +1(2) -
tack
!) DECA: 8 ! ! 2
INCA/B ¥
Don't Care PC thgh LSLA/B Don't Care DOon't Care
LSRA/B B Register
FEFF Stack FFFF FFFF
NEGA/B Stack
‘ NOP ‘ i {
ROLA/B s
PC Low Don't Care PC Low
RORA/B A Register
Stack SEX FFFF Stack S
T TsTa8 | T 7 tack
Don't Care Don't Care Don't Care PC High ‘
Condition
FFEF NNNN + 1 FFEF Stack Code Regsster
{ { Stack
Don't Care User Stack Low ‘
FFFF Stack Don't Care
v ¥ FEFF
Don't Care User Stack High ‘
FFFF Stack Interrupt
{ ‘ Vector High
FFFX
Oon't Care Y Register Low {
FFFF Stack
ntecrupt
‘ ‘ Vector Low
Oon't Care Y Register High FFEX +1
FFFF Stack {
‘ ‘ Don't Care
Don't Care X Register Low FFFF
FFFF Stack
Don't Care X Register High
FFFF Stack

|

1-172

FIGURE 17 — CYCLE-BY-CYCLE PERFORMANCE (Sheet 3 of 9) .

o
a!nherent AddressingMode ¥]
&)] S*NCI Cwq — :
Don't Care Don't Care CC Mask Condiuon -
Code Regrster —
NNNN + 1 NNNN « 1 NNNN + 1
Stack
-y Y
CCR Don’t Care h
Don’t Care
Stack NNNN + 2 Don't Care
3 State
I 3-State
Don’t Care =
No -
interrupt FFFF)
Present? { Interrupt
Present?
Yes PC Low
A Register Stack
Don’t Care z
Stack ‘ Interrupt
3 State Vector High
‘ PC High -
FFFX
B Register Stack ‘
Stack
< { Interrupt
‘ User Stack Low Vector Low
Duect Page Stack FFFX +1
Register { ‘
Stack
‘ User Stack High Don't Care
Stack FFFF
X Register High

Stack }

{ Y Register Low

Stack
X Register Low -

Stack }‘

; Y Register High

Stack
Y Register High

Stack ;

‘ X Register Low
Stack
Y Register Low { E
Stack E
‘ X Register High
Stack

User Stack High }
Stack

Direct Page
{ Register E
User Stack Low Stack
Stack {)
‘1—— B Register :
PC High Stack -
Stack ‘
‘ A Register
PC Low Stack
Stack {
y -
Don't Care
Stack

1

FIGURE 17 — CYCLE-BY-CYCLE PERFORMANCE (Sheet 4 of 9) -

immediate Addressing Mode { @ '
o f

PULU PSHU 1 N
PULS PSHS -
Post Byte Post Byte :
Fost Byte Post Byte
NNNN + 1 Bitd NNNN+ 1 Bit 4
{ Set? ‘ Set?
Don't Care Yes Don't Care Yes
FFFF X Register High FFFF X Register Low
‘ Stack ‘ Stack
Don't Care ‘ Don't Care * ; i
FFFF X Register Low FFFF X Regster High)
Stack * Stack
Oon't Care
Stack -

Post Byte
Bit3

Post Byte
B b

Set’ Post Byte Set’
Condition Bt 7
Code Register Set? Yes
Stack Y Register High Direct Page
Yes Register
Stack
‘ PC Low Stack
Stack
Post Byte Y Register Low
Bit 1 ‘
5 Stack
Set 1 PC High Post Byte
Bit 2
Yes
Stack Set?
A Register
Post Byte
Stack B 6 k
> B Registes -
Set Post Byte -
Stack
Yes Bit6 C
Set?
Post Byte U/ S Stack
Bit 2 Pointer High
Set’ Stack U/S Stack Post Byte -
‘ Pointer Low Bit1 b
Stack Set?
B Register U/ S Stack :
Pointer Low l Yes .
Stack E
T Stack U:S Stack A Register
T Pointer High -
Stack
Stack E

Post Byte
Post Byte

81t 7
Set?

Post Byte
Post Byt
Bt 5

Yes
Direct Page Set? ,
Register PC High B
Stack Stack Condition i
‘ Y Register Low Code Register
t Stack Stack
PC Low ‘
Stack
T Y Register High
‘f Stack
Don't Care r____ i
Stack

[——

1-174

FIGURE 17 ~ CYCLE-BY-CYCLE PERFORMANCE (Sheet 5 of 9)

Immediate Addressing Mode I Direct Extended
Agdressing Addressing
TFR 3T All Instructions] paode Mode
l I Except Address Low Address High
Post Byte Post Byte gg:lsl NNNN + 1(2) NNNN + 1(2)
NNNN+ 1 NNNN + 1 PULS. ¢ ¥
‘ ‘ ;:: Don't Care Address Low
Don’t Care Don't Care EXG FEFF NNNN +2(3)
FFFF FFFF ;
{ l Don’'t Care
Don't Care Don't Care FFFF
FFFF FFFF
]
Don't Care Don‘t‘Cave
FFFF FFFF
)
Don’t Care Don’t‘Care
FEFF FFFF
Don‘t‘care
FFFF
Don't‘Cave
FFFF

1-175

FIGURE 17 — CYCLE-BY-CYCLE PERFORMANCE (Sheet6 of 9)

5 Indexed Addressing Mode }
Post Byte
NNNN + (2}
0 Offset 5-Bit Offset 8-Bi1t Otfset 16-Bit Offset A/B Oftset D Oftset
from R From R From R From R From R From R
Don’t Care Don't Care Ottset Ottset High Don’t Care Don't Care
NNNN + 2(3) NNNN + 2(3) NNNN + 2(3) NNNN + 2(3) NNNN + 213) NNNN + 2(3)
Don't Care Don't Care Ottset Low Don't Care Don't Care
FFFF FEFF NNNN + 314 FEFF NNNN + 34)
Don't Care Don't Care
NNNN + 4(51 NNNN + 4(5}
Don't Care Don't Care
FFFF FFFF
Don't Care Don't Care
FFFF FFFF
A
Yes
Indirect”
o Indirect High
XX XX
‘ XXXX
Indirect Low Constant Offset from R
XXX + 1 No Offset Index Register
8-Bit Otfset Index Register + Oftset Byte
‘ 16-Bit Offset index Register + Offset High Byte Otfset
Low Byte
Don t Care Accumulator Offset from R
FFFF A Register Offset index Register + A Register
B Regster Offset Index Register + B Register
D Regsster Offset index Register + D Register
Auto Increment’ Decrement R .
Increment by 2 Index Register
Decrement by 2 Index Register - 2

Constant Offset from PC

8 Bit Ottset
16-bit Offset

Extended Indrect
16-Bit Address

Program Counter + Oftset Byte

Program Counter + Otfset High Byte Oftset

Low

Byte

Address High Byte Addres Low Byte

The index register 15 incremented
tollowirg the -ndexed 3ccess

1-176

FIGURE 17 — CYCLE-BYCYCLE PERFORMANCE (Sheet 7 of 9) :

@ Indexed Addressing Mode I :

Post Byte :
NNNN + {2)
Inc/Dec Inc/Dec PC+16-Bit Extended PC+8-Bit ’
Rby1 R by 2 Offset Indirect Offset
Don’t Care Don’t Care Oftset High Address High Offset
NNNN +2(3) NNNN + 2(3} NNNN + 2(3) NNNN + 2(3) NNNN + 2(3) -
Don't Care Don't Care’ Ottset Low Address Low Don't Care
FFFF FFFF NNNN + 3(4) NNNN + 3t4) FFFF
Don't Care Don’t Care Don't Care Don’t Care -
FFFF FFFF NNNN + 4i5) NNNN +4(5) -
Don’t Care Don't Care
FFFF FFFF
+Don't Care
FFFF
Oon’t Care
FFFF
¥ y

Indir

Indirect High -
XXX X
‘ XXXX
Indirect Low Constant Offset from R b
No Offset Index Register
XXXX + 1 8-Bit Offset Index Register + Offset Byte)
; 16-81t Offset Index Register + Oftset High 8yte Offset
Low Byte
Don’t Care Accumulator Offset from R
FFRF A Register Offset Index Register + A Register -
B Register Offset Index Register + 8 Register
I D Register Offset Index Register + D Register
Auto Increment/ Decrement R
y Increment by 2 Index Register ™
Decrement by 2 Index Register -~ 2 -
D Constant Offset from PC
8-Bit Offset Program Counter + Ottset Byte
16-bit Oftset

Program Counter + Offset High Byte Oftset

Low Byte
Extended indirect

16-Bit Address

Address High Byte Addres Low Byte

-
The index register 15 incremented
following the indexed access

1-177

FIGURE 17 — CYCLE-BY-CYCLE PERFORMANCE {Sheet 8 of 9)

Eftective Address

ANDCC, JMP ADCA/B, STA/B STD, "$Ix
ORCC {All Except ADDA/B, (All Except STU. S
timmediate Immediate) ANDA/B, Immediate! BERAN
Only) BITA/B, Except
CMPA/B, immediate)
EODRA/B,
LDA/8, Register (Write)
ORA/8B, EA
SBCA/B,
A SuBA/8B
Data Register High Register High
(Write)
NNNN + 1 EA
‘ ‘ EA
3 Register Lo l
Don't Care gister Low Regsier Low
NNNN + 2 EA+1 (Wnte)
EA+1
Data
EA

&

Constant Offset from R
No Offset
5-Bit Otfset
8-8:1t Offset
16-Bit Offset

Accumulator Offset from R
A Regrster Offset
B8 Register Otfset
D Register Offset

Auto Increment Decrement R
Increment by 1
Increment by 2
Decrement by !
Decrement by 2

Constant Offset from PC
8 Bit Offset
16 Bit Ottset

Direct

Extended

immediate

.
The index register 15 \ncremented
toilowing the indexed access

1-178

Ettective Address (EA}

Index Register

ndex Register

index Register + Post Byte

index Register « Post Byte High Post Byte Low

index Register + A Regrster
ndex Register - B Register
index Register + D Register

Index Regws(ev:
~dex Regster
nagex Register
index Register -2

1

Program Counter - Offset Byte

Program Counter « Offset High Byte Of'set Low By«

Direct Page Register Adadress Low
Agdress High Address Low

NNNN -+ 1

FIGURE 17 — CYCLE-BY-CYCLE PERFORMANCE (Sheet 9 of 9)

D
Effective Address
ASL. ASR, TST JSR LEAS,
CLR, COM, (Al Except (All Except LEAV,
DEC. INC, tmmediate} immediate) LEAX,
LSL, LSR, LEAY
NEG. ROL, y (indexed Only}
RDR (Al Don’t Care
Except
immediate} Sub. Address
y y
Data Data Data High Don't Care Don't Care
EA EA EA FFFF FFFF
Don’t Care Don’t Care Data Low PC Low (Wnite)
FFFF FFFF EA+1 Stack
Data (Write) Don't Care Don’t Care PC High tWrite)
EA FFFF FFFF Stack

Y Y

! !

©

Constant Offset from R
No Offset
5-Bit Offset
8-Bit Offset
16-Bit Otfset

Accumulator Oftset trom R
A Register Offset
8 Register Offset
D Register Offset

Auto Increment/Decrement R
increment by 1
Increment by 2
Decrement by 1
Decrement by 2

Constant Offset from PC
8-8it Offset
16-B11 Offset

Dwect

Extended

Immediate

»
The index register is incremented
tollowing the mmdexed access

Effective Address (EA!

Index Register
Index Register
Index Register + Post Byte

Index Register + Post Byte High Post Byte Low

Index Register + A Register
ingex Register + B Register
Index Register + D Register

Index REQIS[E'.
Index Regwsrev.
Index Register -1
Ingex Register ~ 2

Program Counter + Offset Byte

Program Counter + Olfset High Byte Offset Low Byte

Oirect Page Register Address Low

Adgdress High Address Low

NNNN + 1

1-179

TABLE 4 — 8-BIT ACCUMULATOR AND MEMORY INSTRUCTIONS

Mnemonicis) |

“"Operation

ADCA, ADCB Add memory to accumulator with carry
ADDA, ADDB Add memory to accumulator
ANDA, ANDB And memory with accumulator

ASL. ASLA, ASLB

Anthmetic stuft of accumulator or memory left

ASR, ASRA, ASRB

Anthmetic shift of accumulator or memary night

BITA, BITB Bit test memory with accumulator
CLR, CLRA, CLR8B Clear accumulator of memory location
CMPA, CMPB Compare memory from accumulator

COM, COMA, COMB

Complement accumulator or memaory locauon

DAA

Decimal adjust A accumulator

DEC, DECA, DECB

Decrement accumulator or memory location

EORA, EORB Exclusive of memory with accumulator

EXG R1, R2 Exchange R1 with R2 {R1, R2 = A, B, CcC, DP)
INC, INCA, INCB Increment accumulator or memory (ocation
LDA, LDB Load accumulator from memory

LSL, LSLA, LSLB

Logical shift left accumulator or memory location

LSR, LSRA, LSRB

Logica! shift night accumulator or memory location

MUL Unsigned multiply (A x 8 — D
NEG, NEGA, NEGB Negate accumulator or memory
ORA, ORB Or memory with accumulator

ROL, ROLA, ROLB

Rotate accumulator or memory left

ROR, RORA, RORB

Rotate accumulator of memory right

SBCA, SBCB Subtract memory from accumulator with borrow
STA, STB Store accumulator to memory

SUBA, Su8B Subtract memory from accumulator

TST, TSTA, TST8 Test accumulator or memory location

TFR R1, R2 Transfer R1 1o R2 (R1, R2 = A, B, CC, DP}

NOTE: A, B, CCorDPm

ay be pushed to (pulled from) either stack with PSHS, PSHU (PULS,

PULU) instructions
TABLE 5 — 16-BIT ACCUMULATOR AND MEMORY INSTRUCTIONS

r Mnemonic{s) Operation

ADDD Add memory to D accumulator

CMPD Compare memory from D accumulator

EXG D, R Exchange D with X, Y. S, U or PC

LOD toad D accumulator from memory

SEX Sign Extend B accumulator into A accumulator
STD Store D accumulator to memory

SUBD Subtract memory from D accumulator

TFR D, R Transfer Dto X, Y. S, Uor PC

TFR R, D Transter X, Y, S, Uor PCto D

NOTE: D may be pushed (pulled) to either stack with PSHS, PSHU (PULS,
PULU) instructions

TABLE 6 — INDEX REGISTER/STACK POINTER INSTRUCTIONS

Instruction Description
CMPS, CMPU Compare memory from stack pointer
CMPX, CMPY Compare memory from index register
EXG R1, R2 Exchange D, X. Y. S. U or PCwith D. X, Y, S, UorPC
LEAS, LEAU Load eftective address into stack pomnter
LEAX, LEAY Load effective address into index register
LDS. LDU Load stack pointer from memory
LDX, LDY Load index register from memory
PSHS Push A. B, CC. DP, D, X_ Y, U, or PC onto hardware stack
PSHU Push A, B, CC. DP, D. X, Y. S, or PC onto user stack
PULS Pull A, B, CC. DP, D, XY, U or PC from hardware stack
PULU Pull A. B, CC. DP. D, X. Y. S or PC trom hardware stack
STS, STU Store stack pointer to memory
STX, STY Store index register to memory
TFR R1. R2 Transfer D, X. ¥, S, Uor PClo D X, Y. S, Uor PC
ABX Add B accumulator to X iunsigned}

1-180

[——

TABLE 7 — BRANCH INSTRUCTIONS

Instruction Description
SIMPLE BRANCHES
BEQ, LBEQ Branch it equal
BNE. LBNE Branch if not equat
BMI, LBM! Branch «f minus
BPL, LBPL Branch if plus
BCS. LBCS Branch f carry set
BCC. LBCC Branch if carey clear
BVS. LBVS Branch if overflow set
BVC. LBVC Branch if overflow clear
SIGNED BRANCHES
BGT, LBGT Branch f greater (signedi
BVS, LBVS Branch if invalid 2's complement result
BGE, LBGE Branch «f greater than or equal tsigned}
BEQ, LBEQ Branchif equal
BNE, LBNE Branch if not equa!
BLE, LBLE Branch if less than or equal (signed)
BVC. LBVC Branch if valid 2's complement result
BLT, LBLT Branch «f less than {signed}
UNSIGNED BRANCHES
BHI, LBHI Branch if higher (unsigned)
BCC. LBCC Branch «f higher or same tunsigned)
BHS, LBHS Branch f ligher or same tunsigned)
BEQ. LBEQ 8ranch if equal
BNE, LBNE Branch it not equat
BLS, LBLS Branch if lower or same iunsigned)
8CS, LBCS Branch if lower (unsigned}
BLO. LBLO Brancn if lower tunsigned)
OTHER BRANCHES
BSR, LBSR Branch 1o subroutine
BRA, LBRA Branch always
BRAN, LBRN Branch never
TABLE 8 — MISCELLANEOUS INSTRUCTIONS
Instruction Description
ANDCC AND condition code register
CWAI AND condition code register, then wait for interrupt
NOP No operation
ORCC OR condition code register
JMP Jump
JSR Jump to subroutine
RTI Retuin from interrupt
RTS Return from subroutine

SWI, SWI2, SWI3

Software interrupt (absolute ndirect!

SYNC

Synchronize with interrupt iine

1-181

TABLE 9 — HEXADECIMAL VALUES OF MACHINE CODES

OP | Mnem Mode | ~ 1 OP | Mnem Mode | ~ 1 OP | Mnem Mode |~ [
03] NEG Direct 16 2 30 LEAX indexed | 4+ | 2+ 60 NEG Indexed [6+ | 2+
o1 | 1‘ 31 | LEAY 4+ |2+] 61 | *

02 * 32 LEAS 4+ 2+ 62 d

03 coM 6 2 33 LEAU indexed {4+ | 2+ 63 COM 6+ | 2+
04 LSR 6 2 34 PSHS Immed |5+ 2 64 LSR 6+ 2+
05 » 35 PULS Immed | 5+ 2 65 -

06 ROR 6 2 36 PSHU Immed {5+ 2 66 ROR 6+ 2+
07 ASR 6 2 37 PULU immed | 5+ 2 67 ASR 6+ 2+
08 ASL, LSL 6 2 38 - - 68 ASL, LSL 6+ 2+
09 ROL 6 2 39 RTS Inherent | 5 1 69 ROL 6+ | 2+
0A DeC 6 2 3A ABX 3 1 6A DEC 6+ 2+
oz} * t 3B RTt 6/15] 1 68 *

oC INC 6 2 3C CWAI 22042 6C INC 6+ 2+
oD TST 6 2 30 MUL Inherent| 11 1 6D ST 6+ | 2+
OE JMP 3 2 3E * - 6E JMP 3+ 2+
OF CLR Direct | 6 2 3F Swi inherent | 19 1 6F CLR indexed {6+ 2+
10 Page 2 - - - 40 NEGA Inherent | 2 1 70 NEG Extended| 7 3
1 Page 3 - - - 41 * Vil » A

12 NOP Inherent | 2 1 42 * 72 .

13 SYNC Inherent| =24 1 a3 COMA 2 1 73 COM 7 3
14 - 44 LSRA 2 1 74 LSR 7 3
15 * 45 * 75 *

16 LBRA Relative { & 3 46 RORA 2 1 76 ROR 7 3
17 LBSR Relatuve | 9 3 47 ASRA 2 1 77 ASR 7 3
18 * 48 ASLA, LSLA 2 1 78 ASL, LSL 7 3
19 DAA inherent | 2 1 49 ROLA 2 1 79 ROL 7 3
1A ORCC Immed | 3 2 4A DECA 2 1 TA DEC 7 3
18 * - 48 * 8 .

1c ANDCC Immed | 3 2 4C INCA 2 1 7C INC 7 3
10 SEX Inherent | 2 1 4D TSTA 2 1 70 ST 7 3
1E EXG Immed } 8 2 4E * 7€ JMP \] 4 3
1F TFR Iimmed | 6 2 4F CLRA Inherent | 2 1 7F CLR Extended{ 7 3
20 BRA Relative | 3 2 50 NEGB inherent] 2 1 80 SUBA Immed |2 2
21 BRN \ 3 2 51 * 81 CMPA {k 2 2
22 BHI 3 2 62 * 82 SBCA 2 2
23 BLS 3 2 53 CcCoMB 2 1 83 SuUBD 4 3
24 BHS, BCC 3 2 54 LSRB 2 1 84 ANDA 2 2
25 BLO, BCS 3 2 85 * 85 BITA 2 2
26 BNE 3 2 56 RORB 2 1 86 LDA 2 2
27 BEQ 3 2 57 ASRB 2 1 87 *

28 BVC 3 2 58 ASLB, LSLB 2 1 88 EORA 2 2
29 BvVS 3 2 59 ROLB 2 1 89 ADCA 2 2
2A 8PL 3 2 SA DECB 2 1 8A ORA 2 2
28 BMY 3 2 58 * 88 ADDA Y 2 2
2C BGE 3 2 5C INCB 2 1 8C CMPX Iimmed |4 3
20 BLT 3 2 50 TSTB 2 1 8D BSR Relatve | 7 2
2€ BGT L 3 2 SE * ¥ 8E LDX immed |3 3
2F BLE Relative | 3 2 5F CLR8 Inherent | 2 1 8F *

LEGEND:

~ Number of MPU cycles (less possible push pull or indexed-mode cycles)
Number of program bytes
* Denotes unused opcode

1-182

[——

TABLE 9 — HEXADECIMAL VALUES OF MACHINE CODES (CONTINUED}

OP Mnem Mode | ~ ' OP | Mnem Mode | - ! oP [Mrwm l Mode [— [l
Y] SUBA Direct |4 2 co SUBB immed |2 2
91 CMPA A |a 2 ci | cmpB 2 2 Page 2 and 3 Machine
92 SBCA 4 2 c2 | sBcB 2 2 Codes
93 SuBD 6 2 c3 | ADDD 4 3
94 ANDA 4 2 ca | AnDB 2 2 1021 [LBAN Retative | 5 4
9% BITA 4 2 cs | BiTB Immed |2 2 1022 | LBH! A 561 | 4
96 LDA 4 2 cé6 | LDB Immed |2 2 1023 | LBLS 56) | 4
97 STA 4 2 c7] * 1024 | LBHS, LBCC 5(6) | 4
98 EORA) 2 c8 | EORB 2 2 1025 | LBCS. LBLO 5i6) | 4
9 ADCA 4 2 co | ADCB 2 2 1026 | LBNE 56 | 4
9A ORA 4 2 cA | ORB 2 2 1027 | LBEQ 56| 4
98 ADDA 4 2 ce | ADDB 2 2 1028 | LBVC 5(6) | 4
9C CMPX 6 2 cc | Loo 3 3 1029 [LBVS 5(6) 4
aD JSR 7 2 cD - 102A | LBPL 56| 4
9 LDX 5 2 CE | LDy immed |3 3 1028 [LBMI s6| 4
9F STX Oirect |6 2 CF | » 102C | LBGE 56| 4
A0 SUBA Indexed |4+ | 2+ 0o | suss D"“ic‘ a2 :ggsD t:ETT v ::Z: :
Al CMPA A |ar] 2+ g; g'g‘g: : g 102F | LBLE Reiative | 5(6) | 4
A2 SBCA 4+ 2+ 103F | SWI2 Inherent | 20 2
A3 SUBD 6+ | 2+ 03 | ADOD &1 2 1 1083 | cmro I
mmed |5 4
A3 ANDA as | 24 D4 | ANOB 412 | 1osc|cmey 5 |4
A5 BITA 4+ | 2+ [D’Z ESBB : 5 108E | LDY Immed |4 4
A6 LDA 4+ | 2+ 1093 [CMPD Direct {7 3
A7 STA 44 | 2+ 07| ST8 1 2] rosc|cmey 7 |3
A8 EORA ar | 2+ D8 | EORB I R 6 |3
A9 ADCA av | 2+ 09 | ADCB S102 § e fsTy Direct {6 |3
AA ORA av | 2+ DA | ORB “1 2 1 i0a3lcmrp indexed |7+ | 3
AB ADDA 4 | 24 DB | ADDB 21 2 | 1oac|cmey Rl :
oc | LoD s | 2 * 3
AC CMPX 6+ | 2+ 10AE{ LDY 6+ | 3+
AD JSR 7+ | 2+ 00| STD 5 2 10AF 1 STY !
DE LDU ¥ 5 2 ndexed |6+ 3+
AE LDX Y |5+ | 2+ 1083 | CMPD Extended |8 4
AF STX indexed |5+ | 2+ OF | STV Duwect |5 | 2 108c| cMPY 8 |4
EQ SUBB Indexed |4+ 2+ 10BE | LDY 7 4
BO SUBA Extended| 5 3 E1 | CMmPB A 4+ 2+ | 108F[STY Extended |7 4
B! CMPA A 5 3 E2 | sBc8 4+ 2+ | 10ce|Lps immed (4 4
B2 SBCA 5 3 E3 | ADDD 6+ 2+ | 100e|LDS Direct |6 3
B3 SUBD 7 3 E4 | ANDB 4+ 2+ | 10DF|sTS Direct |6 3
B4 ANDA 5 3 Es5 | BITB 4+ 2+ | 10€€e |LDS Indexed |6+ | 3+
85 BITA s 3 €6 | LD8 4+ 2+ { 10EF |STS Indexed |6+ | 3+
86 LDA 5 3 E7 | sT8 4+ 2+ | 10FE {LDS Extended| 7 4
B7 STA 5 3 E8 | EORB a4+ 2+ | 10FF |STS Extended| 7 4
88 EORA 5 3 E9 | ADCB a+l 2+ | 113F |swi3 Inherent [20 | 2
89 ADCA 5 3 EA | ORB 4+ 2+ | 1183 |CMPU Immed |5 4
BA ORA 5 3 E8 | ADDB 4+l 2+ | 118C|CMPS immed {5 4
8B ADDA 5 3 EC | LDD 5+ 2+ | 1193 |[cMPU Direct |7 3
BC CMPX 7 3 ED | sTD 5+ 2+ | 119C|CMPS Direct |7 3
BD JSR 8 3 EE { LDU v 5+ 2+ | 11A3[CMPU indexed |7+ | 3+
BE LOX \] 6 3 EF STU Indexed |5+ 2+ 11AC| CMPS indexed [7+ | 3+
F
LB L T AR B
F1 | cmps 5 3
F2 | sBCB 5 3
F3 | ADDD 7 3
F4 | ANDB 5 3
F5 | BITB 3 3
F6 | LDB 5 3
F7 ST8B 5 3
NOTE: All unused opcodes are both undefined F8 EORB 5 3
and illegal Ei ggg B 2 g
FB ADDB Extended| 5 3
FC LDD Extended| 6 3
FD | STD 6 3
FE | LDU 6 3
FF | sTu Extended] 6 3

FIGURE 18 — PROGRAMMING AID

Addressing Modes
immediate Direc Indexed Extended Inherent 51312110
Instruction| Forms |Op | ~] #] Op [~ | #| Op] ~| #[Op! ~ [#]0p] ~ Description HINJZ|V|C
ABX 3A| 3 B+ X— X (Unsigned) clefeie] e
ADC ADCA 83 | 2 21 99 |4 21 A9|4+| 241 B9| 5} 3 A+M+C—~A ISR RN
ADCB Cg |2 2| D9 | 4 2| E9[4+j2+] F9} 5 3 B+M+C—~B et
ADD AODA 88 | 2 2] 98 | 4 2| ABl4a+|2+|BB| 5 3 A+ M=A AN NN
ADDB cB |2 2|1 DB} 4 2| EB|4+| 2+ | FB| 5 3 B+M-B AR R AR R
ADDD c3)4 3| D316 (2| €3[6+l2+]F3| 7 3 D+MMe1=-D RRRIRIR
AND ANDA 84 |2 2| 94 [4 2] Adla-]2+| B4} 5 3 AAM—-A et |t[O}e
ANDB Ca |2 21 04l 4 2| Eala<| 2+ FA| B 3 BAM=B el1|t]O] e
ANDCC 1Ct3 2 CCAIMM-CC 7
ASL ASLA a8 [2 A . Sl glejr]s|t
asiB e e Qe ITTITT TR0 [efo|c|e
ASL o8le|2|e68|6ej2+|78[713 MIT 5y Bo sir|1lt]1
ASR ASRA a7} 2 A — BB EE
ASR o7 |6 | 2| 67)8-12+177] 713 M 57 < 8lift]|eit
BIT BITA 85 | 2 2 95714 2| AS|4+|2-|BS| 5 3 Bit Test A (M A A) eliftiO]e
BITB c5 |2 2| D5 |4 2| E5]4+| 2 F5 1 5 3 B8it Test B IM A By el11710]
CLR CLRA a2 0—A «|ot1]ofo0
CLRB S5k 2 0-—-8 s|Of1[0]|O
CLR OF | 6 2| 6F B} 2+] 7F 7 3 0—M «|l0|1[0]0
CMP CMPA 81 2 2| 9t |4 2| A1{4«|2+| BT 5 3 Compate M trom A sl
CcMPB cr|2 2{ 01 |4 20 Evjas| 2+ PV B 3 Compare M from B IRERIRAR
CMPD 0|5 4 0|7 3| w|7+13+]10]| 8 4 Compace M:M + 1 from D HRARIRER
83 B A3 83
CMPS mlslal w73y 7|3 n| 8] a4 Coripare MiM + 1 from S shrfe]e]
8C 9C AC 8C
CMPU wls |l al |72l 3] n|7-f3] 18] 4 Compare M:M + 1 from U olt]t]|a]t
83 ex} A3 83
CMPX 8C | 4 3|1 9C | 6 2| aclies«|2+|8BC] 7 3 Compare M:M + 1 from X el |t
CMPY 1015 4l 10 (7] 3 107+ 3«7 10| 8 4 Compare M:M + 1 trom Y M ERRIRAR
8C 9C AC B8C
COM COMA 43| 2 A-A eftftiof
comMB 531 2 8-8 elt]]O
COM a3 |6 2| 6316+ 2«1 73| / 3 MM elt}t]|Of
CWAI 3C [229 2 CC A IMM—CC Wan tor Interrupt 7
DAA 9] 2 Decimal Adjust A DROEE
DEC DECA an| 2 A-1=A eli|tl1] e
DECB 5a 2 8-1-8B o1 |tf1]e
DEC OA | 6 2| 6Al6+| 2+ 7741 7 3 M-1-M efvjrftle
EOR EORA 88 | 2 2] 98 |4 21 AB|4~+| 2+ B8] 5 3 A¥M—~A LR RN RARY
EQRB c8 |2 2| 08 |4 2) EB|4+12+1FB] 5| 3 B¥ M-8 e[1(1]0
EXG R1. R2 €8] 2 n1--R2Z o|o]elele
INC INCA ac| 2 A+r1=A elt[1]]e
INCB 5CHY 2 B+1-8 ofttif1] e
INC oC | 8 2| 6C[B+] 2+ 7C| 7 3 M+ 1=-M et ftli]e
JMP oe [3] 2| e6e}3+[2+f7e]a] 3 EAS-PC efe]e]s]e
JSR 9D | 7 2| AD[7+]2+|BD| B8 | 3 Jump to Subroutine sle[e|eofe
LD LDA 86 | 2 2] 96 |4 2| ABlda+|2+|BB| 5| 3 M—A (1110
L0B c6 2 2| D6 |4 2| €6 |4+ 2+ FB6| 5 3 M-8 e(1[r]0}-
LDD cCc |3 3] DC{56 2| EC|5+| 2+ | FC| 6 3 MM+ 1D o1 |tiO] e
LDS 0|4 4] 06| 31 10[6+]3+[10[7] 4 M:M+1=S§ eit|1]|Of e
CE DE 133 FE
LOu CE| 3 3| DE|B 2| EEjB+| 2+ | FE| 6 3 MM+ 1=U e|l1]t|0]e
LDX ge 3| 3] 9e | 5| 2| AE|5+|2+[BE} 6| 3 MM +1=X el |riQ)e
LDY w0|4| ajw]6| 3] 0]|6+3+y10]| 7] 4 MM+ 1=Y eit|1|o]e
8E 9E AE BE
LEA LEAS 32[4+f 2+ £ad-s efolele]e
LEAU Bla+| 2+ gad-y elefolele
LEAX o|as+| 2+ EAd~x efef1|o]e
LEAY 3N]ae| 2+ EAS-Y efefrfe]e
LEGEND ™M Comptement of M 1 Test and set if true, cleared otherwise
OP Operation Code (Hexadecimal) — Transfer Into . Not Affected
~ Number of MPU Cycles H Haif-carry (from bit 3¢ CC Condition Code Register
2 Number of Program Bytes N Negative (sign bit) Concatenation
+ Amthmetc Plus Z Zero result vV togcal or
- Arithmetic Minus v Overflow, 2's complement A Logical and
. Multiply C Carry from ALU ¥ Logical Exclusive or

1-184

[——

FIGURE 18 — PROGRAMMING AID (CONTINUED)

Addressing Modes

Immediate Direct Indexed Extended inherent s|3l2]1]0
Instruction| Forms (Op] ~ [#] Op[- #[Op[~ BN pl - Description HINJZ[V]C
LSt LSLA a8l 211 A o e IR ERERE
Lse . ss| 2| 1| eJOe{TIIIITo0 [+[ii[:]:
LSL 08| 6] 2| e8f6+| 2+ 78] 7[3 M 5y bo el
LSR LSRA al 2] ‘é e|Oft}e]1
LSR8 saf 2| | & IIITI0 {+]o|if+]s
LSA 04| 6] 2| 6a|6-] 2+ 74l 7| 3 by bp ¢ Jelo]1]e]1
MUL 30| 11l 1 [AxB-0 (Unsignea ele]i]e]o
NEG NEGA W 2]V [Ac1=A I BB
NEGB 50| 2| 1(B+1-8 gt frfrgr
NEG 0| 6| 2| 60|6+]2+] 0] 7| 3 Mel=Mm gf{tft]1]a
NOP 121 2 1 |No Operaton elejole]e
OR ORA 8al 2 [2[9a] a| 2| Aala<] 2+ BA[5] 3 AVM=A sftfrjo]e
OR8 cal 2 | 2| oAl a| 2| Eafas| 2+ Fa| 5| 3 BV M-8 eftfifo]e

ORCC Al 312 CC vV IMM—CC : 7
PSH PSHS 3454412 Push Registers on S Stack efefafe]e
PSHU 36[5+9] 2 Push Registers on U Stack elefeleo]e
PUL PULS 35(5+4] 2 Pull Registers from S Stack sfofefo]e
PULU 37|5+4] 2 Pull Regsters from U Stack oo fe]ete
ROLC ROLA a2 [1 [A DR
ROL 03] 6| 2] 69l64] 2+ 79| 7| 3 M by) il]
ROR RORA 46| 2 (1A AR IS ERES
RORB 2| 1|8 eli|ijels
ROR 06| 6| 2| 6616+|2+1 76 7] 3 c by b0 eftfi]e]s
RTI 38 [6/15] 1 |Return From Interrupt 7
RTS 39| 5 | 1 |Return from Subroutine ele s *]*
SBC SBCA 82 2 |2 92| 4 2| AZ|4+|2+| B2| 6| 3 A M-C=A BEREE
SBCB C2| 2 2| D2 4| 2| €E2lae|2+F2|5] 3 8- M-C-8 it [t |
SEX Dl 2 1 1Sign Extend B into A el1 |1 |0Of{e
ST STA 971 4] 2| A7|4+] 2+ 8B7] 5] 3 A=M e[t [o]e
sT8 D7) 4| 2| E7|4«|2+| F7: 5| 3 B—M slt{t]o]e
sSTD op| 5| 2| €ep|5+| 2+ FO} 6| 3 D—MM+1 eli|1jo]e
STS 0| 6] 3| 10[6+13+] 10| 7] 4 S—=M:M+1 sit|t]o]e

OF EF FF
STU DF| 5| 2| EF[B5+f{ 2+ FF 6| 3 U=MM+ 1 eftfifo]e
STX 9F [5| 2| AFls+|2+|8F [61 3 X= MM+ 1 sltit]o]e
STY |6 3|10 w| 7| a Y= MM+ 1 sl1|tjo]e
oF AF|6+| 34| BF
sue SUBA |80 2 |[2]| 9|4 2| A0[a+|2+]|B0' 5] 3 A-M=A IR ERERE
suss Co| 2 J2/o0{4a]|2]€0|a+i2+1F0|5]| 3 B-M-8 RN IR ER T
SuBD [83]| 4 |3|93l6 | 2] A3]6+[2+iB3] 7} 3 D-M:M+1=-D el fife]e
+
Swi swib . 3F [18 | 1 [Sottware nterrupt 1 sfe s o e
swi2b 10| 20 [2 ISoftware Interrupt 2 o (o jo|ofe
3F N
swizd 11§ 20| 1 |Sofiware Interrupt 3 oo |o e e
3F

SYNC 13 {24] 1 |Synchronize to interrupt o e |ofe]e
TFR R1,R2 [1F[6 |2 A1~R2Z oo fe]e]e
TST TSTA aDf 2 |1 [TestA e[1 [t o]
TST8B sD| 2 1 (Test B * |1 |1 (O]
TST OD |6 2|6D6+|2+f7D] 7} 3 Test M ot [t fofe

NOTES:

1. This column gives a base cycle and byte count. To obtain total count, add the vaiues obtained from the INDEXED ADDRESSING MODE table,

Table 2.
2. R1 and R2 may be any pair of 8 bit or any parr of 16 bit registers
The 8 bit registers are: A, B, CC, DP
The 16 bit registers are: X, Y, U, S, D, PC
EA is the effective address

6(6) means: 5 cycles if branch not taken, 6 cycles if taken (Branch instructions).
SWi sets | and F bits. SWi2 and SWI3 do not affect | and F

Conditions Codes set as a direct result of the instruction

Vaue of half-carry flag is undefined

Special Case — Carry set if b7 is SET.

©ONOD AW

1-185

The PSH and PUL instructions require 5 cycles plus 1 cycle for each byte pushed or pulled

FIGURE 18 — PROGRAMMING AID (CONTINUED}
Branch Instructions
Addressing Addressing
Mode
Rolgtivi s13[211]10 10 $13i21V10
Instruction| Forms | OP| -5} # Description H[N|Z|Vi{C Instruction| Forms |OP(~5] # D H|N|Z]|VIC
8cC 8CC 24| 3 | 2 |Branch C=0 efefote]e 8LS BLS 23| 3 | 2 IBranch Lower efefefe}e
L8cc 10 {5t61| 4 [Long Branch ofojefefe or Same
24 c=0 LBLS 10 |56} 4 |Long Branch Lower |efelele|e
BCS BCS 25| 3 [2 |Branch C=1 sle|ele 23 or Same
LBCS 10 561} 4 |Long Branch o . 8Lt BLT 2D| 3 | 2 |Branch<Zero BOBRL
25 C=1 LBLY 10 }156)| 4 [Long Branch<Zero |®|®|*(*]*
BEQ BEC 27| 3 | 2 |BranchZ=1 slejelele 20
LBEQ 10| 56| 4 [Long Branch o|efo]ele BMI BMI 28| 3 | 2 [Branch Minus ofefolels
27 Z=1 Lami 10 |5¢61] 4 |Long Branch Minus |efe]efe|e
BGE BGE 2C| 3 | 2 |BranchzZero ele|ejele 28
LBGE 10[6161| 4 [Long BranchzZerc | o ||| el 8NE 8NE 26| 3 | 2 [Banchz=0 ols]e]e]e
2C LBNE 10|56} 4 jLong Branch ejele]e]e
8GT 8GT 26| 3 | 2 |Branch>Zero elefo]e]e 2 Z=0
LBGT 10|5t6)} 4 |Long Branch>Zero || @ ej e} BPL BPL 2a| 3 | 2 |Branch Plus o etejole
2 LBPL 10 |5t61| 4 |Long Branch Plus .l o|e
BH! BHI 221 3 | 2 [Branch Higher ofele]e]" 2A
LBH! 10| 5(61| 4 |Long Branch Higher | o (el ef] e BRA BRA |20 3 [2 iBranch Always elofe]ete
22 LBRA 16| 5 | 3 |Long Branch Always |a |e|e[e |
BHS BHS 24| 3 2 [Branch Higher o|olelole BAN BRN 21 3 2 [8ranch Never o efofofe
of Same LBRN 10} 5 | 4 |Long Branch Never (s (e]e|e (@
LBHS 10 6661 4 [Long Branch Higher | o | o] o] el 2
24 or Same BSR 8SR 8D | 7 | 2 |Branch io Subroutineje i e | e e ie
BLE BLE 2F1 3 | 2 {Branchs Zero olejeie|e LBSR 17| 9 | 3 jLong Branch to o ool
LBLE 10 [516)] 4 [Long Branch=Zero | @[e[e| o] Subroutine
2 BVC BVC B[3 | 2 [Branch v=0 NOBR0
BLO 8LO 25| 3 | 2 |Branch lower elelelele LBVC 10 |5t61| 4 |Long Branch ofefole]e
LBLO 10 ' 5(6)| 4 |Long Branch Lower [e| el e[eie 28 v=0
5| BE BVS 5[3] 2 [Branch V=1 e
4 LBvS 10 [5(6)| 4 [Long Branch o|s|o|e]e
~ l 29 v=1
SIMPLE BRANCHES
op ¢ SIMPLE CONDITIONAL BRANCHES (Notes 1-4)
BRA 20 3 2 Test True oP Faise orP
LBRA B 5 3 N=1 BMI 28 BPL 2A
BRN 21 3 2 Z=1 8EQ 27 BNE 26
LBRN 1021 5 4 v=1 BVS 29 BvC 28
BSR 8D 7 2 C=1 BCS 25 BCC 24
LBSR 17 9 3
SIGNED CONDITIONAL BRANCHES (Notes 1-4) UNSIGNED CONDITIONAL BRANCHES (Notes 1-4)
Test True orP Faise oP Test True oP False QoP
>m BGT 2€E BLE 2F t>m 8HI 2 BLS 23
rzm BGE 2C BLT 2D ram BHS 24 8LO 25
r=m BEQ 27 BNE 26 r=m BEQ 27 BNE 26
rsm BLE 2F BGT 2E rsm BLS 23 BHI 2
r<m BLT 20 8GE 2C r<m BLO 25 BHS 24
NOTES

1

2
3
a
5

All conditional branches have both short and long variatons

All short branches are 2 bytes and require 3 cycles
All conditional long branches are formed by prefixing the short branch opcode with $10 and using a 16-bit destination cffset
All conditional tong branches require 4 bytes and 6 cycles if the branch is taken or & cycles if the branch is not taken

5(6) means: 5 cycles if branch not taken, 6 cycles if taken.

1-186

INDEXED ADDRESSING MODES

Nondirect indirect -
Assembier | Post-Byte | +|+ | Assembler |Post-Byte [+ [+ -
Type Forms Form Opcode | ~|#| Form Opcode |~|# b
Constant Oftset From R No Offset .R 1RRO0100| 0|0 {. Rl J1RR10100 | 3|0 E
5-Bit Offset n, R ORRnnnnn| 1]0 defauits to 8-bit E
8-Bit Ofiset n R TRRO1000{ 1{1 [n, Rl |'RR11000{ 4|1
16-Bit Offset n, R 1RRO1001] 4]2 {n, Rl '\RR11001| 7|2
Accumulator Offset From R A — Regrster Offset A R 1RR0O0110| 1}0 fA, Rl [IRR10110 | 4}0 .
B — Register Offset B. R 1RRO0101[1|0 (B, Rl [1RR10101 | 4|0
D - Register Offset D, R 1RRO1011| 4|0 (D, Rl 11RR11011 | 7}0
Auto Increment/Decrement R Increment By 1 R+ 1RRO000C] 2|0 not allowed
Increment By 2 .R ++ |TRRO00C0[3|0] . R + +]||RRIW)I 6|0
Decrement By 1 . -R 1RR00010| 210 not allowed E
Decrement By 2 ,--R TRRO0011 | 3]0 [, --R) J1RR10011 | 6|0 -
Constant Offset From PC 8-Bit Offset n, PCR {1XX01100|1]1] (n, PCR] fixx11100 | 4|1
16-Bit Offset n, PCR_11XX01101|5)21 (n, PCR] Jixx11101 | 8|2 -
Extended Indirect 16-Bit Address - — -|- [n] 10011111 [5]2 h
R=X, Y, U, or S RR:00=X 10=0 -
X=Don't Care 0=y Mn=s

INDEXED ADDRESSING POSTBYTE
REGISTER BIT ASSIGNMENTS 6809 PROGRAMMING MODEL

Indexed X — | R
Post-Byte Register Bit Addressing [[X = Index Regster]
7]161514]3[2T1f0 Mode
O|R[R{x[xfx|[x]x EA = , R + 5 Bit Offset
T[RIRIOf0lo0Tol0 R+ pETonr— Pointer Register
ILLBOROK R
1{RJR1010J0 4110 <R S — Hardware Stack
1|RIR[F]|0O]JO[1] ,--R
1JRIRjIO]1]0]0O EA = R + 0 Offset Program Counter
1|R|R[I|O]1]O}1 EA = , R + ACCB Offset
tIR{R]I[o]1]1]0 JEA =, R + ACCA Offser “ Accumulators
1JR[R]t][T]O[O]O EA = , R+ 8-BitOffset :
1JRIR[IJ1JoJof1 [EA =, R + 16-BitOffset H/—/ -
1IR|R[1p1{0 1] EA = , R + D Offset D ;
T x x| 1 [T[1[0]0 |[EA =.PC + 8 BitOffset Direct Page Redi
T x| x| 7]1]110]7 [EA = PC + 16.8it Offser rect Page Register
1IR RI 1 II 111 i EA = [, Address] elFInl 1 InlZIv]c CC~ Condition Code :
\(—/\./t) L Carry-Borrow -
Addressing Mode Field Overtiow -
|* indirect Field ! Zero _
. Negative
{Sign bit when b7 = 0) IRQ interrupt Mask)
Half Carry E

‘———————————— Raegister Field: RR

=X Fast Interrupt Mask
01 =Y ‘———————————— Entire State on Stack]
10=u
X = Don't Care M=-:s

1-187

Push/ Pull Post Byte 6809 Stacking QOrder

‘ l l I I l [l J Pull Order .
I L ccn .
A cc -
b——28 A
DPR B ’
X opP 6809 Vectors
Y X Hi FFFE Restart
S/U X Lo FFFC NMI =
FFFA SWI
pC : [" FFF8 IRQ
o
Transfer/ Exchange Post Byte U/S H FEF6 FIRQ
" d i FFF4 SW12
[Source []oestination | u/s Lo FFF2 SW13 :
PC Hi FFFO Reserved -
Register Field PC Lo)
0000=D (A-B) 0101=PC
0001 =X 1000=A Push Order
0010=Y 1001=8
01 =uU 1010=CCR increasing Memory
0100=S 1011 =DPR)

ORDERING INFORMATION

| EF6BA0E | C M| BB |
De\'/ice I Screening level B
Package Oper. temp. .
The table below hori y shows all avail suffix for and .
level. Other possibilities on request.
DEVICE PACKAGE OPER. TEMP C LEVEL
c J P E FN L v M Std D GiB | B/B
L] L] L d ® o L]
[] [] [J []
EFBB09E (1.0 MHz} -
° o | e e | o ‘
L] ® L L]
[] L] [] L L] -
[] ® ® []
EFBBA09E {1.5 MHz)
L ® L J L []
L] L) ® [J
L] [o [4 []
EF88BOSE (2.0 MHz)
L ® * L) L]
Examples : EF6B809EC, EFEB09ECY, EF6B09ECM i

Package : C: Ceramic DIL, J : Cerdip DIL, P: Plastic DIL, E: LCCC, FN: PLCC.
Oper. temp.: L*: 0°C to +70°C, V: —40°C to +85°C, M: -56°C to +125°C, *: may be omitted. -
Screening level : Std : (no-end suffix}, D : NFC 96883 level D,

G/B : NFC 96883 level G, B/B : NFC 96883 level B and MIL-STD-883C level B.

[——

1-188

PHYSICAL DIMENSIONS

ea254(2)

& mox

4.57 max

V4 p]

‘ /
nonoaAcanonnfn

Datum

or

]
D Ve

AN
€]

{11 Nominal dimension
(2) True geometical position

gspa//agmpmpmym ey =gy
7 »

CB-182

P SUFFIX
PLASTIC PACKAGE

ALSO AVAILABLE

53 mox Lta_ JSUFFIX C SUFFIX
[l 40 ping CERDIP PACKAGE CERAMIC PACKAGE
DIN v
ASIF E-N9 CB-182
L Cer OATA JEDEC SITELESC

1-189

CcB-521
10
oY) FN SUFFIX
PLCC 44
39
Lo
o - I
10 i3 29 o 2
gg,zsl%i”";wé'&‘:
i eleleclclealclelclelels
SeSes-33gsg
veeQ 7 O 3sPa
Aolls 38 e
29, Ao 370eusy
- B ‘e . - a2 36 [JRW
en127 Jelefejelee[efeje]e] mox 1740 | neln 3 ANC
Typ. T r P 17,65 nel]i2 34Doo
861 A3[]13 33001
s 3
asn 44 pins. Aalia 32002
0,64 \ As{]1s 310o3
DIN T Q333 Y 2616 30[Jpa
Aty 290]0s
MO-047-AC Ce-521 ? 2P2Rsy2ILENR
CEt DATA. JEDEC SITELESC L5) o ey o "_‘l OO oOoO
§22-gozsgg
< <« > aO o« g

