## Fast，High Voltage Comparator with Transparent Latch

The EL2018 represents a quantum leap forward in comparator speed， accuracy and functionality．
Manufactured with Elantec＇s proprietary Complementary Bipolar process，this device uses fast PNP and NPN transistors in the signal path．A unique circuit design gives the inputs the ability to handle large common mode and differential mode signals，yet retain high speed and excellent accuracy．Careful design of the front end insures the part maintains speed and accuracy when operating with a mix of small and large signals．The three－state output stage is designed to be TTL compatible for any power supply combination，yet it draws a constant current and does not generate glitches．When the output is disabled，the supply current consumption drops by $50 \%$ ，but the input stage and latch remain active．

Elantec facilities comply with MIL－I－45208A and other applicable quality specifications．For information on Elantec＇s processing，see QRA1：Elantec＇s Processing－Monolithic Products．

## Ordering Information

| PART <br> NUMBER | TEMP． <br> RANGE | PACKAGE | PKG．NO． |
| :---: | :---: | :---: | :---: |
| EL2018CN | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8－Pin PDIP | MDP0031 |

## Pinout

EL2018
（8－PIN PDIP）
TOP VIEW


## Features

－Fast response time－20ns
－Wide input differential voltage range－ 24 V to $\pm 15 \mathrm{~V}$ supplies
－Precision input stage－ $\mathrm{V}_{\mathrm{OS}}=1 \mathrm{mV}$
－Low input bias current－I $I_{B}=100 n A$
－Low input offset current－los $=30 \mathrm{nA}$
－$\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supplies
－Three－State TTL and CMOS compatible output
－No supply current glitch during switching
－High voltage gain－ $40 \mathrm{~V} / \mathrm{mV}$
－ $50 \%$ power reduction in shutdown mode
－Input and latch remain active in shutdown mode
－P／N compatible with industry standard comparators

## Applications

－Analog to digital converters
－ATE pin receiver
－Precision crystal oscillators
－Zero crossing detector
－Window detector
－Pulse width modulation generator
－＂Go／no－go＂detector

## EL2018

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

| $\mathrm{V}_{S}$ | Supply Voltage | V |
| :---: | :---: | :---: |
| $\mathrm{V}_{\text {IN }}$ | Input Voltage | $+V_{S}$ to - $V_{S}$ |
| $\mathrm{V}_{\mathrm{IN}}$ | Differential Input Voltage | Limited only by Power Supplies |
| $\mathrm{I}_{\mathrm{N}}$ | Input Current (Pins 1, 2 or 3) | $\pm 10 \mathrm{~mA}$ |
| $\mathrm{I}_{\text {INS }}$ | Input Current (Pins 5 or 6). | $\pm 5 \mathrm{~mA}$ |
|  | Maximum Power Dissipatio | 1.2 |


| lop | Peak Output Current | 50 mA |
| :---: | :---: | :---: |
| $\mathrm{I}_{0}$ | Continuous Output Current | 25 mA |
| $\mathrm{T}_{\text {A }}$ | Operating Temperature Range | . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| TJ | Operating Junction Temperature |  |
|  | Plastic DIP Package . | $150^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {ST }}$ | Storage Temperature | -65 ${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

The maximum power dissipation depends on package type, ambient temperature and heat sinking. See the Typical Performance curves for more details.

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

DC Electrical Specifications $\quad \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ unless otherwise specified

| PARAMETER | DESCRIPTION |  | TEMP | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OS }}$ | Input Offset Voltage (Note 1)$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.4 \mathrm{~V}$ |  | $25^{\circ} \mathrm{C}$ |  | 1.0 | 5 | mV |
|  |  |  | $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$ |  |  | 7 | mV |
| $\mathrm{I}_{\mathrm{B}}$ | Input Bias Current <br> $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$, Pin 2 or 3 |  | $25^{\circ} \mathrm{C}$ |  | 100 | 400 | nA |
|  |  |  | $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$ |  |  | 600 | nA |
| los | Input Offset Current$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ |  | $25^{\circ} \mathrm{C}$ |  | 30 | 150 | nA |
|  |  |  | $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$ |  |  | 250 | nA |
| CMRR | Common Mode Rejection Ratio (Note 2) |  | $25^{\circ} \mathrm{C}$ | 85 | 105 |  | dB |
|  |  |  | $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$ | 80 |  |  | dB |
| PSRR | Power Supply Rejection Ratio (Note 3) |  | $25^{\circ} \mathrm{C}$ | 85 | 100 |  | dB |
|  |  |  | $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$ | 77 |  |  | dB |
| $\mathrm{V}_{\mathrm{CM}}$ | Common Mode Input Range |  | $25^{\circ} \mathrm{C}$ | $\pm 12$ | $\pm 13$ |  | V |
|  |  |  | $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$ | $\pm 12$ |  |  | V |
| $\mathrm{A}_{\mathrm{V}}$ | Voltage Gain <br> $\mathrm{V}_{\text {OUT }}=0.8 \mathrm{~V}$ to 2.0 V |  | $25^{\circ} \mathrm{C}$ | 15 | 40 |  | $\mathrm{V} / \mathrm{mV}$ |
|  |  |  | $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$ | 10 |  |  | $\mathrm{V} / \mathrm{mV}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output Voltage Logic Low $\mathrm{I}_{\mathrm{OL}}=0 \mathrm{~mA}$ to 8 mA |  | $25^{\circ} \mathrm{C}$ | -0.05 | 0.15 | 0.4 | V |
|  |  |  | $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$ | -0.1 |  | 0.4 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | Output Voltage Logic High | $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ | $25^{\circ} \mathrm{C}$ | 3.5 | 4.0 | 4.65 | V |
|  |  | $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ | $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$ | 3.5 |  | 4.65 | V |
|  |  | $\mathrm{V}_{S}= \pm 5 \mathrm{~V}$ | $25^{\circ} \mathrm{C}$ | 2.4 |  |  | V |
|  |  | $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ | $\mathrm{T}_{\text {MIN }}$ | 2.4 |  |  | V |
|  |  | $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ | TMAX | 2.4 |  |  | V |
| V ODIS 1 | $\mathrm{V}_{\text {OUT }}$ Range, Disabled, $\mathrm{I}_{\mathrm{OL}}=-1 \mathrm{~mA}$ | $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ | $25^{\circ} \mathrm{C}$ | 4.65 |  |  | V |
|  |  | $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ | $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$ | 4.65 |  |  | V |
|  |  | $\mathrm{V}_{S}= \pm 5 \mathrm{~V}$ | $25^{\circ} \mathrm{C}$ |  | 3.5 |  | V |
| $\mathrm{V}_{\text {ODIS2 }}$ | $\mathrm{V}_{\text {OUT }}$ Range, Disabled, $\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ |  | ALL | -0.3 | -1 |  | V |
| $\mathrm{V}_{\text {INH }}$ | LE or CS Inputs Logic High Input Voltage |  | $25^{\circ} \mathrm{C}$ | 2.0 |  |  | V |
|  |  |  | $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$ | 2.2 |  |  | V |

## EL2018

DC Electrical Specifications $\quad \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ unless otherwise specified (Continued)

| PARAMETER | DESCRIPTION | TEMP | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {INL }}$ | LE or $\overline{C S}$ Inputs Logic Low Input Voltage | $25^{\circ} \mathrm{C}$ |  |  | 0.8 | V |
|  |  | $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$ |  |  | 0.8 | V |
| ${ }^{1} \mathrm{~N}$ | LE or $\overline{C S}$ Inputs Logic Input Current, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 5 V | $25^{\circ} \mathrm{C}$ |  |  | $\pm 200$ | $\mu \mathrm{A}$ |
|  |  | $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$ |  |  | $\pm 300$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{S}+\mathrm{EN}}$ | Positive Supply Current Enabled | $25^{\circ} \mathrm{C}$ |  | 8.4 | 12 | mA |
|  |  | $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$ |  |  | 13 | mA |
| $\mathrm{I}_{\text {S }+ \text { DIS }}$ | Positive Supply Current Disabled | $25^{\circ} \mathrm{C}$ |  | 4.7 | 6 | mA |
|  |  | $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$ |  |  | 7 | mA |
| IS-EN | Negative Supply Current Enabled | $25^{\circ} \mathrm{C}$ |  | 13.0 | 17 | mA |
|  |  | $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$ |  |  | 18 | mA |
| IS-DIS | Negative Supply Current Disabled | $25^{\circ} \mathrm{C}$ |  | 5.0 | 6.5 | mA |
|  |  | $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$ |  |  | 6.5 | mA |

NOTES:

1. $\mathrm{V}_{\mathrm{OUT}}=1.4 \mathrm{~V}$.
2. $\mathrm{V}_{\mathrm{CM}}=12 \mathrm{~V}$ to -12 V .
3. $V_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$.

AC Electrical Specifications $\quad \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| PARAMETER | DESCRIPTION | MIN | TYP | MAX | UNITS |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $T_{\text {PD }}$ | Propagation Delay, 5mV Overdrive |  | 20 | 40 | ns |
| $T_{\text {S }}$ | Setup Time |  | 6 | 12 | ns |
| $\mathrm{~T}_{\mathrm{H}}$ | Hold Time |  | -2 | 0 | ns |
| $\mathrm{~T}_{\text {UN }}$ | Unlatch Time |  | 23 | 40 | ns |
| $\mathrm{~T}_{\text {MPW }}$ | Minimum Clock Pulse Width |  | 12 |  | ns |
| $\mathrm{~T}_{\text {EN }}$ | Output Three-State Enable Delay |  | 40 | 70 | ns |
| $\mathrm{~T}_{\text {DIS }}$ | Output Three-State Disable Delay | 150 | 300 | ns |  |

## Typical AC Performance Curves



## Typical AC Performance Curves (Continued)



## EL2018

## Typical AC Performance Curve (Continued)




## EL2018

## Block Diagram



Function Table

| INPUTS (TIME N-1) |  |  |  | $\begin{gathered} \text { INTERNAL } \\ \mathrm{Q} \\ \hline \end{gathered}$ | NOTES | OUTPUT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| +IN | -IN | $\overline{\mathbf{C S}}$ | LE |  |  |  |
| $+$ | + | L | L | $\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$ | Normal Comparator Operation | $\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$ |
| + | + | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$ | Internal Normal Comparator Operation Output Power Down Mode | $\begin{aligned} & \text { High Z } \\ & \text { High Z } \end{aligned}$ |
| $\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$ | $\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$ | L H | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \text { Qn-1 } \\ & \text { Qn-1 } \end{aligned}$ | Data Retained in Latch Data Retained in Latch Power Down Mode | $\begin{gathered} \text { Qn-1 } \\ \text { High Z } \end{gathered}$ |

## Application Hints

## Device Overview

The EL2018 is the first comparator of its kind. It is capable of 24 V differential signals, yet has excellent accuracy, linearity and voltage gain. It even has a three-state output feature that reduces the power supply currents $50 \%$ when the output is disabled, yet the input stage and latch remain active. This extremely fast and accurate device is built with the proprietary Elantec Complementary Bipolar Dielectric Isolation Process, which is immune to power sequencing and latch up problems.

## Power Supplies

The EL2018 will work with $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supplies or any combination between (Example +12 V and -5 V ). The supplies should be well bypassed with good high frequency capacitors $(0.1 \mu \mathrm{~F}$ monolithic ceramic recommended) close to the power supply leads. Good ground plane construction techniques enhance stability, and the lead from pin 1 to ground should be short.

## Front End

The EL2018 uses schottky diodes to make a "bullet proof" front end with very low input bias currents, even if the two inputs are tied to very large differential voltages ( $\pm 24 \mathrm{~V}$ ). The transfer function of the EL2018 is linear, and the output is stable when in the linear region.

The large common mode range ( $\pm 12 \mathrm{~V}$ minimum) and differental voltage handling ability ( $\pm 24 \mathrm{~V}$ min.) of the device make it useful in ATE applications without the need for an input attenuator with its associated delay.

## Recovery from Large Overdrives

Timing accuracy is excellent for all signals within the common mode range of the device ( $\pm 12 \mathrm{~V}$ with $\pm 15 \mathrm{~V}$ supply). When the common mode range is exceeded the input stage will saturate, input bias currents increase and it may take as much as 200ns for the device to recover to normal operation after the inputs are returned to the common mode range. If signals greater than the common mode range of the device are anticipated, the inputs should be diode clamped to remain within the common mode range of the device.

## Input Slew Rate

All comparators have input slew rate limitations. The EL2018 operates normally with any input slew rate up to $300 \mathrm{~V} / \mu \mathrm{s}$. Input signal slew rates over $300 \mathrm{~V} / \mu \mathrm{s}$ induce offset voltages of 5 mV to 20 mV . This induced offset voltage settles out in about 20ns, 20 times faster than previous high voltage comparators.

## Latch

The EL2018 contains a "transparent" latch. A "transparent" latch acts as an amplifier when the LE input is low and it "latches" and holds the value it had just before the LE transition from low to high.

## EL2018

It is possible to make an oscillation resistant design by putting a short duration " 0 " on the LE input whenever you wish to make a comparison. This gates the comparator on only for a brief instant, long enough to compare, but not long enough to oscillate. The minimum duration of this pulse is specified by the minimum clock width parameter in the AC electrical tables.

The $\overline{\mathrm{CS}}$ input may be left floating and still produce a guaranteed logic "0" input (active). Floating the LE input will normally produce a logic " 0 " input also, but operation is not guaranteed.

Proper RF technique suggests that these inputs be grounded or pulled to ground if they are not used.

## Output Stage

The output stage of the EL2018 is a pair of complementary emitter followers operating as a linear amplifier. This makes the output stage of the EL2018 glitch free, and improves accuracy and stability when operating with small signals.

## Three-State Output, Power Saving Feature

The EL2018 has an output stage which can be put into a high impedance "three-state" mode. When it is in this mode, the input stage and latch remain active, yet the device dissipates only $50 \%$ of the power used when the output is active. This has advantages in a large ATE system where there may be 1000 comparators, but only $10 \%$ are in use at any one time.

Due to the power saving feature and linear output stage, the EL2018 does not have a standard TTL three-state output stage. As such one must be careful when using the threestate feature with devices other than other EL2018s or EL2019s. When operating from $\pm 15 \mathrm{~V}$ supplies the threestate feature is compatible with all TTL families, however CMOS families may conflict on high outputs. Since the output stage of the EL2018 turns on faster than it turns off, a $50 \Omega$ to $100 \Omega$ resistor in series with the output will limit fault currents between devices with minimum impact on logic drive capability.

## System Design Considerations

The most common problem users have with high speed comparators is oscillations due to output to input feedback. This can be avoided by using a ground plane, proper supply bypassing, and routing the inputs and outputs away from each other. Since the EL2018 has a gain bandwidth product of about 40 GHz , layout and bypassing are important to a successful system design. A unique alternative to the EL2018 is the EL2019, with its edge triggered master/slave flip flop.

## Device Functions

The various operating states of the EL2018 are described in the function table on page 7 .

## Typical Applications



USING THE EL2018 IN THE
TRANSPARENT MODE
(LATCH NOT USED)


A WIDE INPUT RANGE WINDOW COMPARATOR


## Equivalent Schematic



## Burn-In Circuit



PIN NUMBERS ARE FOR DIP PACKAGES.
ALL PACKAGES USE THE SAME SCHEMATIC.

## EL2018

## EL2018 Macromodel

* Connections: +input
* | -input
* 
* 
* 
* 
* 
* 

.subckt M2018

*

* Input Stage
$i 1810700 \mu \mathrm{~A}$
r1 134 1K r2 144 1K q1 8311 qn q2 8212 qn q3 131110 qp q4 141210 qp i2 $114200 \mu \mathrm{~A}$ i3 $124200 \mu \mathrm{~A}$
* 
* 2nd Stage \& Flip Flop
*i4 $824700 \mu \mathrm{~A}$ i4 8241 mA
q9 22624 qp q10 181724 qp v1 1702.5 V q5 151422 qp q6 161322 qp r3 154 1K r4 164 1K q7 161518 qp q8 151618 qp
* Output Stage
* 

i7 8352 mA
s1 352050 sw
d2 358 ds i6 26345 mA s2 34450 sw d3 3426 ds q19 82021 qn 2
q20 4197 qp 2
r8 21760
r7 2019 4K
q17 191626 qn 5
q18 01526 qn 5
q22 202030 qn 5
EL2018 Macromodel

* Connections: $\mathrm{IN}+\mathrm{IN}+\mathrm{IN}+\mathrm{IN}+\mathrm{IN}+\mathrm{IN}+\mathrm{IN}+\mathrm{IN}+\mathrm{IN}$ ININININ
q23 191930 qn 8
d1 019 ds
q21 01719 qp
* Power Supply Current


## EL2018

## ips 84 4mA

* Models
* 

.model qn npn (is=2e-15 bf=400 tf=0.05nS cje=0.3pF cjc=0.2pF ccs=0.2pF)
.model qp pnp (is=0.6e-15 bf=60 tf=0.3nS cje=0.5pF cjc=0.5pF ccs=0.4pF)
.model ds d (is $=2 \mathrm{e}-12 \mathrm{tt}=0.05 \mathrm{nS}$ eg $=0.62 \mathrm{~V} \mathrm{vj}=0.58$ )
.model sw vswitch (von=0.4V voff=2.5V)
.ends

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

