

WS57C256F

HIGH SPEED 32K x 8 CMOS EPROM

KEY FEATURES

- Fast Access Time
 - t_{ACC} = 35 ns
 - t_{CF} = 35 ns
- Low Power Consumption
 - 200 µA Standby I_{CC}

- Immune to Latch-UP
 - Up to 200 mA
- ESD Protection Exceeds 2000 Volts
- Available in 300 Mil DIP and PLDCC

TOP VIEW

A₈

A₉

A₁₁

NC

ŌĒ

A₁₀

07

06

25 ns

CE/PGM

CERDIP

V_{PP} [] 1 A₁₂ [] 2

A₇ [] 3

A₆ ☐ 4

A₅ 🗌 5

A₄ [6

A₃ [] 7

00 11

0₁ [12 0₂ [13

GND 14

28 🛛 V_{CC}

27 🗌 A₁₄

26 🛛 A₁₃

25 🛛 A8

24 🗌 Ag

23 🛛 A<u>1</u>1

22 🗌 OE

19 0₇

18 0₆

17 0₅

16 0₄ 15 0₃

WS57C256F-70

70 ns

30 ns

21 A₁₀ 20 CE/PGM

DESC SMD No. 5962-86063

GENERAL DESCRIPTION

The WS57C256F is a High Performance 32K x 8 UV Erasable EPROM. It is manufactured using an advanced CMOS process technology enabling it to operate at speeds as fast as 35 ns Address Access Time (t_{ACC}) and 35 ns Chip Enable Time (t_{CE}). It was designed utilizing WSI's patented self-aligned split gate EPROM cell, resulting in a low power device with a very cost effective die size. The low standby power capability of this 256 K product (200 µA in a CMOS interface environment) is especially attractive.

This product, with its high speed capability, is particularly appropriate for use with today's fast DSP processors and high-clock-rate Microprocessors. The WS57C256F's 35 ns speed enables these advanced processors to operate without introducing any undesirable wait states. The WS57C256F is also ideal for use in modem applications, and is recommended for use in these applications by the leading modem chip set manufacturer.

The WS57C256F is available in a variety of package types including the space saving 300 Mil DIP, the surface mount PLDCC, and other windowed and non-windowed options. And its standard JEDEC EPROM pinouts provide for automatic upgrade density paths for current 64K and 128K EPROM users.

A

 A_5

A₁ 10

 A_0

NC

O₀

6

: 7

8

9

3 11

12

13

20 ns

PIN CONFIGURATION

Chip Carrier

VPP VCC A14 A13

14 15 16 17 18 19 20

 $O_1 O_2 \stackrel{O}{\underset{Z_1}{\rightarrow}} NC O_3 O_4 O_5$

32 31 30

29

28

27

26

25 5

24 3

23 :

22 :

21

		i			1		
PINS MODE	CE/ PGM	ŌĒ	Ag	A ₀	V _{PP}	vcc	OUTPUTS
Read	VIL	V_{IL}	х	х	Vcc	Vcc	D _{OUT}
Output Disable	х	V_{IH}	х	Х	Vcc	Vcc	High Z
Standby	V_{IH}	Х	х	Х	Vcc	Vcc	High Z
Program	VIL	V _{IH}	Х	Х	V _{PP} ²	Vcc	D _{IN}
Program Verify	x	VIL	х	Х	V _{PP} ²	Vcc	DOUT
Program Inhibit	VIH	VIH	х	х	V _{PP} ²	Vcc	High Z
Signature ³	V _{IL}	V_{IL}	V_{H}^{2}	V_{IL}	Vcc	Vcc	23 H ⁴
Signature	VIL	V_{IL}	V _H ²	V_{IH}	VCC	Vcc	EO H ⁵

MODE SELECTION

NOTES

1. X can be $V_{\mbox{\rm IL}}$ or $V_{\mbox{\rm IH}}.$

PARAM

Address

- 4. Manufacturer Signature.
- 2. $V_{IH} = V_{PP} = 12.75 \pm 0.25 V.$ 3. A1 - A8, $A10 - A14 = V_{IL}$.

PRODUC

Output Enable Time (Max)

5. Device Signature.

15 ns

T SELECTION GUIDE							
IETER	WS57C256F-35	WS57C256F-45	WS57C256F-55				
s Access Time (Max)	35 ns	45 ns	55 ns				

A_4 A_3 A₂

Return to Main Menu

WS57C256F

ABSOLUTE MAXIMUM RATINGS*

Storage Temperature65° to + 150°C
Voltage on any Pin with
Respect to Ground0.6V to +7V
V_{PP} and A_9 with Respect to Ground–0.6V to + 14V
ESD Protection>2000V

*NOTICE:

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

OPERATING RANGE

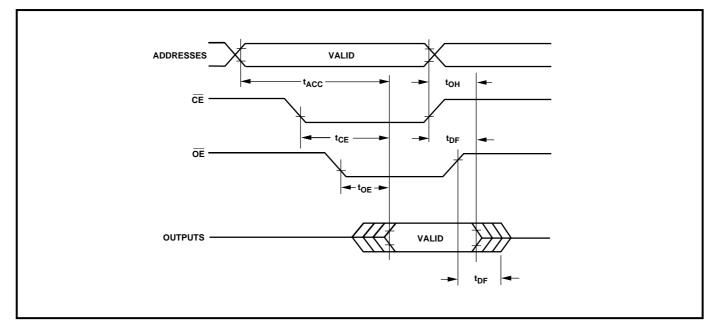
RANGE	TEMPERATURE	V _{CC}
Commercial	0°C to +70°C	+5V ± 10%
Industrial	-40°C to +85°C	+5V ± 10%
Military	–55°C to +125°C	+5V ± 10%

DC READ CHARACTERISTICS Over Operating Range with $V_{PP} = V_{CC}$

SYMBOL	PARAMETER	TEST CONDIT	MIN	MAX	UNITS	
V _{IL}	Input Low Voltage	(Note 4)	-0.1	0.8	V	
V _{IH}	Input High Voltage	(Note 4)		2.0	V _{CC} + 0.3	V
V _{OL}	Output Low Voltage	I _{OL} = 16 mA			0.4	V
V _{OH}	Output High Voltage	$I_{OH} = -4 \text{ mA}$		2.4		V
1	V _{CC} Standby Current (CMOS)	$\overline{\text{CE}} = \text{V}_{\text{CC}} \pm 0.3 \text{ V}$	Comm'l		200	μA
I _{SB1}	V _{CC} Standby Current (CMCS)	(Note 1) Ind/Mil			500	μA
I _{SB2}	V _{CC} Standby Current (TTL)	$\overline{CE} = V_{IH}$ (Note 2)	Comm'l		3	mA
'SB2		$OE = V_{\text{III}} (NOIC 2)$	Ind/Mil		5	mA
I _{CC1}	V _{CC} Active Current (CMOS)	(Notes 1 and 3)	Comm'l		25	mA
¹ CC1		Outputs Not Loaded	Ind/Mil		30	mA
I	V _{CC} Active Current (TTL)	(Notes 2 and 3)	Comm'l		50	mA
I _{CC2}	V _{CC} Active Current (TTE)	Outputs Not Loaded	Ind/Mil		60	mA
I _{PP}	V _{PP} Supply Current	$V_{PP} = V_{CC}$			100	μA
V _{PP}	V _{PP} Read Voltage			V _{CC} -0.4	V _{CC}	V
I _{LI}	Input Leakage Current	$V_{IN} = 5.5V \text{ or Gnd}$		-10	10	μA
I _{LO}	Output Leakage Current	V_{OUT} = 5.5 V or Gnd		-10	10	μA

NOTES:

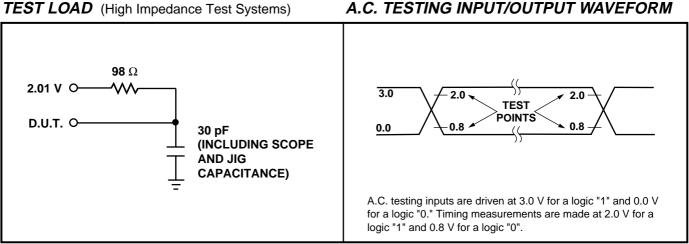
1. CMOS inputs: GND \pm 0.3V or V_{CC} \pm 0.3V.

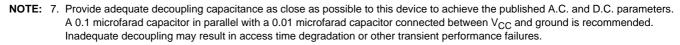

2. TTL inputs: $V_{IL} \le 0.8V$, $V_{IH} \ge 2.0V$. 3. Add 3 mA/MHz for A.C. power component. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise.
Do not attempt to test these values without suitable equipment.

AC READ CHARACTERISTICS Over Operating Range. with $V_{PP} = V_{CC}$

PARAMETER	SYMBOL	57C256F-35		57C256F-45		57C256F-55		57C256F-70		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	onno
Address to Output Delay	t _{ACC}		35		45		55		70	
CE to Output Delay	t _{CE}		35		45		55		70	
OE to Output Delay	t _{OE}		15		20		25		30	ns
Output Disable to Output Float	t _{DF}		20		20		25		30	
Address to Output Hold	t _{OH}	0		0		0		0		

AC READ TIMING DIAGRAM




CAPACITANCE⁽⁵⁾ T_A = 25°C, f = 1 MHz

SYMBOL	PARAMETER	CONDITIONS	TYP ⁽⁶⁾	MAX	UNITS
C _{IN}	Input Capacitance	$V_{IN} = 0V$	4	6	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	8	12	pF
C _{VPP}	V _{PP} Capacitance	V _{PP} = 0 V	18	25	pF

NOTES: 5. This parameter is only sampled and is not 100% tested.

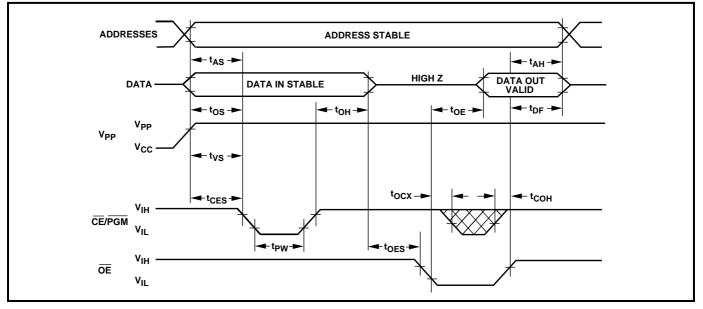
6. Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltages.

A.C. TESTING INPUT/OUTPUT WAVEFORM

PROGRAMMING INFORMATION

DC CHARACTERISTICS ($T_A = 25 \pm 5^{\circ}C$, $V_{CC} = 6.25 \text{ V} \pm 0.25 \text{ V}$, $V_{PP} = 12.75 \pm 0.25 \text{ V}$)

SYMBOLS	PARAMETER	MIN	MAX	UNITS
ILI	Input Leakage Current (V _{IN} = V _{CC} or Gnd)	-10	10	μA
IPP	V _{PP} Supply Current During Programming Pulse (CE/PGM = V _{IL})		60	mA
I _{CC}	V _{CC} Supply Current (Note 8)		35	mA
V _{OL}	Output Low Voltage During Verify (I _{OL} = 16 mA)		0.4	V
Vон	Output High Voltage During Verify (I _{OH} = -4 mA)	2.4		V


NOTE: 8. V_{CC} must be applied either coincidentally or before V_{PP} and removed either coincidentally or after V_{PP} . 9. V_{PP} must not be greater than 13 volts including overshoot. During $\overline{CE} = \overline{PGM} = V_{IL}$, V_{PP} must not be switched from 5 volts to 12.5 volts or vice-versa

10. During power up the \overline{PGM} pin must be brought high ($\geq V_{IH}$) either coincident with or before power is applied to V_{PP} .

AC CHARACTERISTICS	$(T_A = 25 \pm 5^{\circ}C, V_{CC} = 6.25 \text{ V} \pm 0.25 \text{ V}, V_{PP} = 12.75 \pm 0.25 \text{ V})$	/)
--------------------	--	----

SYMBOLS	PARAMETER	MIN	TYP	MAX	UNITS		
t _{AS}	Address Setup Time	2			μs		
t _{сон}	CE High to OE High	2			μs		
t _{OES}	Output Enable Setup Time	2			μs		
t _{OS}	Data Setup Time	2			μs		
t _{AH}	Address Hold Time	0			μs		
t _{OH}	Data Hold Time	2			μs		
t _{DF}	Chip Disable to Output Float Delay	0		130	ns		
t _{OE}	Data Valid From Output Enable			130	ns		
t _{VS} /t _{CES}	V _{PP} Setup Time/CE Setup Time	2			μs		
t _{PW}	PGM Pulse Width	100		200	μs		
t _{OCX}	\overline{OE} Low to \overline{CE} "Don't Care"	2			μs		

PROGRAMMING WAVEFORM

ORDERING INFORMATION

PART NUMBER	SPEED (ns)	PACKAGE TYPE	PACKAGE DRAWING	OPERATING TEMPERATURE RANGE	WSI MANUFACTURING PROCEDURE
WS57C256F-35C	35	32 Pad CLLCC	C2	Comm'l	Standard
WS57C256F-35D	35	28 Pin CERDIP, 0.6"	D2	Comm'l	Standard
WS57C256F-35J	35	32 Pin PLDCC	J4	Comm'l	Standard
WS57C256F-35L	35	32 Pin CLDCC	L3	Comm'l	Standard
WS57C256F-35P	35	28 Pin Plastic DIP, 0.6"	P3	Comm'l	Standard
WS57C256F-35T	35	28 Pin CERDIP, 0.3"	T2	Comm'l	Standard
WS57C256F-45C	45	32 Pad CLLCC	C2	Comm'l	Standard
WS57C256F-45D	45	28 Pin CERDIP, 0.6"	D2	Comm'l	Standard
WS57C256F-45P	45	28 Pin Plastic DIP, 0.6"	P3	Comm'l	Standard
WS57C256F-45T	45	28 Pin CERDIP, 0.3"	T2	Comm'l	Standard
WS57C256F-55C	55	32 Pad CLLCC	C2	Comm'l	Standard
WS57C256F-55CMB	55	32 Pad CLLCC	C2	Military	MIL-STD-883C
WS57C256F-55D	55	28 Pin CERDIP, 0.6"	D2	Comm'l	Standard
WS57C256F-55DM	55	28 Pin CERDIP, 0.6"	D2	Military	Standard
WS57C256F-55DMB	55	28 Pin CERDIP, 0.6"	D2	Military	MIL-STD-883C
WS57C256F-55J	55	32 Pin PLDCC	J4	Comm'l	Standard
WS57C256F-55L	55	32 Pin CLDCC	L3	Comm'l	Standard
WS57C256F-55P	55	28 Pin Plastic DIP, 0.6"	P3	Comm'l	Standard
WS57C256F-55T	55	28 Pin CERDIP, 0.3"	T2	Comm'l	Standard
WS57C256F-55TMB	55	28 Pin CERDIP, 0.3"	T2	Military	MIL-STD-883C
WS57C256F-70CMB*	70	32 Pad CLLCC	C2	Military	MIL-STD-883C
WS57C256F-70D	70	28 Pin CERDIP, 0.6"	D2	Comm'l	Standard
WS57C256F-70DMB*	70	28 Pin CERDIP, 0.6"	D2	Military	MIL-STD-883C
WS57C256F-70J	70	32 Pin PLDCC	J4	Comm'l	Standard
WS57C256F-70JI	70	32 Pin PLDCC	J4	Industrial	Standard
WS57C256F-70T	70	28 Pin CERDIP, 0.3"	T2	Comm'l	Standard

NOTE: 11. The actual part marking will not include the initials "WS."

*SMD product. See section 4 for DESC SMD number.

PROGRAMMING/ALGORITHMS/ERASURE/PROGRAMMERS

REFER TO PAGE 5-1

The WS57C256F is programmed using Algorithm D shown on page 5-9. When using Data I/O programmers, algorithm 57C256FB is recommended for use with the WS57C256F for best programming results.