ASM3P1819N #### rev 0.2 #### Low Power Mobile VGA EMI Reduction IC #### **Features** - FCC approved method of EMI attenuation - Provides up to 15dB EMI reduction - Generates a low EMI spread spectrum clock and a non-spread Reference Clock of the input frequency - Optimized for frequency range from 20MHz to 40MHz - Internal loop filter minimizes external components and board space - Down Spread Deviation: -1.25% - Low inherent Cycle-to-Cycle jitter - 3.3V Operating Voltage - CMOS/TTL compatible inputs and outputs - Low power CMOS design - Supports notebook VGA and other LCD timing controller applications - Power Down function for mobile application - Products are available for industrial temperature - Available in 8 pin SOIC and TSSOP Packages #### **Functional Description** The ASM3P1819N is a versatile spread spectrum frequency modulator designed specifically for a wide range of input clock frequencies from 20 to 40MHz. The ASM3P1819N can generate an EMI reduced clock from crystal, ceramic resonator, or system clock. The ASM3P1819N reduces electromagnetic interference (EMI) at the clock source, allowing a system wide EMI reduction for all the down stream clocks and data dependent signals. The ASM3P1819N allows significant system cost savings by reducing the number of circuit board layers, ferrite beads, shielding, and other passive components that are traditionally required to pass EMI regulations. The ASM3P1819N modulates the output of a single PLL in order to "spread" the bandwidth of a synthesized clock, thereby decreasing the peak amplitude of its harmonics. This result in significantly lower system EMI compared to the typical narrow band signal produced by oscillators and most clock generators. Lowering EMI by increasing a signal's bandwidth is called "spread spectrum clock generation". The ASM3P1819N uses the most efficient and optimized modulation profile approved by the FCC and is implemented by using a WWW.DZSC.COM proprietary all digital method #### **Applications** The ASM3P1819N is targeted towards EMI management for memory and LVDS interfaces in mobile graphic chipsets and high-speed digital applications such as PC peripheral devices, consumer electronics and embedded controller system. ## **Pin Configuration** ## **Pin Description** | Pin# | Pin Name | Туре | Description | |------|----------|------|--| | 1 | XIN | ı | Connect to externally generated Clock signal or Crystal. | | 2 | VSS | Р | Ground Connection. Connect to system ground. | | 3 | NC | - | No Connect. | | 4 | ModOUT | 0 | Spread spectrum clock output. | | 5 | REF | 0 | Non-modulated Reference clock output of the input frequency. | | 6 | PD# | I | Power down control pin. Pull LOW to enable Power-Down mode. This pin has an internal pull-up resistor. | | 7 | VDD | Р | Connect to +3.3V. | | 8 | XOUT | ī | Connect to crystal. No connect if externally generated clock signal is used. | ## **Absolute Maximum Ratings** | Symbol | Parameter | Rating | Unit | |----------------------|---|--------------|------| | VDD, V _{IN} | Voltage on any pin with respect to Ground | -0.5 to +7.0 | V | | T _{STG} | Storage temperature | -65 to +125 | °C | | T _A | Operating temperature | 0 to 70 | °C | | Ts | Max. Soldering Temperature (10 sec) | 260 | °C | | TJ | Junction Temperature | 150 | °C | | T _{DV} | Static Discharge Voltage (As per JEDEC STD22- A114-B) | 2 | KV | ## **Output Frequency and Modulation Rate** | Input Frequency Range | Output Frequency Range | Modulation Rate | Spread Deviation | |-----------------------|------------------------|-----------------------|------------------| | (MHz) | (MHz) | | (%) | | 20 to 40 | 20 to 40 | Input Frequency / 512 | -1.25 | **DC Electrical Characteristics** (Test condition: All parameters are measured at room temperature (+25°C) unless otherwise stated) | Symbol | Parameter | Min | Тур | Max | Unit | |------------------|---|------------------------------|------|-------------------------------|------| | V _{IL} | Input Low voltage | VSS - 0.3 | - | 0.8 | V | | V _{IH} | Input High voltage | 2.0 | - | VDD + 0.3 | V | | I _{IL} | Input Low current | - | - | -20.0 | μA | | I _{IH} | Input High current | - | | 1.0 | μA | | I _{XOL} | X _{OUT} Output low current @ 0.4V, VDD = 3.3V | - | 3 | 3 | mA | | I _{XOH} | X _{OUT} Output high current @ 2.5V, VDD = 3.3V | - 4 | 3 | - | mA | | V _{OL} | Output Low voltage VDD = 3.3V, I _{OL} = 20mA | - | | 0.4 | V | | V _{OH} | Output High voltage VDD = 3.3V, I _{OH} = 20mA | 2.5 | | - | ٧ | | I _{CC} | Dynamic Supply current 3.3V and 10pF probe loading | 7.1
f _{IN - min} | - | 26.9
f _{IN - max} | mA | | I_{DD} | Static Supply current | - | 4.5 | - | mA | | VDD | Operating Voltage | - V | 3.3 | - | V | | t _{ON} | Power up time (First locked clock cycle after power up) | - | 0.18 | - | mS | | Z _{OUT} | Clock Output impedance | - | 50 | - | Ω | #### **AC Electrical Characteristics** | Symbol | Parameter | Min | Тур | Max | Unit | |---|---|------|------|-----|------| | f _{IN} | Input Frequency | 20 | - | 40 | MHz | | f _{OUT} | Output Frequency | 20 | ī | 40 | MHz | | t _{LH} ¹ | Output Rise time (Measured from 0.8V to 2.0V) | - | 0.69 | - | nS | | t _{HL} ¹ | Output Fall time (Measured from 2.0V to 0.8V) | - | 0.66 | - | nS | | t _{JC} | Jitter (Cycle to Cycle) | -200 | - | 200 | pS | | t _D | Output Duty cycle | 45 | 50 | 55 | % | | Note:1. t _{LH} and t _{HL} are measured into a capacitive load of 15pF | | | | | | ## **Package Information** # 8-Pin (150-mil) SOIC Package | | Dimensions | | | | | |--------|------------|-------|-------------|------|--| | Symbol | Inc | hes | Millimeters | | | | | Min | Max | Min | Max | | | A1 | 0.004 | 0.010 | 0.10 | 0.25 | | | A | 0.053 | 0.069 | 1.35 | 1.75 | | | A2 | 0.049 | 0.059 | 1.25 | 1.50 | | | В | 0.012 | 0.020 | 0.31 | 0.51 | | | c | 0.007 | 0.010 | 0.18 | 0.25 | | | D | 0.193 BSC | | 4.90 BSC | | | | E | 0.154 BSC | | 3.91 BSC | | | | e | 0.050 BSC | | 1.27 BSC | | | | Н | 0.236 BSC | | 6.00 BSC | | | | L | 0.016 | 0.050 | 0.41 | 1.27 | | | θ | 0° | 8° | 0° | 8° | | Note: Controlling dimensions are millimeters SOIC – 0.074 grams unit weight ### 8-lead Thin Shrunk Small Outline Package (4.40-MM Body) | | Dimensions | | | | | |--------|--------------------|-------|-------------|------|--| | Symbol | Inc | hes | Millimeters | | | | | Min Max | | Min | Max | | | Α | | 0.043 | | 1.10 | | | A1 | 0.002 | 0.006 | 0.05 | 0.15 | | | A2 | 0.033 | 0.037 | 0.85 | 0.95 | | | В | 0.008 | 0.012 | 0.19 | 0.30 | | | С | 0.004 | 0.008 | 0.09 | 0.20 | | | D | 0.114 | 0.122 | 2.90 | 3.10 | | | E | 0.169 | 0.177 | 4.30 | 4.50 | | | е | 0.026 BSC 0.65 BSC | | | BSC | | | Н | 0.252 BSC | | 6.40 BSC | | | | L | 0.020 | 0.028 | 0.50 | 0.70 | | | θ | 0° | 8° | 0° | 8° | | Note: Controlling dimensions are millimeters TSSOP – 0.0325 grams unit weight rev 0.2 #### **Ordering Information** | Part number | Marking | Package Configuration | Temperature Range | |-------------------|----------|-------------------------------------|-------------------| | ASM3P1819N -08-ST | 3P1819N | 8-Pin SOIC,Tube | Commercial | | ASM3P1819N -08-SR | 3P1819N | 8-Pin SOIC, Tape and Reel | Commercial | | ASM3P1819NF-08-ST | 3P1819NF | 8-Pin SOIC, Tube, Pb Free | Commercial | | ASM3P1819NF-08-SR | 3P1819NF | 8-Pin SOIC, Tape and Reel, Pb Free | Commercial | | ASM3P1819NG-08-ST | 3P1819NG | 8-Pin SOIC, Tube, Green | Commercial | | ASM3P1819NG-08-SR | 3P1819NG | 8-Pin SOIC, Tape and Reel, Green | Commercial | | ASM3I1819N -08-ST | 3I1819N | 8-Pin SOIC, Tube | Industrial | | ASM3I1819N -08-SR | 3I1819N | 8-Pin SOIC, Tape and Reel | Industrial | | ASM3I1819NF-08-ST | 3I1819NF | 8-Pin SOIC, Tube, Pb Free | Industrial | | ASM3I1819NF-08-SR | 3I1819NF | 8-Pin SOIC, Tape and Reel, Pb Free | Industrial | | ASM3I1819NG-08-ST | 3I1819NG | 8-Pin SOIC, Tube, Green | Industrial | | ASM3I1819NG-08-SR | 3I1819NG | 8-Pin SOIC, Tape and Reel, Green | Industrial | | ASM3P1819N -08-TT | 3P1819N | 8-Pin TSSOP, Tube | Commercial | | ASM3P1819N -08-TR | 3P1819N | 8-Pin TSSOP, Tape and Reel | Commercial | | ASM3P1819NF-08-TT | 3P1819NF | 8-Pin TSSOP, Tube, Pb Free | Commercial | | ASM3P1819NF-08-TR | 3P1819NF | 8-Pin TSSOP, Tape and Reel, Pb Free | Commercial | | ASM3P1819NG-08-TT | 3P1819NG | 8-Pin TSSOP, Tube, Green | Commercial | | ASM3P1819NG-08-TR | 3P1819NG | 8-Pin TSSOP, Tape and Reel, Green | Commercial | | ASM3I1819N -08-TT | 3I1819N | 8-Pin TSSOP, Tube | Industrial | | ASM3I1819N -08-TR | 3I1819N | 8-Pin TSSOP, Tape and Reel | Industrial | | ASM3I1819NF-08-TT | 3I1819NF | 8-Pin TSSOP, Tube, Pb Free | Industrial | | ASM3I1819NF-08-TR | 3I1819NF | 8-Pin TSSOP, Tape and Reel, Pb Free | Industrial | | ASM3I1819NG-08-TT | 3I1819NG | 8-Pin TSSOP, Tube, Green | Industrial | | ASM3I1819NG-08-TR | 3I1819NG | 8-Pin TSSOP, Tape and Reel, Green | Industrial | #### **Device Ordering Information** Alliance Semiconductor Corporation 2575 Augustine Drive, Santa Clara, CA 95054 Tel# 408-855-4900 Fax: 408-855-4999 www.alsc.com Copyright © Alliance Semiconductor All Rights Reserved Part Number: ASM3P1819N Document Version: 0.2 Note: This product utilizes US Patent # 6,646,463 Impedance Emulator Patent issued to Alliance Semiconductor, dated 11-11-2003 © Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.