Features

3V/5V, 4Ω , Wideband Quad 2:1 Analog Multiplexer

General Description

The MAX4674 is a low-voltage CMOS analog switch containing four 2:1 multiplexers/demultiplexer. When powered from a single +5V supply, it features a low 4Ω max on-resistance (R_{ON}), 0.4Ω max R_{ON} matching between channels, and 0.8Ω RON flatness over the entire signal range. Off-leakage current is only 0.5nA max at +25°C.

The MAX4674 features fast turn-on (ton) and turn-off (toff) times of 18ns and 6ns, respectively, and is available in QFN, QSOP, TSSOP, and SO packages.

This low-voltage multiplexer operates with a +1.8V to +5.5V single supply. All digital inputs have +0.8V and +2.4V logic thresholds, ensuring TTL/CMOS-logic compatibility with +5V operation.

Applications

10/100 Base-T

ATM Switching

Audio and Video Signal Routing

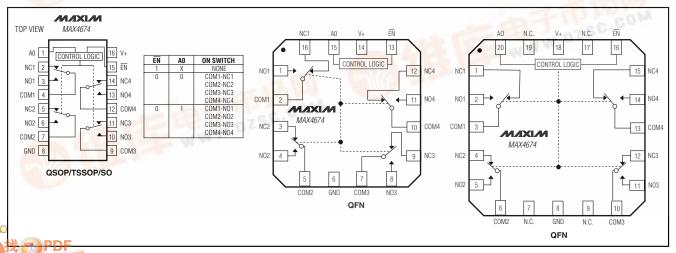
Low-Voltage Data-Acquisition Systems

Communications Circuits

Relay Replacement

Rail-to-Rail is <mark>a registered trade</mark>mark of Nippon Motorola, Ltd.

♦ Guaranteed On-Resistance


 4Ω max (+5V Supply) 6Ω max (+3V Supply)

- **Guaranteed Match Between Channels** 0.4Ω max
- ♦ Guaranteed Flatness Over Signal Range 0.8Ω max
- ♦ 1.8V Operation $R_{ON} = 100\Omega$ typ Over Temperature ton = 51ns typtoff = 13ns typ
- ♦ Guaranteed Low Leakage Currents 0.5nA max at +25°C
- ♦ Single-Supply Operation from +1.8V to +5.5V
- ♦ Rail-to-Rail[®] Signal Handling
- ♦ TTL/CMOS-Logic Compatible
- Crosstalk: -114dB (1MHz)
- ♦ Off-Isolation: -67dB (1MHz)
- 4mm × 4mm QFN Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4674EEE	-40°C to +85°C	16 QSOP
MAX4674EUE	-40°C to +85°C	16 TSSOP
MAX4674ESE	-40°C to +85°C	16 Narrow SO
MAX4674EGE	-40°C to +85°C	16 QFN
MAX4674EGP	-40°C to +85°C	20 QFN

Pin Configuration/Functional Diagram/Truth Table

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V+, A0, EN0.3V to +6V COM_, NO_, NC_ (Note1)0.3V to (V + 0.3V) Continuous Current COM_, NO_, NC±100mA Peak Current (COM_, NO_, NC_)	16-Pin Narrow SO (derate 8mW/°C above +70°C)640mW 16-Pin QFN (derate 18.5mW/°C above +70°C)1481mW 20-Pin QFN (derate 20mW/°C above +70°C)1600mW Operating Temperature Range
Peak Current (COM_, NO_, NC_) (pulsed at 1ms, 10% duty cycle)±300mA Continuous Power Dissipation (TA = +70°C) 16-Pin QSOP (derate 8.3mW/°C above +70°C) 667mW 16-Pin TSSOP (derate 6.7mW/°C above +70°C)533mW	MAX4674E_E40°C to +85°C Die Temperature

Note 1: Signals on NO_, NC_, and COM_ exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +5V Supply

(V+ = +4.5V to +5.5V, V_{IH} = 2.4V, V_{IL} = 0.8V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values at T_A = +25°C.) (Notes 2, 9)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
ANALOG SWITCH								
Analog Signal Range	V _{COM_} ,V _{NO_} , V _{NC_}			0		V+	V	
On Basistanas		V 4.5V 1 40 A	T _A = +25°C		2.2	4		
On-Resistance	Ron	$V_{+} = 4.5V, I_{COM} = 10mA, V_{NO} \text{ or } V_{NC} = 0 \text{ to } V_{+}$	$T_A = T_{MIN}$ to T_{MAX}			5	Ω	
On Registeres Metch Retween		V. 45V loos 10mA	T _A = +25°C		0.15	0.4		
On-Resistance Match Between Channels (Notes 3, 8)	ΔR _{ON}	$V + = 4.5V$, $I_{COM} = 10mA$, V_{NO} or $V_{NC} = 0$ to $V +$	$T_A = T_{MIN}$ to T_{MAX}			0.5	Ω	
0. D		V 45V 1 10 A	T _A = +25°C		0.5	0.5 0.8		
On-Resistance Flatness (Note 4)	RFLAT (ON)	$V + = 4.5V$, $I_{COM} = 10mA$, V_{NO} or $V_{NC} = 0$ to $V +$	$T_A = T_{MIN}$ to T_{MAX}			1	Ω	
NO NO OFFICIAL	1	$V + = 5.5V; V_{COM} = 1V,$	T _A = +25°C	0.5	±0.01	0.5	nA	
NO_, NC_ Off-Leakage Current (Note 5)	INO_(OFF), INC_(OFF)	4.5V; V _{NO} _or V _{NC} _ = 4.5V,	$T_A = T_{MIN}$ to T_{MAX}	-1		1		
00M 0ff		$V + = 5.5V; V_{COM} = 1V,$	T _A = +25°C	0.5	±0.01	0.5		
COM_ Off-Leakage Current (Note 5)	ICOM_(OFF)	4.5V; V _{NO} _or V _{NC} _ = 4.5V, 1V	$T_A = T_{MIN}$ to T_{MAX}	-1		1	nA	
0014 0 1 1 0 1		$V + = 5.5V; V_{COM} = 1V,$	$T_A = +25^{\circ}C$	0.5	±0.01	0.5		
COM_ On-Leakage Current (Note 5)	ICOM_(ON)	4.5V; V_{NO} or V_{NC} = 1, 4.5V, or floating	$T_A = T_{MIN}$ to T_{MAX}	-1		1	nA	
DIGITAL I/O (A0, EN)				_				
Input Logic High	VIH			2.4			V	
Input Logic Low	V _{IL}					0.8	V	
Input Leakage Current	I _{IN}	$V_{IN} = 0 \text{ or } +5.5V$		-0.5	1	0.5	μΑ	
DYNAMIC			·					
		V_{NO} or $V_{NC} = 3V$,	T _A = +25°C		10	18		
Turn-On Time (Note 5)	ton	$R_L = 100\Omega$, $C_L = 35pF$, Figure 2	$T_A = T_{MIN}$ to T_{MAX}			20	ns	

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

 $(V+ = +4.5V \text{ to } +5.5V, V_{IH} = 2.4V, V_{IL} = 0.8V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values at $T_A = +25^{\circ}C.)$ (Notes 2, 9)

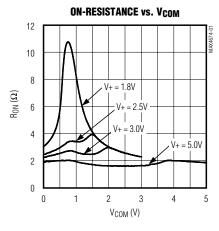
PARAMETER	SYMBOL	CONDITIO	NS	MIN	TYP	MAX	UNITS
		V_{NO} or $V_{NC} = 3V$,	T _A = +25°C		4	6	
Turn-Off Time (Note 5)	toff	$R_L = 100\Omega$, $C_L = 35pF$, Figure 2	$T_A = T_{MIN}$ to T_{MAX}			8	ns
		V_{NO} or $V_{NC} = 3V$,	T _A = +25°C		5		
Break-Before-Make (Note 5)	t _{BBM}	$R_L = 100\Omega$, $C_L = 35pF$, Figure 3	$T_A = T_{MIN}$ to T_{MAX}	1			ns
Charge Injection	Q	$V_{GEN} = 4V$, $R_{GEN} = 0$, $C_L =$	= 1.0nF, Figure 4		10		рС
Off Inclation (Note 6)	V _{ISO}	$C_L = 5pF, R_L = 100\Omega,$	f = 10MHz		-47		٩D
Off-Isolation (Note 6)		f = 10MHz, Figure 5	f = 1MHz		-67		dB
Croostelle (Note 7)	V _{CT}	$C_L = 5pF, R_L = 100\Omega,$	f = 10MHz		-68		dB
Crosstalk (Note 7)		f = 10MHz, Figure 5	f = 1MHz		-114		иь
Total Harmonic Distortion	THD	$R_L = 600\Omega$, $f = 20Hz$ to $20Hz$	кНz		0.015		%
NO_, NC_ Off-Capacitance	CNO_(OFF), CNC_(OFF)	V _{NO_} , V _{NC_} = GND, f = 1M	V _{NO_} , V _{NC_} = GND, f = 1MHz, Figure 6		10		pF
COM_ Off-Capacitance	C _{COM_(OFF)}	V _{COM} _ = GND, f = 1MHz, F	V _{COM} _ = GND, f = 1MHz, Figure 6		20		рF
COM_ On-Capacitance	C _(ON)	$V_{COM} = V_{NO}$, $V_{NC} = GND$, $f = 1MHz$, Figure 6			30		рF
SUPPLY							
Supply Range	V+			1.8		5.5	V
Positive Supply Current	l+	$V+ = +5.5V$, $V_{IN} = 0$ or $V+$			0.001	1.0	μΑ

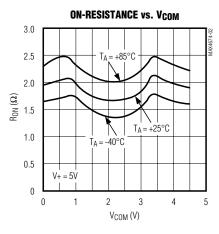
ELECTRICAL CHARACTERISTICS—Single +3V Supply

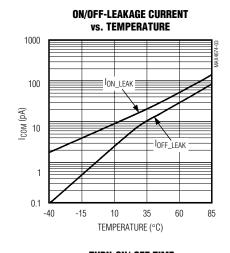
(V+ = +2.7V to +3.3V, V_{IH} = 2.0V, V_{IL} = 0.4V, T_A =T_{MIN} to T_{MAX}, unless otherwise noted. Typical values at T_A = +25°C.) (Notes 2, 9)

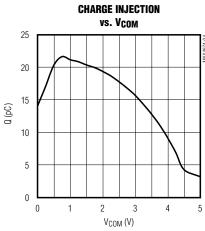
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	V _{COM} , V _{NO} , V _{NC} _			0		V+	V
)/- 0.7\/ - d0A	T _A = +25°C		4	6	
On-Resistance	Ron	$V_{+} = 2.7V, I_{COM} = 10mA,$ V_{NO} or $V_{NC} = 0$ to V_{+}	T _A = T _{MIN} to T _{MAX}			8	Ω
0 0 1	On-Resistance Match Between Channels (Notes 3, 8) $ V+ = 2.7V, I_{COM} = 10t V_{NO} $ $ V_{NO} = 0 \text{ to } V+ $	10 1	T _A = +25°C		0.15	0.4	
Channels (Notes 3, 8)		$V_{+} = 2.7V, I_{COM} = 10 \text{mA},$ $V_{NO} \text{ or } V_{NC} = 0 \text{ to } V_{+}$	T _A = T _{MIN} to T _{MAX}			0.5	Ω
0 5 51			T _A = +25°C		2	3	
On-Resistance Flatness (Note 4)	R _{FLAT} (ON)	$V+ = 2.7V$, $I_{COM} = 10mA$, V_{NO} or $V_{NC} = 0$ to $V+$	T _A = T _{MIN} to T _{MAX}			4	Ω
NO NO Officialization		1/ 0 0/ // 1/ 0/	T _A = +25°C	-0.5	±0.01	0.5	
NO_, NC_ Off-Leakage Current (Note 5)	INO_(OFF), INC_(OFF)	$V+ = 3.3V; V_{COM} = 1V, 3V;$ V_{NO} or $V_{NC} = 3V, 1V$	T _A = T _{MIN} to T _{MAX}	-1		1	nA

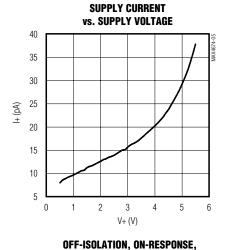
ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

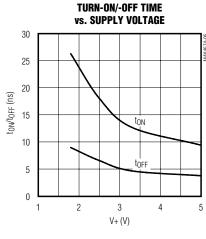

(V+ = +2.7V to +3.3V, V_{IH} = 2.0V, V_{IL} = 0.4V, T_A =T_{MIN} to T_{MAX}, unless otherwise noted. Typical values at T_A = +25°C.) (Notes 2, 9)

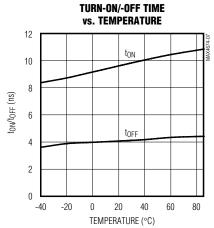

PARAMETER	SYMBOL	CONDITION	S	MIN	TYP	MAX	UNITS	
0011 0111 0			$T_A = +25^{\circ}C$	-0.5	±0.01	0.5		
COM_ Off-Leakage Current (Note 5)	ICOM_(OFF)	$V + = 3.3V; V_{COM} = 1V, 3V;$ V_{NO} or $V_{NC} = 3V, 1V$	$T_A = T_{MIN}$ to T_{MAX}	-1		1	nA	
0011 0 1 1 0		$V + = 3.3V; V_{COM} = 1V, 3V;$	T _A = +25°C	-0.5	±0.01	0.5		
COM_ On-Leakage Current (Note 5)	ICOM_(ON)	V _{NO_} or V _{NC_} = 1V, 3V, or floating	$T_A = T_{MIN}$ to T_{MAX}	-1		1	nA	
DIGITAL I/O (A0, EN)	·			•				
Input Logic High	VIH			2.0			V	
Input Logic Low	VIL					0.4	V	
Input Leakage Current	I _{IN}	$V_{IN} = 0 \text{ or } +5.5V$		-0.5	1	0.5	μΑ	
DYNAMIC								
		V_{NO} or V_{NC} = 1.5V,	T _A = +25°C		12	22		
Turn-On Time (Note 5)	ton	$R_L = 100\Omega$, $C_L = 35pF$, Figure 2	T _A = T _{MIN} to T _{MAX}			25	ns	
		V _{NO_} or V _{NC_} = 1.5V,	T _A = +25°C		5	8		
Turn-Off Time (Note 5)	tOFF	$R_L = 100\Omega$, $C_L = 35pF$, Figure 2	T _A = T _{MIN} to T _{MAX}			10	ns	
		V_{NO} or $V_{NC} = 1.5V$,	$T_A = +25^{\circ}C$		5			
Break-Before-Make (Note 5)	[†] BBM	$R_L = 100\Omega$, $C_L = 35pF$, Figure 3	T _A = T _{MIN} to T _{MAX}	1			ns	
Charge Injection	Q	V _{GEN} = 2V, R _{GEN} = 0, C _L = Figure 4	V _{GEN} = 2V, R _{GEN} = 0, C _L = 1.0nF, Figure 4		18		рС	
Off Inclution (Nata C)	\/:	$C_L = 5pF$, $R_L = 100\Omega$,	f = 10MHz		-47		٩D	
Off-Isolation (Note 6)	V _{ISO}	f = 10MHz, Figure 5	f = 1MHz		-67		dB	
Crosstalk (Note 7)	V _{CT}	$C_L = 5pF$, $R_L = 100\Omega$,	f = 10MHz		-68		dB	
Crossiain (Note 1)	VCI	f = 10MHz, Figure 5	f = 1MHz		-114		uБ	
NO_, NC_ Off-Capacitance	C _{NO_(OFF)} , C _{NC_(OFF)}	V _{NO_} or V _{NC_} = GND, f = 1MHz, Figure 6			10		рF	
COM_ Off-Capacitance	CCOM_(OFF)	V _{COM} _ = GND, f = 1MHz, Fig.	gure 6		20		рF	
COM_ On-Capacitance	C _(ON)	V _{COM} _ = V _{NO} _, V _{NC} _ = GNE Figure 6		30		pF		
SUPPLY				•				
Positive Supply Current	l+	$V+ = 3.3V$, $V_{IN} = 0$ or $V+$			0.001	1.0	μΑ	

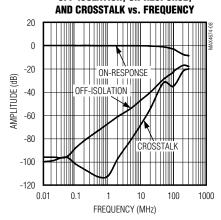

- Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
- Note 3: $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- **Note 4:** Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
- Note 5: Guaranteed by design.
- **Note 6:** Off-Isolation = 20log₁₀ (V_{COM}/V_{NO}), V_{COM} = output, V_{NO} = input to off switch.
- Note 7: Between any two switches.
- Note 8: ΔR_{ON} matching specifications for QFN packaged parts are guaranteed by design.
- Note 9: Parts are tested at the maximum hot-rated temperature. Limits across the entire temperature range are guaranteed by design and correlation.

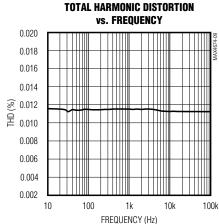

Typical Operating Characteristics


 $(V + = +5V, T_A = +25^{\circ}C, unless otherwise noted.)$









Pin Description

	PIN						
QSOP/TSSOP/SO	20 QFN	16 QFN	NAME	FUNCTION			
1	20	15	A0	Address Input			
2	1	16	NC1	Normally Closed Terminal			
3	2	1	NO1	Normally Open Terminal			
4	3	2	COM1	Analog Switch Common Terminal			
5	4	3	NC2	Normally Closed Terminal			
6	5	4	NO2	Normally Open Terminal			
7	6	5	COM2	Analog Switch Common Terminal			
_	7, 9, 17, 19	ĺ	N.C.	No Connection			
8	8	6	GND	Ground			
9	10	7	COM3	Analog Switch Common Terminal			
10	11	8	NO3	Normally Open Terminal			
11	12	9	NC3	Normally Closed Terminal			
12	13	10	COM4	Analog Switch Common Terminal			
13	14	11	NO4	Normally Open Terminal			
14	15	12	NC4	Normally Closed Terminal			
15	16	13	ĒN	Output Enable, Active Low			
16	18	14	V+	Positive Supply Voltage			

Detailed Description

The MAX4674 is a low on-resistance (R_{ON}), low-voltage, quad 2:1 analog multiplexer/demultiplexer that operates from a +1.8V to +5.5V single supply. The MAX4674 features very fast switching speed (t_{ON} = 18ns max, t_{OFF} = 6ns max) and guaranteed breakbefore-make switching. Its low R_{ON} allows high continuous currents to be switched in a variety of applications.

Digital Interface

A0 and $\overline{\text{EN}}$ are CMOS digital inputs that meet TTL logic levels when V+ = 5V. Note that A0 and $\overline{\text{EN}}$ can exceed the voltage at V+ to a maximum of +5.5V. This feature allows operation of the MAX4674 from a +3.3V supply while controlling it with 5V CMOS logic signals.

The *Pin Configuration/Functional Diagram/Truth Table* located on the first page of this data sheet details the operation of the MAX4674.

_Applications Information

Power-Supply ConsiderationsOverview

The MAX4674 construction is typical of most CMOS analog switches. It has two supply pins, V+ and GND, used to drive the internal CMOS switches and set the

limits of the analog voltage on any switches. Reverse ESD-protection diodes are internally connected between each analog-signal pin and both V+ and GND. If any analog signal exceeds V+ and GND, one of these diodes conducts. During normal operation, these and other reverse-biased ESD diodes leak, forming the only current drawn from VCC or GND.

Virtually all the analog leakage current comes from the ESD diodes. Although the ESD diodes on a given signal pin are identical and therefore fairly well balanced, they are reverse biased differently. Each is biased by either V+ or GND and the analog signal. This means their leakages will vary as the signal varies. The difference in the two-diode leakages to the V+ and GND pins constitutes the analog-signal-path leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch terminal, which is why both sides of a given switch can show leakage currents of either the same or opposite polarity.

V+ and GND power the internal logic and set the input logic limits. Logic inputs have ESD-protection diodes to ground.

The logic-level thresholds are TTL/CMOS compatible when V+ is +5V. As V+ rises, the threshold increases; as V+ falls, the threshold decreases. For example,

when V+ = +3V, the guaranteed minimum logic-high threshold decreases to 2.0V.

Low-Voltage Operation

The MAX4674 operates from a single supply between +1.8V and +5.5V. At room temperature, it actually "works" with a single supply near or below +1.7V; as supply voltage decreases, however, switch on-resistance becomes very high.

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the device. Always sequence V+ on first, followed by the logic inputs and analog signals. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with the supply pins for overvoltage protection (Figure 1).

Adding diodes reduces the analog-signal range to one diode drop below V+ and one diode drop above GND, but does not affect the device's low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between V+ and GND should not exceed 6V. These protection diodes are not recommended if signal levels must extend to ground.

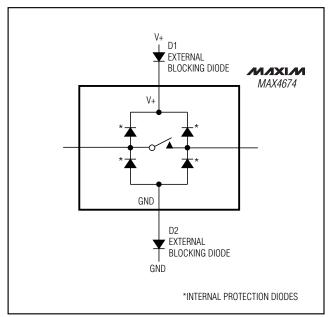


Figure 1. Overvoltage Protection Using External Blocking Diodes

High-Frequency Performance

In 50Ω systems, signal response is reasonably flat up to 50MHz (see *Typical Operating Characteristics*). Above 20MHz, the on response has several minor peaks that are highly layout dependent. The problem is not turning the switch on, but turning it off. The off-state switch acts like a capacitor and passes higher frequencies with less attenuation. At 10MHz, off-isolation is about -50dB in 50Ω systems, becoming worse (approximately 20dB per decade) as frequency increases. Higher circuit impedances also degrade off-isolation. Adjacent channel attenuation is about 3dB above that of a bare IC socket and is entirely due to capacitive coupling.

Chip Information

TRANSISTOR COUNT: 478

Test Circuits/Timing Diagrams

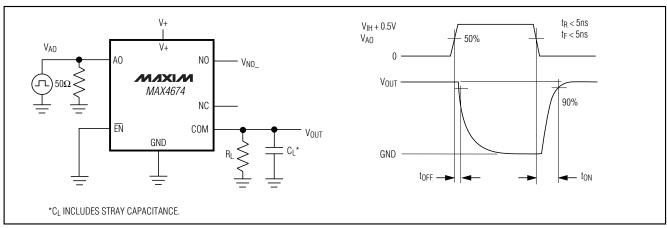


Figure 2. Turn-On and Turn-Off Times

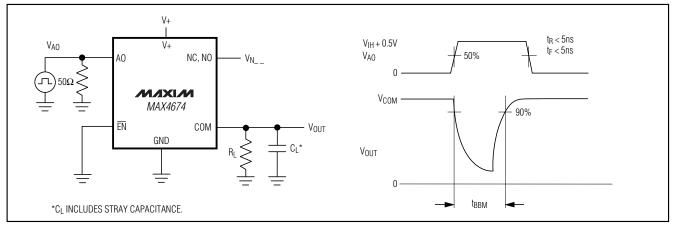


Figure 3. Break-Before-Make Interval

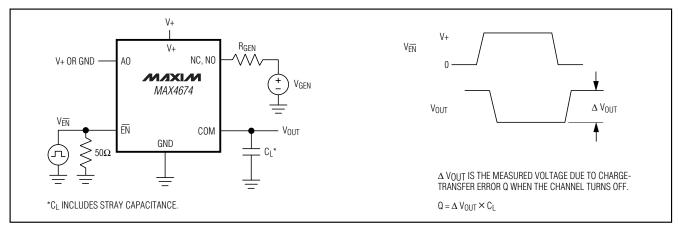
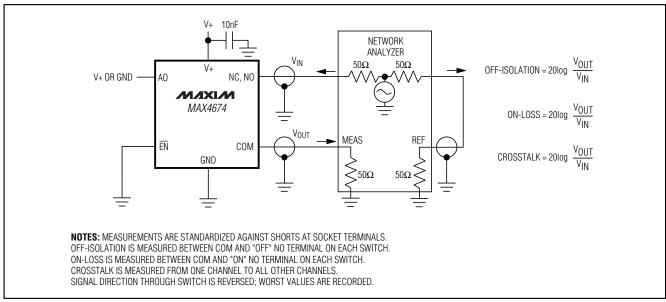
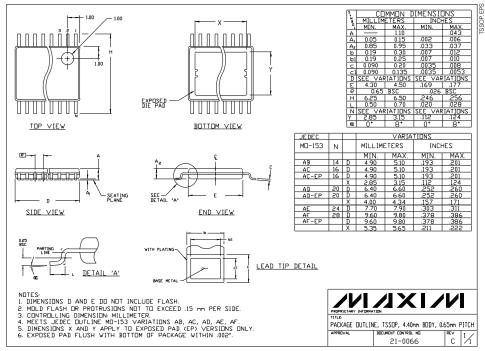
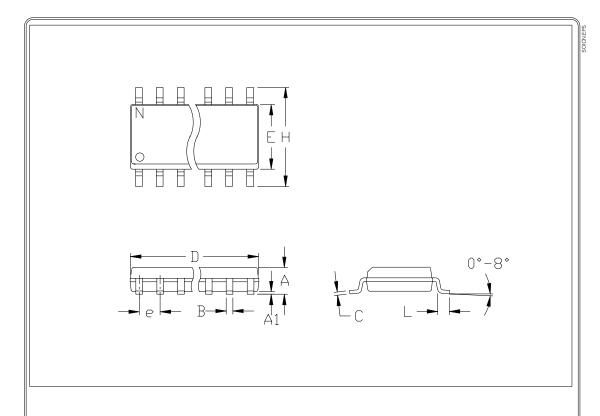


Figure 4. Charge Injection

Test Circuits/Timing Diagrams (continued)




Figure 5. Off-Isolation, On-Loss, and Crosstalk


Figure 6. Capacitance

Package Information

Package Information (continued)

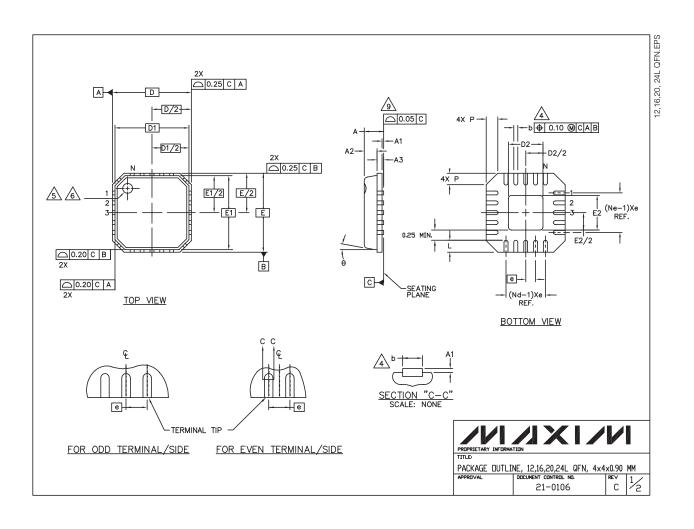
	INC	HES	MILLIM	IETERS
	MIN MAX		MIN	MAX
Α	0.053	0.069	1.35	1.75
Α1	0.004	0.010	0.10	0.25
В	0.014	0.019	0.35	0.49
С	0.007	0.010	0.19	0.25
6	0.0	0.050		27
Ε	0.150	0.157	3.80	4.00
Н	0.228	0.244	5.80	6.20
h	0.010	0.020	0.25	0.50
Ĺ	0.016	0.050	0.40	1.27

	INCHES		MILLIMETERS			
	MIN	MAX	MIN	MAX	Z	MS012
\mathbb{D}	0.189	0.197	4.80	5.00	∞	D
D	0.337	0.344	8.55	8.75	14	В
D	0,386	0.394	9.80	10.00	16	С

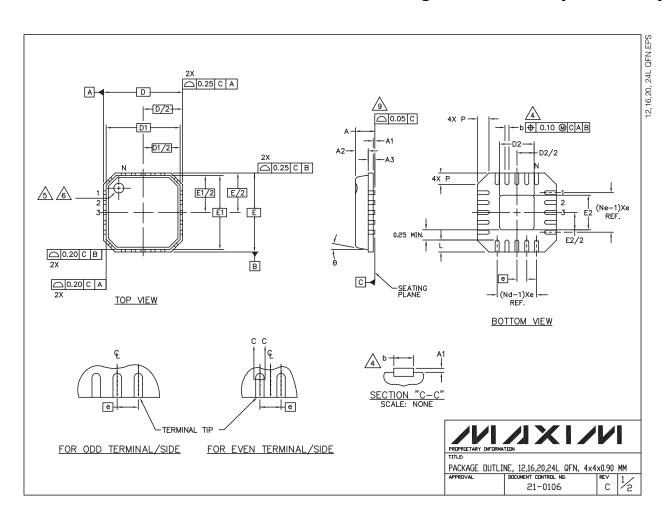
NOTES:

- 1. D&E DO NOT INCLUDE MOLD FLASH 2. MOLD FLASH OR PROTRUSIONS NOT
- TO EXCEED .15mm (.006")

 3. LEADS TO BE COPLANAR WITHIN .102mm (.004")
- 4. CONTROLLING DIMENSION: MILLIMETER
 5. MEETS JEDEC MS012-XX AS SHOWN
 IN ABOVE TABLE
 6. N = NUMBER OF PINS



PACKAGE FAMILY DUTLINE: SDIC .150"



21-0041 A

Package Information (continued)

Package Information (continued)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.