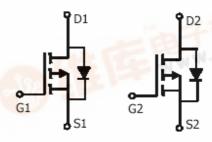

ELM14801AA Dual P-Channel Enhancement Mode Power MOS FET


General Description

ELM14801AA uses advanced trench technology to provide excellent R_{DS(ON)}, low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a load switch or in PWM applications. It may be used in a common drain arrangement to form a bidirectional blocking switch.

Features

 $V_{DS}(V) = -30V$ $I_{D} = -5A$ $R_{DS(ON)} < 49m\Omega \text{ (Vgs} = -10V)$ $R_{DS(ON)} < 64m\Omega \text{ (Vgs} = -4.5V)$ $R_{DS(ON)} < 120m\Omega \text{ (Vgs} = -2.5V)$

Parameter		Symbol	Maximum	Units		
Drain-Source Voltage		V _{DS}	-30	V		
Gate-Source Voltage		V _{GS}	±12	V		
Continuous Drain	T _A =25°C		-5			
Current ^A	T _A =70°C	I _D	-4.2	Α		
Pulsed Drain Current B		I _{DM}	-30	1		
Ulliv	T _A =25°C	D.	2	w		
Power Dissipation A	T _A =70°C	P _D	1.44	VV CC.		
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	C C		

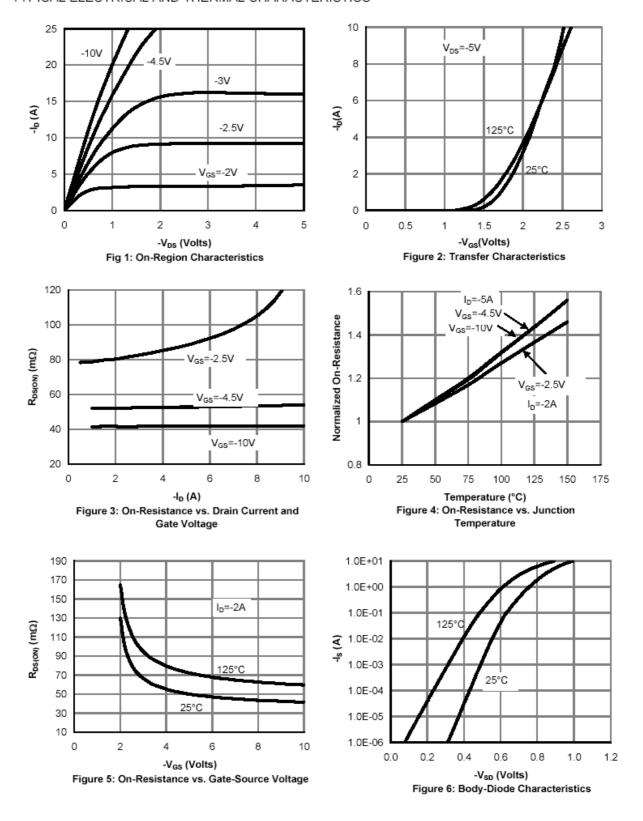
Thermal Characteristics							
Parameter	Symbol	Тур	Max	Units			
Maximum Junction-to-Ambient A	t ≤ 10s	R _{θJA}	48	62.5	°C/W		
Maximum Junction-to-Ambient A	Steady-State	ΓθJA	74	110	°C/W		
Maximum Junction-to-Lead ^c	Steady-State	$R_{\theta JL}$	35	40	°C/W		

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units			
STATIC PARAMETERS										
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =-250μA, V _{GS} =0V		-30			V			
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-24V, V _{GS} =0V				-1	μА			
500			TJ=55°C			-5				
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±12V				±100	nA			
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=-250\mu A$		-0.7	-1	-1.3	V			
I _{D(ON)}	On state drain current	V_{GS} =-4.5V, V_{DS} =-5V		-25			Α			
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS}=-10V$, $I_D=-5A$			42.5	49	mΩ			
			T _J =125°C			74	11132			
		V_{GS} =-4.5V, I_{D} =-4A			54	64	mΩ			
		V _{GS} =-2.5V, I _D =-1A		80	120	mΩ				
9 _{FS}	Forward Transconductance	V_{DS} =-5V, I_D =-5A		7	11		S			
V _{SD}	Diode Forward Voltage	I _S =-1A, V _{GS} =0V		-0.75	-1	V				
Is	Maximum Body-Diode Continuous Current					-3	Α			
DYNAMIC	PARAMETERS									
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =-15V, f=1MHz			952		pF			
Coss	Output Capacitance				103		pF			
Crss	Reverse Transfer Capacitance				77		pF			
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			5.9		Ω			
SWITCHII	NG PARAMETERS									
Qg	Total Gate Charge	V _{GS} =-4.5V, V _{DS} =-15V, I _D =-5A			9.5		nC			
Q_{gs}	Gate Source Charge				2		nC			
Q_{gd}	Gate Drain Charge				3.1		nC			
t _{D(on)}	Turn-On DelayTime				12		ns			
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-15V, R_L =3 Ω , R_{GEN} =6 Ω			4		ns			
t _{D(off)}	Turn-Off DelayTime				37		ns			
t _f	Turn-Off Fall Time		İ		12		ns			
t _{rr}	Body Diode Reverse Recovery Time	I _F =-5A, dI/dt=100A/μs			21		ns			
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-5A, dI/dt=100A/μs	3		13		nC			

A: The value of R_{BJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C.

The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating.


B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using $80\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

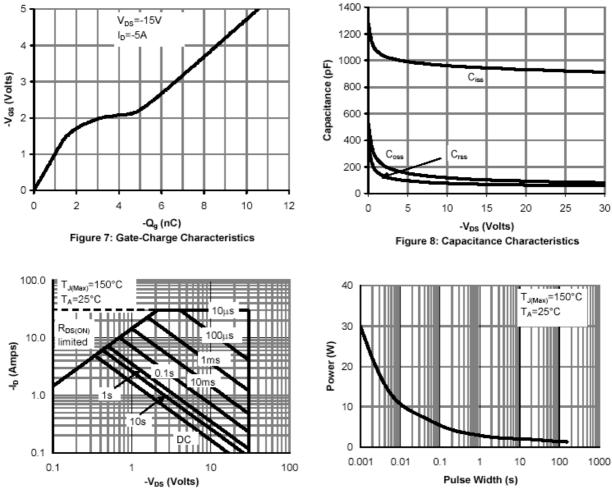
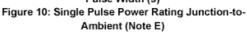



Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

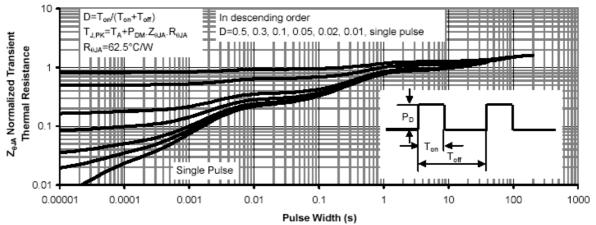


Figure 11: Normalized Maximum Transient Thermal Impedance