ER1000 THRU ER1004

SUPERFAST RECOVERY RECTIFIERS VOLTAGE - 50 to 400 Volts CURRENT - 10.0 Amperes

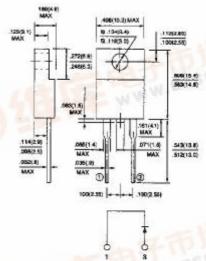
FEATURES

Plastic package has Underwriters Laboratory

Flammability Classification 94V-O utilizing

Flame Retardant Epoxy Molding Compound

- Exceeds environmental standards of MIL-S-19500/228
- Low power loss, high efficiency
- Low forward voltage, high current capability
- High surge capacity
- Super fast recovery times, high voltage
- Epitaxial chip construction


MECHANICAL DATA

Case: TO-220AC molded plastic

Terminals: Lead, solderable per MIL-STD-202, Method 208

Polarity: As marked Weight: 0.08 ounces, 2.24 grams WW.D126.GDM

TO-220AC

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 ambient temperature unless otherwise specified.

Single phase, half wave, 60Hz, Resistive or inductive load.

For capacitive load, derate current by 20%.

	ER1000	ER1001	ER1001A	ER1002	ER1003	ER1004	UNITS
Maximum Recurrent Peak Reverse Voltage	50	100	150	200	300	400	V
Maximum RMS Voltage	35	70	105	140	210	320	V
Maximum DC Blocking Voltage	50	100	150	200	300	400	V
Maximum Average Forward Rectified	10						А
Current at T _C =100	-T.W						
Peak Forward Surge Current,	150						Α
8.3ms single half sine-wave superimposed	C.C.C						
on rated load(JEDEC method)	DISTORTING BLOWN						
Maximum Forward Voltage at 10.0A per	0.95					V	
element	190 7 4 - 4						
Maximum DC Reverse Current at Rated T _a =25	10						Α
DC Blocking Voltage per element T _a =125	500						
Typical Junction capacitance (Note 1)	62						₽F
Maximum Reverse Recovery Time(Note 2)	35				5	0	ns
Typical Thermal Resistance(Note 3) R JC	3.0						/W
Operating and Storage Temperature Range T _J	-55 to +150						

NOTES:

df.dzsc.com

Measured at 1 MHz and applied reverse voltage of 4.0 VDC

Reverse Recovery Test Conditions: I_F=.5A, I_R=1A, Irr=.25A

Thermal resistance junction to CASE RATING AND CHARACTERISTIC CURVES ER1000 THRU ER1004

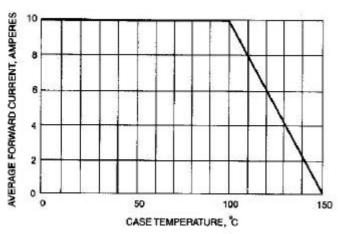


Fig. 1-FORWARD CURRENT DERATING CURVE

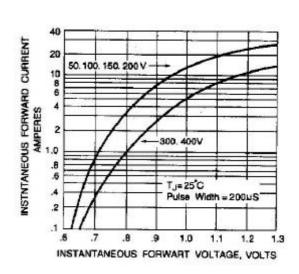


Fig. 2-TYPICAL INSTANTANEOUS FORWARD

CHARACTERISTIC

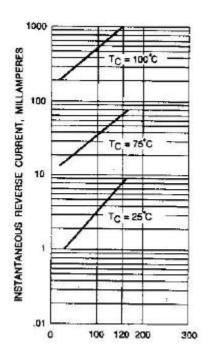


Fig. 3-TYPICAL REVERSE CHARACTERISTICS

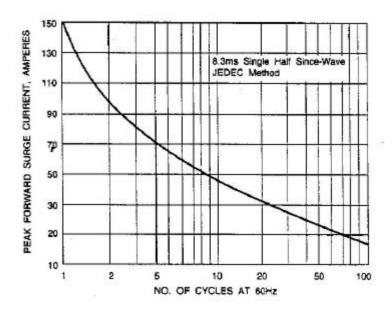


Fig. 4-MAXIMUM NON-REPETITIVE SURGE CURRENT

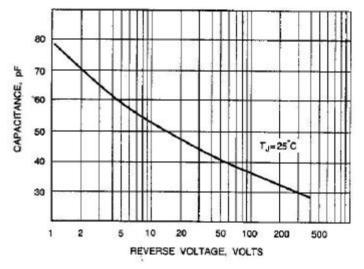


Fig. 5-TYPICAL JUNCTION CAPACITANCE