19-2008; Rev 0; 4/01

Ο.4Ω, Low-Voltage, Single-Supply SPST Analog Switches in SC70

General Description

The MAX4715/MAX4716 are low on-resistance, low-voltage, single-pole/single-throw (SPST) analog switches that operate from a +1.6V to +3.6V single supply. The MAX4715 is normally open (NO), and the MAX4716 is normally closed (NC). These devices also have fast switching speeds (t_{ON} = 18ns max, t_{OFF} = 12ns max).

When powered from a +3V supply, the MAX4715/ MAX4716 offer 0.4Ω max on-resistance (R_{ON}) with 0.1Ω max R_{ON} flatness. Their digital logic inputs are +1.8V CMOS compatible when using a single +3V supply.

The MAX4715 is pin compatible with the MAX4594, and the MAX4716 is pin compatible with the MAX4595. The MAX4715/MAX4716 are available in SC70-5 packages.

Applications

Power Routing Battery-Operated Equipment

Audio and Video Signal Routing

Low-Voltage Data-Acquisition Systems

Communications Circuits

PCMCIA Cards

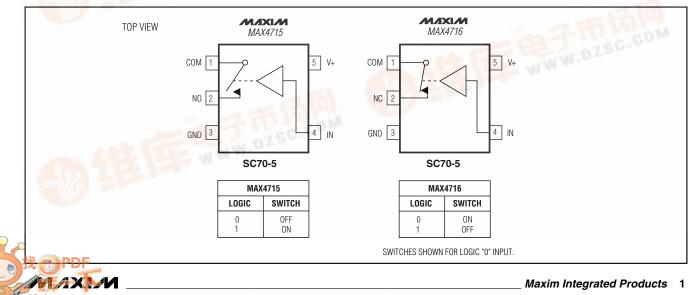
Cellular Phones

- Modems
- Hard Drives

Low Ron 0.4Ω max (+3V Supply) 1.2Ω max (+1.8V Supply)

- 0.1Ω max Ron Flatness (+3V Supply)
- +1.6V to +3.6V Single-Supply Operation
- Available in 5-Pin SC70 Packages
- Fast Switching: ton = 18ns max, torr = 12ns max

专业PCB打样工厂,24小时加急出货


- +1.8V CMOS Logic Compatible (+3V Supply)
- Pin Compatible with MAX4594 (MAX4715)
 Pin Compatible with MAX4595 (MAX4716)

Features

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	TOP MARK
MAX4715EXK-T	-40°C to +85°C	5 SC70-5	ACJ
MAX4716EXK-T	<mark>-40°C t</mark> o +85°C	5 SC70-5	ACK
			-

Pin Configurations/Functional Diagrams/Truth Tables

Torprice, delivery, and to place orders, please contact Maxim Distribution at 1-888-629-4642,

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to GND

V+, IN	0.3V to +4V
COM, NO, NC (Note 1)	0.3V to (V+ + 0.3V)
Continuous Current NO, NC to COM	±300mA
Peak Switch Current NO, NC to COM	
(pulsed at 1ms, 10% duty cycle max).	±600mA
Continuous Power Dissipation (T _A = +70	°C)
5-Pin SC70 (derate 3.1mW/°C above -	+70°C)247mW

Operating	Temperature	Range

MAX471_EXK	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	
Lead Temperature (soldering, 10s).	

Note 1: Signals on NO, NC, or COM exceeding V+ or GND are clamped by internal diodes.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +3V Supply

 $(V + = +2.7V \text{ to } +3.6V, V_{IH} = +1.4V, V_{IL} = +0.5V, T_A = T_{MIN} \text{ to } T_{MAX}$, unless otherwise noted. Typical values are at V + = +3.0V and $T_A = +25^{\circ}C$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	ТА	MIN	ТҮР	MAX	UNITS	
ANALOG SWITCH								
Analog Signal Range	V _{COM} , V _{NO} , V _{NC}			0		V+	V	
	Davis	V+ = 2.7V, I _{COM} = 100mA,	+25°C		0.3	0.4	Ω	
On-Resistance (Note 6)	R _{ON}	$V_{NO} \text{ or } V_{NC} = 1.5 V$	T _{MIN} to T _{MAX}			0.45	52	
On-Resistance Flatness (Note 4)	DEL ATION	V+ = 2.7V, I _{COM} = 100mA,	+25°C		0.05	0.09	Ω	
On-Resistance Flatness (Note 4)	R _{FLAT(ON)}	$V_{NO} \text{ or } V_{NC} = 0.6, \ 1.5V, \ 2.1V$	T _{MIN} to T _{MAX}			0.1	52	
NO, NC Off-Leakage Current	INO(OFF) or	V+ = 3.3V, V _{COM} = 0.3V, 3V	+25°C	-1	0.01	1	nA	
NO; NC OII-Leakage Cultent	I _{NC(OFF)} or	$V_{NO} \text{ or } V_{NC} = 3V, 0.3V$	T _{MIN} to T _{MAX}	-10		10	ΠA	
		V+ = 3.3V, V _{COM} = 0.3V, 3V	+25°C	-1	0.01	1	nA	
COM Off-Leakage Current	ICOM(OFF)	$V_{NO} \text{ or } V_{NC} = 3V, 0.3V$	$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$	-10		10	ΠA	
	leerver	$V_{+} = 3.3V, V_{COM} = 0.3V, 3V, V_{NO} \text{ or}$	+25°C	-2		2	5	
COM On-Leakage Current	ICOM(ON)	$V_{NC} = 0.3V, 3V$ or floating	T _{MIN} to T _{MAX}	-10		10	10 nA	
DYNAMIC	-		•					
Turn-On Time	ton	$\label{eq:VNO} \begin{array}{l} V_{NO} \text{ or } V_{NC} = 1.5 \text{V}, \ \text{R}_L = 50 \Omega, \\ C_L = 35 \text{pF}, \ \text{Figure 1} \end{array}$	+25°C		12	18	ns	
			T _{MIN} to T _{MAX}			20	113	
Turn-Off Time	toff	$\label{eq:VNO} \begin{split} V_{NO} & \text{or} \; V_{NC} = 1.5 \text{V}, \text{R}_L = 50 \Omega, \\ C_L = 35 \text{pF}, \text{Figure 1} \end{split}$	+25°C		6	12	ns	
	UFF		T _{MIN} to T _{MAX}			15		
Charge Injection	Q	$V_{GEN} = 0$, $R_{GEN} = 0$, $C_L = 1.0$ nF, Figure 2	+25°C		20		рС	
Off-Isolation (Note 5)	V _{ISO}	$\label{eq:constraint} \begin{array}{l} f = 1 MHz, V_{COM} = 1 V_{RMS}, \\ R_L = 50 \Omega, C_L = 5 pF, Figure 3 \end{array}$	+25°C		-54		dB	
Total Harmonic Distortion	THD	f = 20Hz to 20kHz, V _{COM} = 2V _{P-P} , R _L = 32Ω	+25°C		0.01		%	
NC or NO Off-Capacitance	C _{NO(OFF)} C _{NC(OFF)}	f = 1MHz, Figure 4	+25°C		55		pF	
COM Off-Capacitance	C _{COM} (OFF)	f = 1MHz, Figure 4	+25°C		55		рF	
COM On-Capacitance		f = 1MHz, Figure 4	+25°C		80		pF	

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

 $(V + = +2.7V \text{ to } +3.6V, V_{IH} = +1.4V, V_{IL} = +0.5V, T_A = T_{MIN} \text{ to } T_{MAX}$, unless otherwise noted. Typical values are at V + = +3.0V and $T_A = +25^{\circ}C$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	ТҮР	MAX	UNITS
LOGIC INPUT							
Input Voltage Low	VIL					0.5	V
Input Voltage High	VIH			1.4			V
Input Leakage Current	lin	$V_{IN} = 0 \text{ or } V_{+}$		-1		1	μΑ
SUPPLY		·		-			
Power-Supply Range	V+			1.6		3.6	V
Positive Supply Current			+25°C		0.04	0.2	
	+		T _{MIN} to T _{MAX}			2	μA

ELECTRICAL CHARACTERISTICS—Single +1.8V Supply

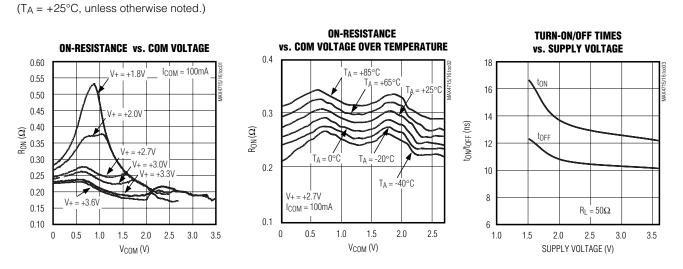
 $(V + = +1.8V, V_{IH} = +1V, V_{IL} = +0.4V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	ТА	MIN	TYP	MAX	UNITS	
ANALOG SWITCH	ANALOG SWITCH							
Analog Signal Range	V _{COM} , V _{NO} , V _{NC}			0		V+	V	
On-Resistance	Pou	$I_{COM} = 10 \text{mA},$	+25°C		0.6	1.2	Ω	
On-Resistance	Ron	$V_{NO} \text{ or } V_{NC} = 0.9 V$	T_{MIN} to T_{MAX}			2.5	52	
	I _{NO(OFF)} or	V _{COM} = 0.3V, 1.5V, V _{NO} or	+25°C	-1		1		
NO or NC Off-Leakage Current	INC(OFF)	V _{NC} = 1.5V, 0.3V	T_{MIN} to T_{MAX}	-10		10	nA	
		$\begin{array}{l} V_{COM} = 0.3V, \ 1.5V, \ V_{NO} \ or \\ V_{NC} = 1.5V, \ 0.3V \end{array}$	+25°C	-1		1	nA	
COM Off-Leakage Current	ICOM(OFF)		$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$	-10		10	ПА	
	ICOM(ON)	M(ON) $V_{COM} = 1.5V, 0.3V, V_{NO} \text{ or}$ $V_{NC} = 1.5V, 0.3V, \text{ or floating}$	+25°C	-2		2	nA	
COM On-Leakage Current			$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$	-10		10		
DYNAMIC								
Turn-On Time	On Time ton ton ton the state of the state o	$V_{\rm NO}$ or $V_{\rm NC} = 1.5 V$, $R_{\rm L} = 50 \Omega$,	+25°C		18	25	ns	
Turn-On Time		$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$			30	115		
	torr	toff V_{NO} or V_{NC} = 1.5V, R_L = 50 Ω , C_L = 35pF, Figure 1	+25°C		9	20	20	
Turn-Off Time	LOFF		T_{MIN} to T_{MAX}			25	ns	
Charge Injection	Q	$V_{GEN} = 0$, $R_{GEN} = 0$, $C_L = 1$ nF, Figure 2	+25°C		40		рС	

ELECTRICAL CHARACTERISTICS—Single +1.8V Supply (continued)

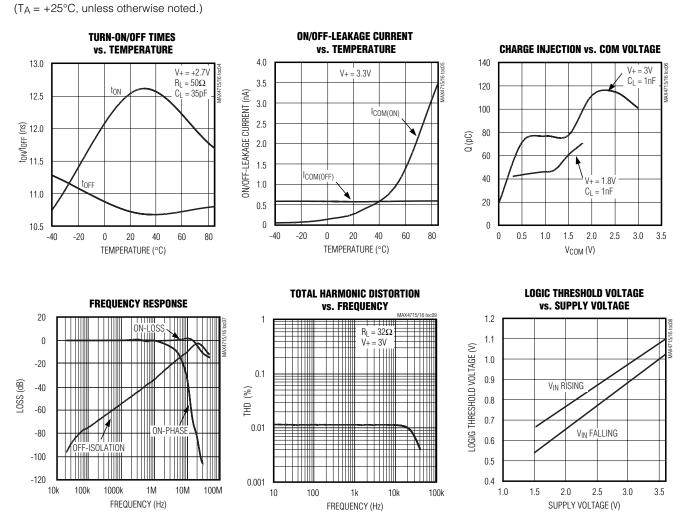
 $(V + = +1.8V, V_{IH} = +1V, V_{IL} = +0.4V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C.$) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
LOGIC INPUT							
Input Voltage Low	VIL					0.4	V
Input Voltage High	VIH			1			V
Input Leakage Current	lin	$V_{IN} = 0 \text{ or } V+$				1	μΑ
SUPPLY							
Positive Supply Current	1.	I+ V _{IN} = 0 or V+	+25°C		0.04	0.2	^
	1+		$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$			2	μA


Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.

Note 3: SC70-packaged parts are 100% tested at +25°C. Limits across the full temperature range are guaranteed by design and correlation.

Note 4: Flatness is defined as the difference between the maximum and minimum values of on-resistance as measured over the specified analog signal range.


Note 5: Off-Isolation = 20log₁₀ [V_{COM} / (V_{NC} or V_{NO})], V_{COM} = output, V_{NC} or V_{NO} = input to off switch.

Note 6: Guaranteed by design.

Typical Operating Characteristics

Typical Operating Characteristics (continued)

Pin Description

Р	PIN		FUNCTION	
MAX4715	MAX4716	NAME	FUNCTION	
1	1	COM	Analog Switch—Common	
2		NO	NO Analog Switch—Normally Open	
	2	NC	Analog Switch—Normally Closed	
3	3	GND	Ground	
4	4	IN	Digital Control Input	
5	5	V+	Positive Supply Input	

MAX4715/MAX4716

MAX4715/MAX4716

Detailed Description

The MAX4715/MAX4716 are low on-resistance (R_{ON}), low-voltage, single-pole/single-throw (SPST) analog switches that operate from a +1.6V to +3.6V single supply. The MAX4715 is normally open (NO), and the MAX4716 is normally closed (NC).

When powered from a +3V supply, their 0.4 Ω R_{ON} allows high continuous currents to be switched in a variety of applications.

_Applications Information

Logic Inputs

The MAX4715/MAX4716 logic inputs can be driven up to +3.6V regardless of the supply voltage. For example,

with a +3.3V supply, IN may be driven low to GND and high to +3.6V. Driving IN Rail-to-Rail[®] minimizes power consumption.

Analog Signal Levels

/N/IXI/N

Analog signals that range over the entire supply voltage (V+ to GND) can be passed with very little change in on-resistance (see *Typical Operating Characteristics*). The switches are bidirectional, so the NO, NC, and COM pins can be used as either inputs or outputs.

Rail-to-Rail is a registered trademark of Nippon Motorola Ltd.

Test Circuits/Timing Diagrams

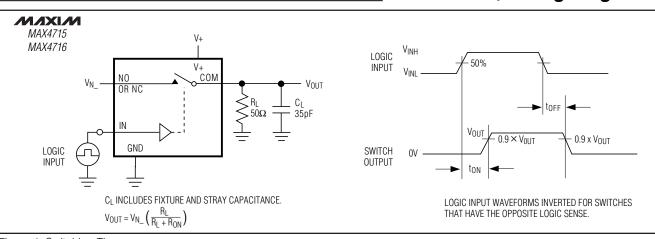


Figure 1. Switching Time

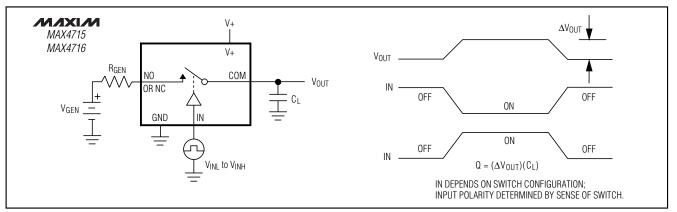


Figure 2. Charge Injection

Test Circuits/Timing Diagrams (continued)

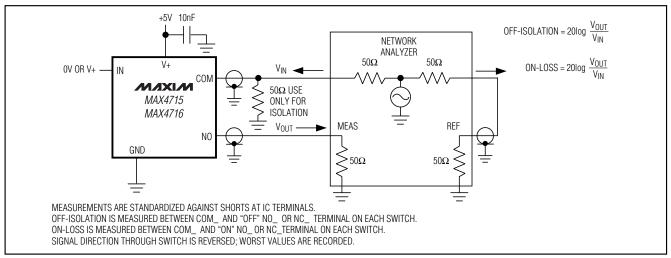


Figure 3. On-Loss and Off-Isolation

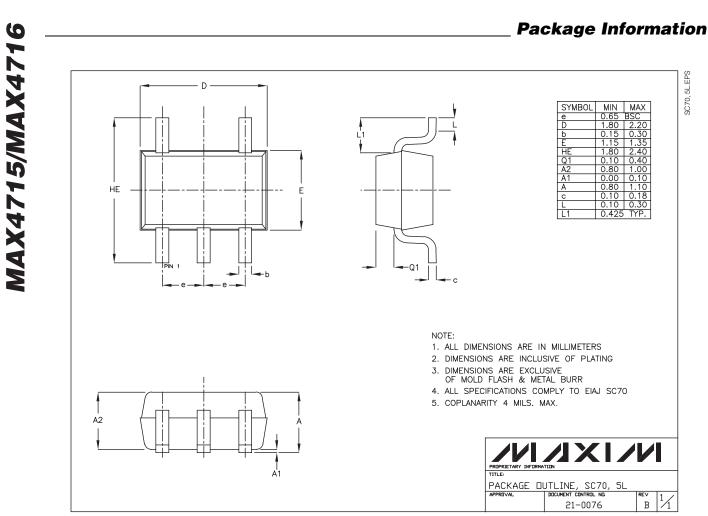


Figure 4. Channel Off/On-Capacitance

Chip Information

MAX4715/MAX4716

TRANSISTOR COUNT: 135 PROCESS: CMOS

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2001 Maxim Integrated Products Printed USA MAXIM is a registered trademark of Maxim Integrated Products.

8