查询EP1810-20供应商

捷多邦,专业PCB打样工厂,24小时加急出货

EP1810 EPLDs

High-Performance 48-Macrocell Devices

Data Sheet

September 1991, ver. 2

Features

- High-density replacement for TTL and 74HC
- High-performance 48-macrocell EPLD with t_{PD} = 20 ns and counter frequencies up to 50 MHz
- Zero-power operation (50 µA typical standby)
- Advanced CMOS EPROM technology allowing devices to be erased and reprogrammed
- Individual clocking of all registers or banked register operation from four global Clock inputs
- Programmable registers providing D, T, JK, or SR flip-flops with individual asynchronous Clear control
- 48 macrocells with configurable I/O architecture, allowing up to 64 inputs and 48 outputs
- 100% generically testable to provide 100% programming yield
- Programmable Security Bit for total protection of proprietary designs
- Available in 68-pin J-lead and PGA packages
- Extensive third-party software and programming support

General Description

The EP1810 Erasable Programmable Logic Devices (EPLDs) offer LSI density, TTL-equivalent speed, and low power consumption. Each EPLD can replace 20 to 30 SSI and MSI packages. These EPLDs are available in 68-pin windowed ceramic and one-time-programmable plastic J-lead (JLCC and PLCC), and windowed ceramic pin-grid array (PGA) packages.

EP1810 EPLDs are designed as LSI replacements for traditional low-power Schottky TTL logic circuits and low-density Programmable Logic Devices (PLDs). These devices have the integration density to replace five CMOS 22V10 devices. The speed and density of the EP1810 EPLDs enable them to implement high-performance, complex functions, such as dedicated peripheral controllers and intelligent support chips. IC count and power requirements are considerably reduced with EP1810 EPLDs, thus minimizing the total size and system cost and significantly increasing reliability.

Logic is implemented with Altera's MAX+PLUS II or A+PLUS development systems. Both systems support schematic capture, Boolean equation, state machine, truth table, and netlist design entry methods. MAX+PLUS II also provides the Altera Hardware Description Language (AHDL), waveform entry, and an EDIF 2 0 0 netlist interface. After the design is entered, the software automatically translates the input files into logic equations, performs Boolean minimization, and fits the design into the EPLD.

Altera Corporation

Classic EPLDs

2

EP1810 EPLDs: High-Performance 48-Macrocell Devices

T-90-01

MAX+PLUS II automatically partitions larger designs into multiple EPLDs. The device(s) can then be programmed in seconds at the designer's desktop to create customized working silicon. In addition, extensive third-party support exists for design entry, design processing, and device programming.

EP1810 EPLDs use EPROM technology to configure logic connections. User-defined logic functions may be constructed by selectively programming EPROM cells within the EPLD. Moreover, these EPLDs are 100% generically testable and can be erased with UV light. Designs and design modifications can be implemented quickly, eliminating the need for post-programming testing.

EP1810The EP1810 EPLD is pin-, function-, and JEDEC-File-compatible with the
EP1810T and EP1830 EPLDs. JEDEC Files generated for an EP1810 EPLD
can be used for programming EP1810T and EP1830 devices.

EP1810

The EP1810 EPLD combines speed with low power. It can implement four 12-bit counters at up to 50 MHz, and typically consumes less than 20 mA when operating at 1 MHz. It is available with maximum t_{PD} values of 20, 25, 35, and 45 ns. Both MIL-STD-883B-compliant and DESCapproved parts are available.

EP1810T

The EP1810T EPLD is a lower-cost version of the EP1810 device. This device operates in Turbo mode only. The Turbo Bit in the EPLD is preset at the factory. The E1810T EPLD is available with maximum t_{PD} values of 20 ns, 25 ns, and 30 ns.

EP1830

The EP1830 is a fast, low-power version of the EP1810 device. This device can implement four 12-bit counters at up to 50 MHz and typically consumes 20 mA when operating at 1 MHz. It is available with a maximum t_{PD} values of 20 ns and 25 ns.

Functional Description

EP1810 EPLDs use CMOS EPROM cells to configure internal logic functions. The architecture is 100% user-configurable, accommodating a variety of independent logic functions.

EP1810 EPLDs have 48 macrocells, 16 dedicated data inputs (4 of which can also be used as global Clock inputs), and 48 I/O pins that can be individually configured for input, output, or bidirectional operation on a macrocell-by-macrocell basis. Each macrocell contains 10 product terms for the following functions: 8 product terms are dedicated to logic

Data Sheet	EP1810 EPLDs: High-Performance 48-Macrocell Devices T-90-01	
ALTERA CORP	47E D 🗰 0595372 0002118 140 🎟 ALT	

implementation; 1 product term is used for Clear control of the internal register; and 1 product term implements either Output Enable or an array Clock.

Of the 48 macrocells, 32 are local (see Figure 1) and 16 are global macrocells (see Figure 2). Local macrocells offer a multiplexed feedback path (with pin or macrocell feedback) and drive the local bus in their quadrants. Global macrocells feature two dedicated feedback paths: one feeds the local bus; the other feeds the global bus. This process, called dual feedback, allows global macrocells to implement buried logic functions while the associated I/O pin is used as an input. Dual feedback ensures maximum I/O flexibility.

2

Each macrocell consists of a logic array, a tri-state I/O buffer, and a selectable register element that can be programmed for D, T, JK, or SR operation, or bypassed for combinatorial functions. Each macrocell also has programmable output polarity. The logic array has a sum-of-products (AND/OR) structure. The 88 inputs to the programmable-AND array come from true and complement signals of the 16 dedicated data inputs, the 12 I/O feedback signals, and the 16 global feedback signals. The EP1810 EPLD has a total of 480 product terms distributed among 48 macrocells. Each product term represents an 88-input AND gate.

Figure 3 shows the complete block diagram of an EP1810 EPLD. The EP1810 device has four identical quadrants, each containing 12 macrocells. Internal bus structures in these EPLDs feed input signals into the macrocells. Macrocell outputs drive the external pins and internal buses.

In the erased state, the true and complement of the AND-array inputs are connected to the product terms. An EPROM control cell is located at each intersection of an AND-array input and a product term. During programming, selected connections are opened, allowing any product term to be connected to a true or complement array input signal.

Each internal flip-flop in EP1810 EPLDs can be clocked independently or in user-defined groups. Each internal register may select its clock source from a dedicated global Clock pin or a product term within the macrocell. Any input or internal logic function can be used as a clock.

Four dedicated inputs also provide global Clock signals (CLK1 to CLK4) to the flip-flops. One global Clock is located in each quadrant; each of which is connected directly to an EP1810 external pin. Global Clocks provide clock-to-output delay times that are faster than internally generated clock signals. Array Clocks provide individual clocking on a macrocell-bymacrocell basis, either directly from pins or through internal logic.

Clock Options

Array clock signals allow flip-flops to be configured for positive- or negativeedge-triggered operation. When global Clocks are used, the flip-flops are triggered by the positive edge, i.e., data transitions occur on the rising edge of the clock.

ALTERA CORP	47E D		0595372 000212	1 735 MALT
EP1810 EPLDs: High-Performance	18-Macrocell	Device	<u>s</u>	Data Sheet

Both global and local macrocells have the same timing characteristics. Switching waveforms for combinatorial, global Clock, and array Clock modes are shown in Figure 4. The timing model is shown in Figure 5.

Figure 6. EP1810 AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast ground current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, it can create significant reductions in observable noise immunity.

ALTERA CORP EP1810 EPLDs: High	47E D 🖬 059 h-Performance 48-Macrocell Devices	5372 0002123 T-90-01	508 MALT Data Sheet
Design Security	EP1810 EPLDs contain a program the programmed information. If design implemented in the device option makes programmed data w has a high level of design securit program data, is reset by erasing	this Security Bit is a cannot be copied or a ithin EPROM cells in ty. The Security Bit,	used, a proprietary retrieved. Since this visible, the designer
Turbo Bit	All EP1810 EPLDs contain a Tur control the automatic power-dow power mode. When the Turbo Bit standby-power mode (I_{CC1}) is disa V_{CC} noise transients from the no cycle. All AC values are tested wi	n feature that enable t is programmed (Tu abled, making the circ on-turbo mode powe	es the low-standby- rbo = On), the low- cuit less sensitive to er-up/power-down
	If the design requires low-power disabled (Turbo = Off). When open may increase. To determine wor Non-Turbo Adder specifications i	rating in this mode, so st-case timing, value	ome AC parameters es given in the AC

•

ALTERA CORP	47E D 🖿 0595372 0002124 444 🖬 ALT
	-7-46-19-09 EP1810 EPLD
Features	 Highest-performance 48-macrocell EPLD Combinatorial speeds with t_{PD} = 20, 25, 35, and 45 ns Counter frequencies up to 50 MHz Pipelined data rates up to 62.5 MHz Pin-, function-, and JEDEC-File-compatible with Altera's EP1810T
	and EP1830 EPLDs
	 Available in 68-pin windowed ceramic or one-time-programmable (OTP) plastic J-lead chip carrier and windowed ceramic pin-grid array (PGA) packages
	 Macrocells individually programmable as D, T, JK, or SR flip-flops, or for combinatorial operation
	 Programmable clock option for independent clocking of all registers 100% generically testable to provide 100% programming yield Extensive third-party software and programming support MAX+PLUS II and A+PLUS software support includes schematic capture, Boolean equation, state machine, and netlist design entry methods; Altera Hardware Description Language (AHDL), waveform entry, and an EDIF 2 0 0 interface are available with MAX+PLUS II.
General Description	The EP1810 Erasable Programmable Logic Device (EPLD) offers LSI density, TTL-equivalent speed, and low power consumption. It is available in 68-pin windowed ceramic and OTP plastic J-lead chip carrier and windowed ceramic PGA packages. See Figure 7.

Figure 7. EP1810 Package Pin-Out Diagrams

See Table 1 in this data sheet for PGA package pin-outs. Package outlines not drawn to scale.

J-Lead

ALTERA CORP	47E D	III 0595372 0002125	380 m alt
EP1810 EPLD		T-46-19-09	Data Sheet

Absolute Maximum Ratings Note: See Operating Requirements for EPLDs in this data book.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply voltage	With respect to GND	-2.0	7.0	V
V _{PP}	Programming supply voltage	See Note (1)	-2.0	13.5	V
VI	DC input voltage		-2.0	7.0	V
IMAX	DCV _{CC} or GND current		-300	300	mA
Ιουτ	DC output current, per pin		-25	25	mA
PD	Power dissipation			1500	mW
T _{STG}	Storage temperature	No bias	-65	150	°C
TAMB	Ambient temperature	Under bias	-65	135	°C

Recommended Operating Conditions See Note (2)

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply voltage		4.75 (4.5)	5.25 (5.5)	v
VI	Input voltage		0	V _{CC}	V
Vo	Output voltage		0	v _{cc}	V
TA	Operating temperature	For commercial use	0	70	°C
TA	Operating temperature	For industrial use	-40	85	°C
тс	Case temperature	For military use	-55	125	°C
t _R	Input rise time	See Note (3)		50	ns
t _F	Input fall time	See Note (3)		50	ns

DC Operating Conditions See Notes (2), (4), (5)

Symbol	Parameter	Conditions	Speed Grade	Min	Тур	Max	Unit
V _{IH}	High-level input voltage			2.0		V _{CC} + 0.3	v
VIL	Low-level input voltage			-0.3		0.8	V
v _{он}	High-level TTL output voltage	I _{OH} = -4 mA DC		2.4			۷
v _{он}	High-level CMOS output voltage	I _{OH} = -2 mA DC		3.84			V
V _{OL}	Low-level output voltage	I _{OL} = 4 mA DC				0.45	V
I _I	Input leakage current	$V_1 = V_{CC}$ or GND		-10		10	μA
I _{OZ}	Tri-state output off-state current	$V_0 = V_{CC}$ or GND		-10		10	μΑ
I _{CC1}	V _{CC} supply current	$V_{\rm H} = V_{\rm CC}$ or GND	-20, -25		50	150	μA
	(non-turbo standby)	I _O = 0, See Note (6)	-35, -45		35	150	μA
I _{CC2}	V _{CC} supply current	V _I = V _{CC} or GND, No load,	-20, -25		20	40	mA
	(non-turbo mode)	f = 1.0 MHz, See Note (7)	-35, -45		10	30 (40)	mA
I _{CC3}	V _{CC} supply current	$V_1 = V_{CC}$ or GND, No load,	-20, -25		180	225	mA
	(turbo mode)	f = 1.0 MHz, See Note (7)	-35, -45		100	180 (240)	mA

ALTERA CORP	47E D 🔳 0595372 0002121	217 m alt
Data Sheet	E	P1810 EPLD
Capacitance See Note (8)	T-46-19	7-09

Symbol	Parameter	Conditions	Min	Max	Unit
CIN	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		20	pF
С _{ОUT}	Output capacitance	$V_{OUT} = 0 V, f = 1.0 MHz$		20	pF
C _{CLK}	Clock pin capacitance	$V_{1N} = 0 V, f = 1.0 MHz$		25	pF

AC Operating Conditions: EP1810-20, EP1810-25 See Note (5)

External Timing Parameters		al Timing Parameters EP18		EP1810-20		310-25	Non-Turbo Adder	
Symbol	Parameter	Conditions	Min	Max	Min	Max	See Note (9)	Unit
t _{PD1}	Input to non-registered output	C1 = 35 pF		20		25	25	ns
t _{PD2}	I/O input to non-registered output	7		22		28	25	ns
tsu	Global clock setup time		13		17		25	ns
t _H	Global clock hold time		0		0		0	ns
t _{co1}	Global clock to output delay	C1 = 35 pF		15	[18	0	ns
t _{CH}	Global clock high time		8		10		0	ns
t _{CL}	Global clock low time		8		10		0	ns
t _{ASU}	Array clock setup time		8		10		25	ns
t _{AH}	Array clock hold time		8		10		0	ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		20		25	25	ns
t _{CNT}	Minimum global clock period			20		25	0	ns
f _{CNT}	Maximum internal frequency	See Note (7)	50		40		0	MHz
f _{MAX}	Maximum clock frequency	See Note (10)	62.5		50	1	0	MHz

Internal Timing Parameters		EP1810-20		EP1810-25		Non-Turbo Adder		
Symbol	Parameter	Conditions	Min	Max	Min	Max	See Note (9)	Unit
t _{IN}	Input pad and buffer delay			5		7	0	ns
t _{IO}	I/O input pad and buffer delay		1	2		3	0	ns
t _{LAD}	Logic array delay			9		12	25	ns
t _{OD}	Output buffer and pad delay	C1 = 35 pF		6		6	0	ns
t _{ZX}	Output buffer enable delay			6		6	0	ns
t _{xz}	Output buffer disable delay	C1 = 5 pF, Note (11)		6		6	0	ns
t _{SU}	Register setup time		8		10		0	ns
t _H	Register hold time		8		10	[0	ns
t _{IC}	Array clock delay			9		12	25	ns
t _{ICS}	Global clock delay			4		5	0	ns
t _{FD}	Feedback delay			3		3	-25	ns
t _{CLR}	Register clear time			9		12	25	ns

2 Classic EPLDs

External	Timing Parameters		EP18	310-35	EP18	310-45	Non-Turbo Adder	
Symbol	Parameter	Conditions	Min	Max	Min	Max	See Note (9)	Unit
t _{PD1}	Input to non-registered output	C1 = 35 pF		35		45	30	ns
t _{PD2}	I/O input to non-registered output			40		50	30	ns
t _{su}	Global clock setup time		25		30		30	ns
t _H	Global clock hold time		0		0		0	ns
t _{CO1}	Global clock to output delay	C1 = 35 pF		20		25	0	ns
t _{CH}	Global clock high time		12	1	15		0	ns
t _{CL}	Global clock low time		12		15		0	ns
t _{ASU}	Array clock setup time		10		11		30	ns
t _{AH}	Array clock hold time		15		18		0	ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF		35		45	30	ns
t _{CNT}	Minimum global clock period			35		45	0	ns
f _{CNT}	Maximum internal frequency	See Note (7)	28.6		22.2		0	MHz
f _{MAX}	Maximum clock frequency	See Note (10)	40		33.3		0	MHz
Internal	Timing Parameters		EP18	310-35	EP18	310-45	Non-Turbo Adder	
Symbol	Parameter	Conditions	Min	Max	Min	Max	See Note (9)	Unit
t _{IN}	Input pad and buffer delay			7		7	0	ns
t ₁₀	I/O input pad and buffer delay			5		5	0	ns
tLAD	Logic array delay			19		27	30	ns
t _{OD}	Output buffer and pad delay	C1 = 35 pF		9		11	0	ns
t _{ZX}	Output buffer enable delay	-		9		11	0	ns
t _{xz}	Output buffer disable delay	C1 = 5 pF, Note (11)		9		11	0	ns
t _{SU}	Register setup time		10		11		0	ns
t _H	Register hold time		15		18		0	ns
t _{IC}	Array clock delay			19		27	30	ns
t _{ICS}	Global clock delay			4		8	0	ns
t _{FD}	Feedback delay			6	Γ	7	-30	ns
			1	24	1	32	30	1

Product Availability

Operati	ng Temperature	Availability
Commercial	(0° C to 70° C)	EP1810-20, EP1810-25, EP1810-35, EP1810-45
Industrial	(-40° C to 85° C)	EP1810-25, EP1810-40, EP1810-45 (12)
Military	(-55° C to 125° C)	EP1810-45 <i>(13)</i>

ALTERA CORP

47E D 🗰 0595372 0002127 153 🖿 ALT

ALTERA CORP

Data Sheet

0595372 0002128 09T MALT 47E D

T-46-19-09

EP1810 EPLD

2

Classic

EPLDs

Notes to tables:

- (1) The minimum DC input is -0.3 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 7.0 V for periods less than 20 ns under no-load conditions. For EP1810-20 and EP1810-25: maximum V_{PP} is 14.0 V.
- Numbers in parentheses are for military and industrial temperature versions. (2)
- For EP1810-20 and EP1810-25 clocks: t_R and $t_F = 20$ ns. (3)
- (4)
- (5)
- Typical values are for $T_A = 25^{\circ}$ C and $V_{CC} = 5 V$. Operating conditions: $V_{CC} = 5 V \pm 5\%$, $T_A = 0^{\circ}$ C to 70° C for commercial use. $V_{CC} = 5 V \pm 10\%$, $T_A = -40^{\circ}$ C to 85° C for industrial use. $V_{CC} = 5 V \pm 10\%$, $T_C = -55^{\circ} C$ to $125^{\circ} C$ for military use.

When in non-turbo mode, an EPLD will automatically enter standby mode if logic (6) transitions do not occur (approximately 100 ns after the last transition).

Measured with a device programmed as four 12-bit counters. (7)

Capacitance measured at 25° C. Sample-tested only. Clock-pin capacitance for (8) dedicated clock inputs only. For EP1810-35 and EP1810-45: Pin 19 (high-voltage pin during programming) has a maximum capacitance of 160 pF.

- (9) See "Turbo Bit" earlier in this data sheet.
- (10) The f_{MAX} values represent the highest frequency for pipelined data.
- (11) Sample-tested only for an output change of 500 mV.
- (12) DC/AC specifications for EP1810-40 (industrial) are available by calling Altera's Marketing Department at (408) 984-2800.
- (13) Only military-temperature-range devices are listed above. MIL-STD-883-compliant product specifications are provided in Military Product Drawings (MPDs), available by calling Altera's Marketing Department. These MPDs should be used to prepare Source Control Drawings (SCDs). See Military Products in this data book.

Table 1 shows the pin-outs for the EP1810 PGA package.

Table	1. EP1810 PG	A Pin-Ol	uts				
Pin	Function	Pin	Function	Pin	Function	Pin	Function
A2	I/O	B9	I/O	F10	GND	K4	INPUT
A3	I/O	B10	I/O	F11	I/O	K5	INPUT
A4	I/O	B11	I/O	G1	I/O	K6	VCC
A5	INPUT	C1	I/O	G2	I/O	K7	INPUT
A6	CLK4/INPUT	C2	I/O	G10	I/O	К8	INPUT
A7	CLK3/INPUT	C10	I/O	G11	I/O	К9	I/O
A8	INPUT	C11	I/O	H1	I/O	K10	I/O
A9	I/O	D1	I/O	H2	I/O	K11	I/O
A10	1/0	D2	I/O	H10	I/O	12	I/O
B1	1/O	D10	I/O	H11	I/O	L3	I/O
B2	I/O	D11	I/O	J1	I/O	L4	INPUT
B3	I/O	E1	I/O	J2	I/O	L5	CLK1/INPUT
B4	INPUT	E2	I/O	J10	I/O	L6	CLK2/INPUT
B5	INPUT	E10	I/O	J11	I/O	L7	INPUT
B6	vcc	E11	I/O	K1	I/O	L8	I/O
B7	INPUT	F1	I/O	К2	I/O	L9	I/O
B8	INPUT	F2	GND	КЗ	I/O	L10	I/O

Figure 8 shows output drive characteristics for EP1810 I/O pins and typical supply current versus frequency for the EP1810 EPLD.

	EP1810T EPLD
-eatures	 Highest-performance 48-macrocell EPLD Combinatorial speeds with t_{PD} = 20 ns, 25 ns, and 35 ns Counter frequencies up to 50 MHz Pipelined data rates up to 62.5 MHz Pin-, function-, and JEDEC-File-compatible with Altera's EP1810 and EP1830 EPLDs Available in 68-pin, one-time-programmable (OTP) plastic J-lead chip carrier package (PLCC) Macrocells individually programmable as D, T, JK, or SR flip-flops, or for combinatorial operation Programmable clock option for independent clocking of all registers 100% generically testable to provide 100% programming yield Extensive third-party software and programming support MAX+PLUS II and A+PLUS software support includes schematic capture, Boolean equation, state machine, and netlist design entry methods; Altera Hardware Description Language (AHDL), waveform entry, and an EDIF 2 0 0 interface are available with MAX+PLUS II.
eneral escription	Altera's EP1810T Erasable Programmable Logic Device (EPLD) is a low- cost, high-performance version of the EP1810 device. This EPLD operates in a turbo mode that is optimized for high-speed applications. The Turbo Bit in the device is preset at the factory. The EP1810T EPLD is available in OTP plastic 68-pin J-lead chip carrier packages with maximum t_{PD} values of 20 ns, 25 ns, and 35 ns. See Figure 9. It contains 48 macrocells with user- configurable I/O architecture for up to 64 inputs and 48 outputs.
	Figure 9. EP1810T Package Pin-Out Diagram
	Package outline not drawn to scale.
	999999999999999999999999999999999999

J-Lead

ALTERA CORP

EP1810T EPLD

■ 0595372 0002131 684 ■ ALT 47E D T-46-19-09

Data Sheet

Absolute Maximum Ratings Note: See Operating Requirements for EPLDs in this data book.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply voltage	With respect to GND	-2.0	7.0	v
V _{PP}	Programming supply voltage	See Note (1)	-2.0	13.5	V
V	DC input voltage		-2.0	7.0	V
IMAX	DC V _{CC} or GND current		-300	300	mA
Ιουτ	DC output current, per pin		-25	25	mA
PD	Power dissipation			1500	mW
T _{STG}	Storage temperature	No bias	-65	150	°C
TAMB	Ambient temperature	Under bias	-65	135	°C

Recommended Operating Conditions

Symbol	Parameter	Conditions	Min	Max	Unit
v _{cc}	Supply voltage		4.75	5.25	V
Vi	Input voltage		0	V _{CC}	V
Vo	Output voltage		0	V _{CC}	V
TA	Operating temperature	For commercial use	0	70	°C
t _R	Input rise time	See Note (2)		50	ns
t _E	Input fall time	See Note (2)		50	ns

DC Operating Conditions See Notes (3), (4)

Symbol	Parameter	Conditions	Speed Grade	Min	Тур	Max	Unit
ViH	High-level input voltage			2.0		V _{CC} + 0.3	V
V _{IL}	Low-level input voltage			-0.3		0.8	V
V _{OH}	High-level TTL output voltage	$I_{OH} = -4 \text{ mA DC}$		2.4			V
V _{OH}	High-level CMOS output voltage	I _{OH} = -2 mA DC		3.84			v
V _{OL}	Low-level output voltage	I _{OL} = 4 mA DC				0.45	V
1	Input leakage current	V ₁ = V _{CC} or GND		-10		10	μA
loz	Tri-state output off-state current	$V_0 = V_{CC}$ or GND		-10		10	μA
I _{CC1}	V _{CC} supply current (standby)	V _I = V _{CC} or GND, No load	-20T, -25T		180	250	mA
			-35T		120	215	mA
I _{CC3}	V _{CC} supply current	V _I = V _{CC} or GND, No load,	-20T, -25T		180	250	mA
	(turbo mode)	f = 1.0 MHz, See Note (5)	-35T		120	215	mA

Capacitance See Note (6)

Symbol	Parameter	Parameter Conditions		Max	Unit
CIN	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		20	pF
COUT	Output capacitance	$V_{OUT} = 0 V, f = 1.0 MHz$		20	pF
C _{CLK}	Clock pin capacitance	$V_{1N} = 0 V, f = 1.0 MHz$		25	pF

ALTERA CORP

Data Sheet

47E D 🔳 0595372 0002132 510 🔳 ALT

EP1810T EPLD T-46-19-09

AC Operating Conditions See Note (4)

External	Timing Parameters		EP18	10-20T	EP1810-25T		EP1810-35T			
Symbol	Parameter	Conditions	Min	Max	Min	Max	Min	Max	Unit	
t _{PD1}	Input to non-registered output	C1 = 35 pF	-	20	<u> </u>	25		35	ns	
t _{PD2}	I/O input to non-registered output			22		28		40	ns	
t _{SU}	Global clock setup time		13		17	<u> </u>	25		ns	
t _H	Global clock hold time		0	1	0		0		ns	
t _{co1}	Global clock to output delay	C1 = 35 pF		15	<u> </u>	18		20	ns	_
t _{CH}	Global clock high time		8		10		12		ns	
t _{CL}	Global clock low time		8		10		12		ns	
t _{ASU}	Array clock setup time		8		10		10		ns	
t _{AH}	Array clock hold time		8		10		15		ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF		20		25		35	ns	
t _{cnt}	Minimum global clock period			20		25		35	ns	
f _{cnt}	Internal maximum frequency	See Note (5)	50		40		28.6		MHz	
f _{MAX}	Maximum frequency	See Note (7)	62.5		50		40		MHz	

Internal	Internal Timing Parameters			EP1810-20T		EP1810-25T		EP1810-35T	
Symbol	Parameter	Conditions	Min	Max	Min	Max	Min	Max	Unit
t _{IN}	Input pad and buffer delay			5		7		7	ns
t _{IO}	I/O input pad and buffer delay			2		3		5	ns
t _{LAD}	Logic array delay			9		12		19	ns
t _{OD}	Output buffer and pad delay	C1 = 35 pF	-	6		6		9	ns
t _{ZX}	Output buffer enable delay			6		6		9	ns
t _{xz}	Output buffer disable delay	C1 = 5 pF, See Note (8)		6		6	-	9	ns
t _{SU}	Register setup time		8		10		10		ns
t _H	Register hold time		8		10		15		ns
t _{IC}	Array clock delay			9		12		19	ns
t _{ICS}	Global clock delay			4		5		4	ns
t _{FD}	Feedback delay			3		3		6	ns
t _{CLR}	Register clear time			9		12		24	ns

Notes to tables:

The minimum DC input is -0.3 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 7.0 V for periods less than 20 ns under no-load conditions. For EP1810-20T and EP1810-25T: maximum V_{PP} is 14.0 V. For EP1810-20T and EP1810-25T clocks: t_R and $t_P = 20$ ns. Typical values are for $T_A = 25^{\circ}$ C and $V_{CC} = 5$ V. Operating conditions: $V_{CC} = 5 \text{ V} \pm 5\%$, $T_A = 0^{\circ}$ C to 70° C for commercial use. Measured with a device programmed as four 12-bit counters. Capacitance measured at 25° C. Sample-tested only. Clock-pin capacitance for dedicated clock inputs only. For EP1810-35T: Pin 19 (high-voltage pin during programming) has a maximum capacitance of 160 pF. The f_{MAX} values represent the highest frequency for pipelined data. Sample-tested only for an output change of 500 mV. (1)

(2)

(3)

- (4)
- (5)
- (6)
- (7)

(8)

0595372 0002133 457 🎟 ALT 47E ⊅ ALTERA CORP Data Sheet EP1810T EPLD T-46-19-09 **Product Availability** Availability **Operating Temperature** EP1810-20T, EP1810-25T, EP1810-35T (0° C to 70° C) Commercial (--40° C to 85° C) Consult factory Industrial Military (-55° C to 125° C) Consult factory

Figure 10 shows the output drive characteristics for EP1810T I/O pins and typical supply current versus frequency for the EP1810T EPLD.

Figure 10. EP1810T Output Drive Characteristics and I_{CC} vs. Frequency

ALTERA CORP	47E D 🗰 0595372 0002134 393 🖿 ALT
	EP1830 EPLD
Features	 High-performance 48-macrocell EPLD Combinatorial speeds with t_{PD} = 20 ns Counter frequencies up to 50 MHz Pipelined data rates up to 62.5 MHz Pin-, function-, and JEDEC-File-compatible with Altera's EP1810 and EP1810T EPLDs Available in 68-pin, one-time-programmable (OTP) plastic J-lead chip carrier package (PLCC) Macrocells individually programmable as D, T, JK, or SR flip-flops, or for combinatorial operation Programmable clock option for independent clocking of all registers 100% generically testable to provide 100% programming yield Extensive third-party software and programming support MAX+PLUS II and A+PLUS software support includes schematic capture, Boolean equation, state machine, and netlist design entry methods; Altera Hardware Description Language (AHDL), waveform entry, and an EDIF 2 0 0 interface are available with MAX+PLUS II.
General Description	Altera's EP1830 Erasable Programmable Logic Device (EPLD) is a fast, low-power version of the EP1810 device. The EP1830 can implement four 12-bit counters at up to 50 MHz and typically consumes 20 mA when operating at 1 MHz. The EP1830 EPLD is available in OTP plastic 68-pin J-lead chip carrier packages with maximum t_{PD} values of 20 ns and 25 ns. See Figure 11.
	Figure 11. EP1830 Package Pin-Out Diagram
	Package outline not drawn to scale.

ļ	-	Lead

ALTERA CORP

47E D 🔳 0595372 0002135 22T 🔳 ALT

T-46-19-09

Data Sheet

EP1830 EPLD

Absolute Maximum Ratings Note: See Operating Requirements for EPLDs in this data book.

Symbol	Parameter	Conditions	Min	Max	Unit	
V _{CC}	Supply voltage	With respect to GND	-2.0	7.0	v	
V _{PP}	Programming supply voltage	See Note (1)	-2.0	14.0	V	
VI	DC input voltage	-1	-2.0	7.0	V	
IMAX	DCV _{CC} or GND current		-300	300	mA	
	DC output current, per pin		-25	25	mA	
PD	Power dissipation			1500	mW	
TSTG	Storage temperature	No bias	-65	150	°C	
TAMB	Ambient temperature	Under bias	-65	135	۰c	

Recommended Operating Conditions

Symbol	ymbol Parameter Con		Min	Max	Unit
V _{CC}	Supply voltage		4.75	5.25	V
V	Input voltage		0	V _{CC}	V
v _o	Output voltage		0	V _{CC}	V
TA	Operating temperature	For commercial use	0	70	°C
TA	Operating temperature	For industrial use	-40	85	°C
t _R	Input rise time	See Note (2)		50	ns
t _F	Input fall time	See Note (2)		50	ns

DC Operating Conditions See Notes (3), (4)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VIH	High-level input voltage		2.0		V _{CC} + 0.3	v
VIL	Low-level input voltage		-0.3		0.8	V
VOH	High-level TTL output voltage	$I_{OH} = -4 \text{ mA DC}$	2.4			V
VOH	High-level CMOS output voltage	$I_{OH} = -2 \text{ mA DC}$	3.84			٧
VOL	Low-level output voltage	I _{OL} = 4 mA DC			0.45	۷
<u> </u>	Input leakage current	$V_1 = V_{CC}$ or GND	-10		10	μA
loz	Tri-state output off-state current	$V_{O} = V_{CC}$ or GND	-10		10	μA
I _{CC1} V _{CC} supply current V ₁ =		$V_1 = V_{CC}$ or GND $I_0 = 0$, See Note (5)		50	150	μA
I _{CC2}	V _{CC} supply current (non-turbo mode)	$V_1 = V_{CC}$ or GND, No load, f = 1.0 MHz, See Note (6)		20	40	mA
I _{CC3}	V_{CC} supply current $V_I = V_{CC}$ or GND, No load, (turbo mode)(turbo mode) $f = 1.0 \text{ MHz}$, See Note (6)			180	225	mA

ALTERA CORP Data Sheet

🔲 0595372 0002136 166 📟 ALT 47E D

EP1830 EPLD

Capacitance See Note (7) T-46-19-09

Symbol	Parameter	Conditions	Min	Max	Unit
CIN	Input capacitance	$V_{IN} = 0 V, f = 1.0 MHz$		20	pF
COUT	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		20	pF
C _{CLK}	Clock pin capacitance	$V_{IN} = 0 V, f = 1.0 MHz$		25	pF

AC Operating Conditions See Note (4)

External Timing Parameters			EP18	EP1830-20 EP1830-25		Non-Turbo Adder			
Symbol	Parameter	Conditions	Min	Max	Min	Max	See Note (8)	Unit	
t _{PD1}	Input to non-registered output	C1 = 35 pF		20		25	25	ns	
t _{PD2}	I/O input to non-registered output			22	1	28	25	ns	
t _{su}	Global clock setup time		13	1	17		25	ns	
t _H	Global clock hold time		0		0		0	ns	ģ
t _{CO1}	Global clock to output delay	C1 = 35 pF		15		18	0	ns	0
t _{CH}	Global clock high time		8		10		0	ns	
t _{CL}	Global clock low time		8		10		0	ns	
t _{ASU}	Array clock setup time		8		10		25	ns	
t _{AH}	Array clock hold time		8		10		0	ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF		20	1	25	25	ns	
t _{CNT}	Minimum global clock period			20		25	0	ns	
f _{CNT}	Internal maximum frequency	See Note (6)	50		40		0	MHz	
f _{MAX}	Maximum frequency	See Note (9)	62.5		50		0	MHz	

Internal	Timing Parameters		EP18	330-20	EP18	30-25	Non-Turbo Adder	
Symbol	Parameter	Conditions	Min	Max	Min	Max	See Note (8)	Unit
t _{IN}	Input pad and buffer delay			5		7	0	ns
t _{io}	I/O input pad and buffer delay			2		3	0	ns
t _{LAD}	Logic array delay			9		12	25	ns
t _{OD}	Output buffer and pad delay	C1 = 35 pF		6		6	0	ns
t _{ZX}	Output buffer enable delay			6		6	0	ns
t _{xz}	Output buffer disable delay	C1 = 5 pF, Note (10)		6		6	0	ns
t _{SU}	Register setup time		8	1	10		0	ns
t _H	Register hold time		8		10		0	ns
t _{IC}	Array clock delay			9	_	12	25	ns
t _{ICS}	Global clock delay			4		5	0	ns
t _{FD}	Feedback delay			3		3	-25	ns
t _{CLR}	Register clear time			9		12	25	ns

0595372 0002137 OT2 MALT 47E D ALTERA CORP Data Sheet EP1830 EPLD T-46-19-09 Notes to tables: The minimum DC input is -0.3 V. During transitions, the inputs may undershoot to (1)

- -2.0 V or overshoot to 7.0 V for periods less than 20 ns under no-load conditions.
- (2) For all clocks: t_R and $t_F = 20$ ns.
- (3)
- Typical values are for $T_A = 25$ °C and $V_{CC} = 5$ V. Operating conditions: $V_{CC} = 5 V \pm 5\%$, $T_A = 0^\circ$ C to 70° C for commercial use. $V_{CC} = 5 V \pm 10\%$, $T_A = -40^\circ$ C to 85° C for industrial use. (4)
- When in non-turbo mode, an EPLD automatically enters standby mode if logic (5) transitions do not occur (approximately 100 ns after the last transition).
- Measured with a device programmed as four 12-bit counters. (6)
- Capacitance measured at 25° C. Sample-tested only. Clock-pin capacitance for (7) dedicated clock inputs only.
- See "Turbo Bit" earlier in this data sheet. (8)
- The $\mathbf{f}_{\mathbf{MAX}}$ values represent the highest frequency for pipelined data. (9)
- (10) Sample-tested only for an output change of 500 mV.

Product Availability

Operati	ng Temperature	Availability
Commercial	(0° C to 70° C)	EP1830-20, EP1830-25, EP1830-30
Industrial	(-40° C to 85° C)	EP1830-25
Military	(-55° C to 125° C)	Consult factory

Figure 12 shows the output drive characteristics for EP1830 I/O pins and typical supply current versus frequency for the EP1830 EPLD.

Figure 12. EP1830 Output Drive Characteristics and I_{CC} vs. Frequency

