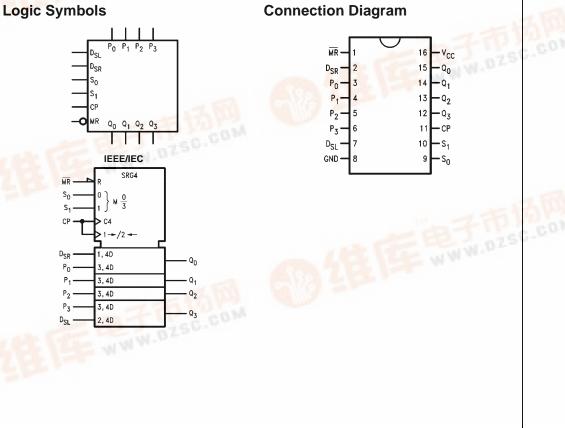


FAIRCHILD

SEMICONDUCTOR

April 1988 Revis<mark>ed March 200</mark>0 ⁴F194 4-Bit Bidirectional Universal Shift Register

74F194 4-Bit Bidirectional Universal Shift Register


General Description

The 74F194 is a high-speed 4-bit bidirectional universal shift register. As a high-speed, multifunctional, sequential building block, it is useful in a wide variety of applications. It may be used in serial-serial, shift left, shift right, serial-parallel, parallel-serial, and parallel-parallel data register transfers.

- Features
- Typical shift frequency of 150 MHz
- Asynchronous master reset
- Hold (do nothing) mode
- Fully synchronous serial or parallel data transfers

Ordering Code:

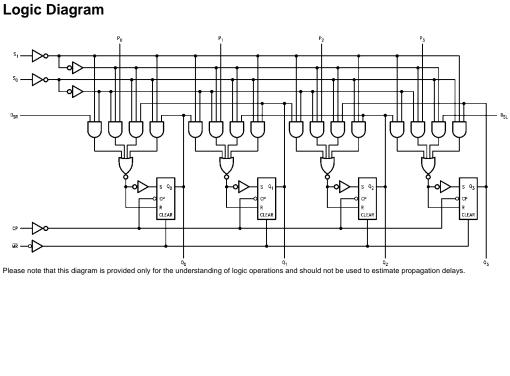
Order Number	Package Number	Package Description
74F194SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74F194SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F194PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Devices also available	in Tape and Reel Specify	by appending the suffix letter "X" to the ordering code

74F194

Unit Loading/Fan Out

Dia Managa	Description	U.L.	Input I _{IH} /I _{IL}	
Pin Names	Description	HIGH/LOW	OW Output I _{OH} /I _{OL}	
S ₀ , S ₁	Mode Control Inputs	1.0/1.0	20 µA/-0.6 mA	
$P_0 - P_3$	Parallel Data Inputs	1.0/1.0	20 µA/-0.6 mA	
D _{SR}	Serial Data Input (Shift Right)	1.0/1.0	20 µA/-0.6 mA	
D _{SL}	Serial Data Input (Shift Left)	1.0/1.0	20 µA/-0.6 mA	
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	20 µA/-0.6 mA	
MR	Asynchronous Master Reset Input (Active LOW)	1.0/1.0	20 µA/–0.6 mA	
$Q_0 - Q_3$	Parallel Outputs	50/33.3	–1 mA/20 mA	

Functional Description


The 74F194 contains four edge-triggered D-type flip-flops and the necessary interstage logic to synchronously perform shift right, shift left, parallel load and hold operations. Signals applied to the Select (S_0, S_1) inputs determine the type of operation, as shown in the Mode Select Table. Signals on the Select, Parallel data (P_0-P_3) and Serial data $(\mathsf{D}_{\mathsf{SR}},\,\mathsf{D}_{\mathsf{SL}})$ inputs can change when the clock is in either state, provided only that the recommended setup and hold times, with respect to the clock rising edge, are observed. A LOW signal on Master Reset (MR) overrides all other inputs and forces the outputs LOW.

Mode Select Table

Operating	Inputs							Outputs				
Mode	MR	S ₁	S ₀	D_{SR}	D_{SL}	Pn	Q_0	Q_1	Q_2	Q_3		
Reset	L	Х	Х	Х	Х	Х	L	L	L	L		
Hold	Н	Ι	I	Х	Х	Х	q_0	q_1	q_2	q_3		
Shift Left	Н	h	Ι	Х	Ι	Х	q ₁	q_2	q_3	L		
	н	h	Ι	х	h	Х	q_1	q_2	q_3	Н		
Shift Right	Н	Ι	h	Ι	Х	Х	L	\mathbf{q}_{0}	q_1	q_2		
	н	Т	h	h	Х	Х	н	\mathbf{q}_{0}	q_1	q_2		
Parallel Load	Н	h	h	Х	Х	p _n	\mathbf{p}_0	p_1	p_2	\mathbf{p}_3		

H (h) = HIGH Voltage Level L (l) = LOW Voltage Level

 $p_n(q_n)$ = Lower case letters indicate the state of the referenced input (or output) one setup time prior to the LOW-to-HIGH clock transition. X = Immaterial

Absolute Maximum Ratings(Note 1)

	-
Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)

Recommended Operating Conditions

Free Air Ambient Temperature	
Supply Voltage	

74F194

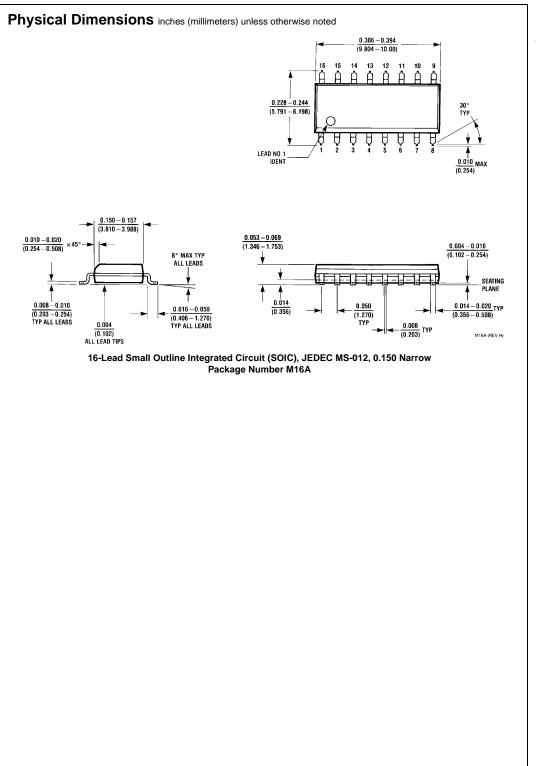
0°C to +70°C +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

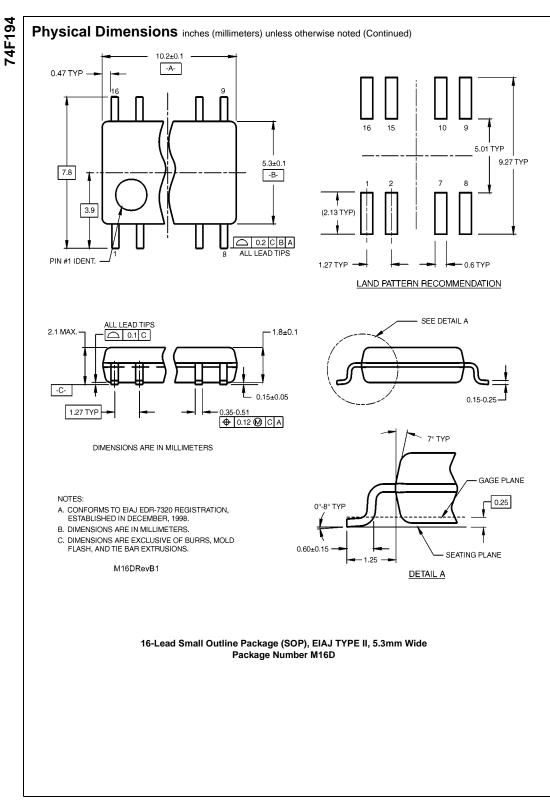
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

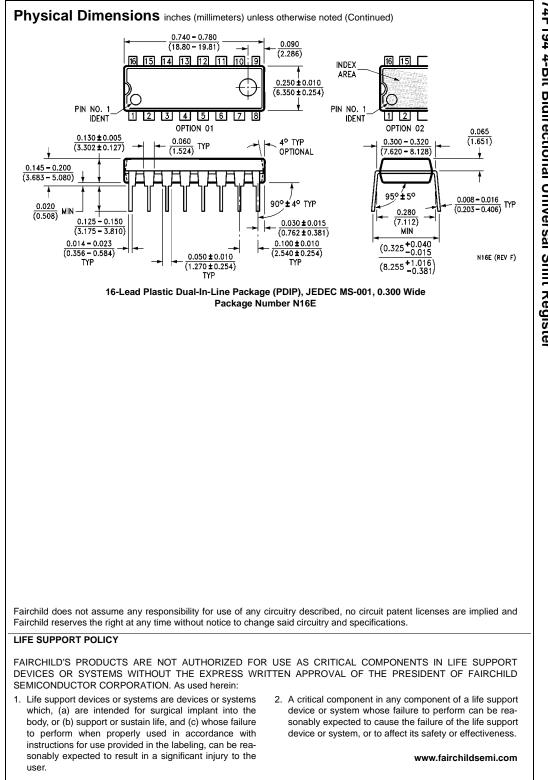
DC Electrical Characteristics

Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA
	Voltage	5% V _{CC}	2.7			v	IVIIII	$I_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5			I _{OL} = 20 mA
IIH	Input HIGH Current				5.0	μΑ	Max	$V_{IN} = 2.7V$
I _{BVI}	Input HIGH Current Breakdown Test				7.0	μΑ	Max	V _{IN} = 7.0V
ICEX	Output HIGH Leakage Current				50	μΑ	Max	V _{OUT} = V _{CC}
V _{ID}	Input Leakage Test		4.75			v	0.0	$I_{ID} = 1.9 \ \mu A$ All Other Pins Grounded
I _{OD}	Output Leakage Circuit Current				3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded
Ι _{ΙL}	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$
I _{OS}	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$
I _{CC}	Power Supply Current			33	46	mA	Max	


94	
Ε	
74	

AC Electrical Characteristics


Symbol	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			V _{CC} =	C to +125°C ⊧ +5.0V 50 pF	$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Shift Frequency	105	150		90		90		MHz
t _{PLH}	Propagation Delay	3.5	5.2	7.0	3.0	8.5	3.5	8.0	
t _{PHL}	CP to Q _n	3.5	5.5	7.0	3.0	8.5	3.5	8.0	ns
t _{PHL}	Propagation Delay	4.5	0.0	40.0	4.5	44.5	4.5	44.0	
	MR to Q _n	4.5	8.6	12.0	4.5	14.5	4.5	14.0	ns


AC Operating Requirements

		TA = -	$T_A = -55^{\circ}C$	$T_A = -55^{\circ}C$ to $+125^{\circ}C$		$T_A=0^\circ C \ to \ +70^\circ C$		
Symbol	Parameter	V _{CC} =	+5.0V	$V_{CC} = +5.0V$		$V_{CC} = +5.0V$		Units
		Min	Max	Min	Max	Min	Max	
t _S (H)	Setup Time, HIGH or LOW	4.0		6.0		4.0		
t _S (L)	P _n or D _{SR} or D _{SL} to CP	4.0		4.0		4.0		ns
t _H (H)	Hold Time, HIGH or LOW	1.0		1.5		1.0		115
t _H (L)	P _n or D _{SR} or D _{SL} to CP	0		1.0		1.0		
t _S (H)	Setup Time, HIGH or LOW	10.0		10.5		11.0		
t _S (L)	S _n to CP	8.0		8.0		8.0		ns
t _H (H)	Hold Time, HIGH or LOW	0		0		0		115
t _H (L)	S _n to CP	0		0		0		
t _W (H)	CP Pulse Width, HIGH	5.0		5.5		5.5		ns
t _W (L)	MR Pulse Width, LOW	5.0		5.0		5.0		ns
t _{REC}	Recovery Time MR to CP	9.0		9.0		11.0		ns

7